Abstract

Optical fiber based twist sensors usually suffer from high cross sensitivity to strain. Here we report a strain independent twist sensor based on an uneven platinum coated hollow core fiber (HCF) structure. The sensor is fabricated by splicing a section of ~4.5-mm long HCF between two standard single mode fibers, followed by a sputter-coating of a very thin layer of platinum on both sides of the HCF surface. Experimental results demonstrate that twist angles can be measured by monitoring the strength change of transmission spectral dip. The sensor’s cross sensitivity to strain is investigated before and after coating with platinum. It is found that by coating a platinum layer of ~9 nm on the HCF surface, the sensor’s cross sensitivity to strain is significantly decreased with over two orders of magnitude less than that of the uncoated sensor sample. The lowest strain sensitivity of ~2.32×105 dB/𝜇𝛆 has been experimentally achieved, which is to the best of our knowledge, the lowest cross sensitivity to strain reported to date for optical fiber sensors based on intensity modulation. In addition, the proposed sensor is capable of simultaneous measurement of strain and twist angle by monitoring the wavelength shift and dip strength variation of a single spectral dip. In the experiment, strain and twist angle sensitivities of 0.61 pm/𝜇𝛆 and 0.10 dB/° have been achieved. Moreover, the proposed sensor offers advantages of ease of fabrication, miniature size, and a good repeatability of measurement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental and theoretical study of the in- fiber twist sensor based on quasi-fan Solc structure filter

Chunran Sun, Muguang Wang, and Shuisheng Jian
Opt. Express 25(17) 19955-19965 (2017)

Low-cost temperature- and strain-insensitive twist sensor based on a hybrid fiber grating structure

Xi Guo, Zhikun Xing, Huabao Qin, Qizhen Sun, Hushan Wang, Deming Liu, Lin Zhang, and Zhijun Yan
Appl. Opt. 58(16) 4479-4483 (2019)

Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers

Binbin Song, Hao Zhang, Yinping Miao, Wei Lin, Jixuan Wu, Haifeng Liu, Donglin Yan, and Bo Liu
Opt. Express 23(12) 15372-15379 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. N. Li, D. S. Li, and G. B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
    [Crossref]
  2. L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett. 40(4), 657–660 (2015).
    [Crossref] [PubMed]
  3. Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
    [Crossref]
  4. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [Crossref] [PubMed]
  5. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]
  6. L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
    [Crossref]
  7. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
    [Crossref]
  8. C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
    [Crossref]
  9. B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
    [Crossref] [PubMed]
  10. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
    [Crossref] [PubMed]
  11. W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).
  12. B. Song, H. Zhang, Y. Miao, W. Lin, J. Wu, H. Liu, D. Yan, and B. Liu, “Highly sensitive twist sensor employing Sagnac interferometer based on PM-elliptical core fibers,” Opt. Express 23(12), 15372–15379 (2015).
    [Crossref] [PubMed]
  13. B. Huang, X. Shu, and Y. Du, “Intensity modulated torsion sensor based on optical fiber reflective Lyot filter,” Opt. Express 25(5), 5081–5090 (2017).
    [Crossref] [PubMed]
  14. H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
    [Crossref]
  15. T. Hu, Y. Zhao, and D. Wu, “Novel torsion sensor using a polarization maintaining photonic crystal fiber loop mirror,” Instrum. Sci. Technol. 44(1), 46–53 (2016).
    [Crossref]
  16. P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
    [Crossref]
  17. W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
    [Crossref]
  18. D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
    [Crossref]
  19. D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, C. Yu, Z. Kang, F. Li, Z. Liu, H.-Y. Tam, G. Farrell, Y. Semenova, and Q. Wu, “Highly sensitive twist sensor based on partially silver coated hollow core fiber structure,” J. Lightwave Technol. 36(17), 3672–3677 (2018).
    [Crossref]
  20. D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, S. Wan, X. He, Z. Kang, F. Li, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol,” Sens. Actuators B Chem. 271, 1–8 (2018).
    [Crossref]
  21. H. Lu, Y. Yue, J. Du, L. Shao, T. Wu, J. Pan, and J. Hu, “Temperature and liquid refractive index sensor using P-D fiber structure-based Sagnac loop,” Opt. Express 26(15), 18920–18927 (2018).
    [Crossref] [PubMed]
  22. V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
    [Crossref] [PubMed]
  23. C. A. Dimarzio, Optics for Engineers (CRC, 2011), pp. 147.

2018 (4)

2017 (3)

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).

B. Huang, X. Shu, and Y. Du, “Intensity modulated torsion sensor based on optical fiber reflective Lyot filter,” Opt. Express 25(5), 5081–5090 (2017).
[Crossref] [PubMed]

2016 (1)

T. Hu, Y. Zhao, and D. Wu, “Novel torsion sensor using a polarization maintaining photonic crystal fiber loop mirror,” Instrum. Sci. Technol. 44(1), 46–53 (2016).
[Crossref]

2015 (2)

2014 (1)

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

2013 (2)

2012 (1)

2011 (3)

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

2010 (2)

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
[Crossref] [PubMed]

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

2006 (2)

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

2004 (1)

H. N. Li, D. S. Li, and G. B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

Aitchison, J. S.

Albert, J.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Budinski, V.

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Chan, C. C.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, L. H.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Chiang, K. S.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Chung, Y. J.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Dimarzio, C. A.

C. A. Dimarzio, Optics for Engineers (CRC, 2011), pp. 147.

Dong, X. Y.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Donlagic, D.

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Du, J.

Du, Y.

Fan, Y. E.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Farrell, G.

Fernandes, L. A.

Frazão, O.

Gong, T. X.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Grenier, J. R.

Han, W.

He, X.

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, S. Wan, X. He, Z. Kang, F. Li, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol,” Sens. Actuators B Chem. 271, 1–8 (2018).
[Crossref]

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

Herman, P. R.

Hu, J.

Hu, T.

T. Hu, Y. Zhao, and D. Wu, “Novel torsion sensor using a polarization maintaining photonic crystal fiber loop mirror,” Instrum. Sci. Technol. 44(1), 46–53 (2016).
[Crossref]

Huang, B.

Huang, X.

Jian, S.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Jiang, M.

Jiang, S.

W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).

Jin, Y. X.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Kang, Z.

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, C. Yu, Z. Kang, F. Li, Z. Liu, H.-Y. Tam, G. Farrell, Y. Semenova, and Q. Wu, “Highly sensitive twist sensor based on partially silver coated hollow core fiber structure,” J. Lightwave Technol. 36(17), 3672–3677 (2018).
[Crossref]

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, S. Wan, X. He, Z. Kang, F. Li, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol,” Sens. Actuators B Chem. 271, 1–8 (2018).
[Crossref]

Kim, B. K.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, H. M.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, T. H.

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kobelke, J.

Kumar, R.

Li, D. S.

H. N. Li, D. S. Li, and G. B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

Li, F.

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, S. Wan, X. He, Z. Kang, F. Li, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol,” Sens. Actuators B Chem. 271, 1–8 (2018).
[Crossref]

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, C. Yu, Z. Kang, F. Li, Z. Liu, H.-Y. Tam, G. Farrell, Y. Semenova, and Q. Wu, “Highly sensitive twist sensor based on partially silver coated hollow core fiber structure,” J. Lightwave Technol. 36(17), 3672–3677 (2018).
[Crossref]

Li, H. N.

H. N. Li, D. S. Li, and G. B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

Lin, W.

Liu, B.

Liu, D.

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, C. Yu, Z. Kang, F. Li, Z. Liu, H.-Y. Tam, G. Farrell, Y. Semenova, and Q. Wu, “Highly sensitive twist sensor based on partially silver coated hollow core fiber structure,” J. Lightwave Technol. 36(17), 3672–3677 (2018).
[Crossref]

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, S. Wan, X. He, Z. Kang, F. Li, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol,” Sens. Actuators B Chem. 271, 1–8 (2018).
[Crossref]

W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).

J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
[Crossref] [PubMed]

Liu, H.

Liu, Z.

Lou, S.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Lu, H.

Lu, P.

W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).

Lu, W.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Mallik, A. K.

Malnou, M.

Mei, C.

Miao, Y.

Mo, Q. J.

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Nia, W.

W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).

Pan, J.

Peng, G.-D.

Rao, Y. J.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Schuster, K.

Semenova, Y.

Shao, L.

Shen, C.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Shi, L. L.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Shu, X.

Shum, P. P.

Silva, R. M.

Song, B.

Song, G. B.

H. N. Li, D. S. Li, and G. B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

Sun, Q.

Tam, H.-Y.

Wan, S.

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, S. Wan, X. He, Z. Kang, F. Li, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol,” Sens. Actuators B Chem. 271, 1–8 (2018).
[Crossref]

Wang, L.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Wang, M.

Wei, F.

Wo, J.

Wu, D.

T. Hu, Y. Zhao, and D. Wu, “Novel torsion sensor using a polarization maintaining photonic crystal fiber loop mirror,” Instrum. Sci. Technol. 44(1), 46–53 (2016).
[Crossref]

Wu, J.

Wu, Q.

Wu, T.

Xin, X.

Yan, D.

Yiping, W.

Yu, C.

Yuan, J.

Yue, Y.

Zhang, H.

Zhang, J.

W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).

J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
[Crossref] [PubMed]

Zhang, L.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhang, Y.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Zhang, Y. F.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Zhao, Y.

T. Hu, Y. Zhao, and D. Wu, “Novel torsion sensor using a polarization maintaining photonic crystal fiber loop mirror,” Instrum. Sci. Technol. 44(1), 46–53 (2016).
[Crossref]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhou, W.

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Zhu, T.

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

Zou, H.

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Zu, P.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE (1)

W. Nia, P. Lu, D. Liu, J. Zhang, and S. Jiang, “A highly sensitive twist sensor without temperature cross sensitivity based on tapered single-thin-single fiber offset structure,” 25th International conference on Optical fiber sensors (OFS-25), Proc. SPIE 10323, 103235D (2017).

Appl. Phys. Lett. (1)

C. Shen, Y. Zhang, W. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface Plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Eng. Struct. (1)

H. N. Li, D. S. Li, and G. B. Song, “Recent applications of fiber optic sensors to health monitoring in civil engineering,” Eng. Struct. 26(11), 1647–1657 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (4)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81 tilted structure,” IEEE Photonics Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based Sagnac interferometer,” IEEE Photonics Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

W. Chen, S. Lou, L. Wang, H. Zou, W. Lu, and S. Jian, “Highly sensitive torsion sensor based on Sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photonics Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

H. M. Kim, T. H. Kim, B. K. Kim, and Y. J. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photonics Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Instrum. Sci. Technol. (1)

T. Hu, Y. Zhao, and D. Wu, “Novel torsion sensor using a polarization maintaining photonic crystal fiber loop mirror,” Instrum. Sci. Technol. 44(1), 46–53 (2016).
[Crossref]

J. Lightwave Technol. (2)

Opt. Commun. (2)

Y. J. Rao, T. Zhu, and Q. J. Mo, “Highly sensitive fiber-optic torsion sensor based on an ultra-long-period fiber grating,” Opt. Commun. 266(1), 187–190 (2006).
[Crossref]

L. L. Shi, T. Zhu, Y. E. Fan, K. S. Chiang, and Y. J. Rao, “Torsion sensing with a fiber ring laser incorporating a pair of rotary long-period fiber gratings,” Opt. Commun. 284(22), 5299–5302 (2011).
[Crossref]

Opt. Express (6)

Opt. Lett. (2)

Sens. Actuators B Chem. (1)

D. Liu, R. Kumar, F. Wei, W. Han, A. K. Mallik, J. Yuan, S. Wan, X. He, Z. Kang, F. Li, C. Yu, G. Farrell, Y. Semenova, and Q. Wu, “High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol,” Sens. Actuators B Chem. 271, 1–8 (2018).
[Crossref]

Sensors (Basel) (1)

V. Budinski and D. Donlagic, “Fiber-optic sensors for measurements of torsion, twist and rotation: a review,” Sensors (Basel) 17(3), 443 (2017).
[Crossref] [PubMed]

Other (1)

C. A. Dimarzio, Optics for Engineers (CRC, 2011), pp. 147.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) A schematic diagram of the proposed HCF structure, showing the light transmission and multiple beams interference inside the hollow core; (b) a schematic diagram of the HCF cross-section after coating with platinum layer.
Fig. 2
Fig. 2 Schematic diagram of the experimental setup for twist and strain measurement.
Fig. 3
Fig. 3 Measured spectral responses of the HCF based fiber structures before and after coating with platinum layers of different thicknesses.
Fig. 4
Fig. 4 Measured spectral responses of the HCF based fiber structures without platinum coating (S1-0) under different stains when the input light polarization state is (a) fixed and (b) changed; (c) Measured spectral dip strength change when twist is applied to the HCF structure at three different strain values of 0, 600 ����, and 1200 ����, respectively.
Fig. 5
Fig. 5 (a) Measured spectral dip strength changes and (b) Normalized dip strength change when different strains are applied to sensor samples S1-0, S2-30,S3-60 and S4-90, respectively; (c) Examples of measured spectral responses of S4-90 under different stains.
Fig. 6
Fig. 6 (a) Measured spectral dip strength changes under twist for sensor samples S2-30, S3-60 and S4-90 at 0 ���� and 1200 ����, respectively; (b) An example of the measured spectral response of S4-90 under twist; (c) Schematic diagram shows the E-field orientation at different twist angles; (d) Measured spectral dip strength changes and the corresponding standard deviation in two rounds increase-decrease cycles test when twist is applied to the HCF structure.
Fig. 7
Fig. 7 Measured spectral dip strength changes and the corresponding standard deviation at (a) different axial strains applied to the HCF structure of 0 ����, 200 ����, 400 ����, 600 ����, 800 ����, 1000 ���� to 1200 ����, and at (b) different temperatures of 22.8 °C, 27.6 °C, 32.2 °C, 36.8 °C, 41.4 °C, and 47.4 °C when twist is applied to the HCF structure. Examples of measured spectral dip strength variations at specific twisted angles for (c) different strains and (d) temperatures.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A r = r 1 + r 2 e i δ 1 + r 1 r 2 e i δ A
δ = 4 π λ n d cos θ 2 ± π  
I r = | A r | 2
T E   m o d e         r 1 = cos θ 1 n cos θ 2 cos θ 1 + n cos θ 2 , r 2 = r 1
T M   m o d e         r 1 = cos θ 2 n cos θ 1 cos θ 2 + n cos θ 1 , r 2 = r 1

Metrics