Abstract

The standoff detection range of the simultaneous ultraviolet/visible/near-infrared (UVN) + longwave-Infrared (LWIR) Laser Induced Breakdown Spectroscopy (LIBS) detection system has been successfully extended from merely 10 cm to ≥ 1 meter by adopting a reflecting telescope collection scheme and UVN + LWIR LIBS emission signatures were acquired in various atmospheres from soil and mineral samples. This system simultaneously captured emission signatures from atomic, and simple and complex molecular target species existing in or near the same laser-induce plasma plume within micro-seconds. These pioneer standoff measurements of UVN + LWIR LIBS signatures have revealed an abundance of plasma-generated sample molecular emitting species in their vapor state along with atomic ones which gave intense and distinct signature emissions in both UVN (conventional LIBS) and LWIR (LWIR LIBS) spectral regions. A HITRAN simulation estimates the temperatures of those vapor molecular species to be around 2500 K. Laser-induced plasma emissions in the LWIR region provided direct information on the molecular components of the sample substances. The demonstrable capability of the LWIR LIBS on in situ characterization of carbon- and oxygen-rich materials is expected to find important applications in water discovery and organic materials signatures detection and identification. As a result laser ablation spectroscopy will be greatly augmented in both fundamental knowledge of and capability for chemical analysis.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury–cadmium–telluride linear array detection system

Clayton S.-C. Yang, Feng Jin, Sudhir Trivedi, Eiei Brown, Uwe Hommerich, Jacob B. Khurgin, and Alan C. Samuels
Appl. Opt. 55(32) 9166-9172 (2016)

Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system

Clayton S.-C. Yang, Eiei Brown, Eric Kumi-Barimah, Uwe Hommerich, Feng Jin, Yingqing Jia, Sudhir Trivedi, Arvind I. D’souza, Eric A. Decuir, Priyalal S. Wijewarnasuriya, and Alan C. Samuels
Appl. Opt. 54(33) 9695-9702 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Yueh, J. P. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of analytical chemistry: applications, theory, and instrumentation. R. A. Meyers, ed. (John Wiley&Sons Ltd. Chichester, 2000), 2066–2088.
  2. R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
    [Crossref] [PubMed]
  3. D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
    [Crossref] [PubMed]
  4. R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
    [Crossref]
  5. M. A. Gondal and M. N. Siddiqui, “Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management,” J Environ Sci Health A Tox Hazard Subst Environ Eng 42(13), 1989–1997 (2007).
    [Crossref] [PubMed]
  6. F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectroscopy 285240, 1–12 (2012).
  7. F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
    [Crossref] [PubMed]
  8. R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
    [Crossref]
  9. N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: Using Lasers to Determine the Chemistry of the Red Planet,” Opt. Photonics News 24(1), 26–33 (2013).
    [Crossref]
  10. J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
    [Crossref]
  11. C. D. Chaffe, “LIBS continue to evolve,” Optics & Photonics News, May 2017, 42–49 (2017).
  12. V. I. Mazhukin, V. V. Nossov, I. Smurov, and G. Flamant, “Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour,” J. Phys. D Appl. Phys. 37(2), 185–199 (2004).
    [Crossref]
  13. C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
    [Crossref] [PubMed]
  14. K. Chaudhary, S. Z. H. Rizvi, and J. Ali, “Laser-Induced Plasma and Its Applications”, Plasma Science and Technology - Progress in Physical States and Chemical Reactions, ed. T. Miero, InTech 259–291 (2006).
  15. J. S. Cowpe, R. D. Pilkington, J. S. Astin, and A. E. Hill, “The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology,” J. Phys. D Appl. Phys. 42(16), 165202 (2009).
    [Crossref]
  16. Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, (CRC Press, 2007).
  17. W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
    [Crossref]
  18. C. S. C. Yang, F. Jin, S. R. Swaminathan, S. Patel, E. D. Ramer, S. B. Trivedi, E. E. Brown, U. Hommerich, and A. C. Samuels, “Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer,” Opt. Express 25(22), 26885–26897 (2017).
    [Crossref] [PubMed]
  19. C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
    [Crossref] [PubMed]
  20. C. S. C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hömmerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
    [PubMed]
  21. L. Nemes, E. E. Brown, C. S-C Yang, and U. Hommerich, “Mid infrared emission spectroscopy of carbon plasma,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 170, 145–149 (2017).
    [Crossref] [PubMed]
  22. N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
    [Crossref]
  23. C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
    [Crossref] [PubMed]
  24. C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
    [Crossref] [PubMed]
  25. C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
    [Crossref] [PubMed]
  26. J. B. Spicer, “Spectroscopic and Time-Domain Detection of Trace Explosives in Condensed and Vapor Phases,” ARO MURI Final Report on Real Time, Explosive Specific Chemical Sensors, (2008).
  27. D. L’Hermite, E. Vors, T. Vercouter, and G. Moutiers, “Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces,” Environ. Sci. Pollut. Res. Int. 23(9), 8219–8226 (2016).
    [Crossref] [PubMed]
  28. I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 96, 12–20 (2014).
    [Crossref]
  29. C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).
  30. A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, NIST atomic spectra database, (version 5.2) (2014).
  31. S. E. Stein, “NIST Chemistry WebBook”; W.G Mallard, P.J. Linstrom, Eds.; NIST Standard Reference Database 69; National Institute of Standards and Technology, Gaithersburg, MD.
  32. B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).
  33. E. K. Plyler and C. J. Humphreys, “Infrared Emission Spectra of Flames,” J. Res. Natl. Bur. Stand. 40(6), 449 (1948).
    [Crossref]
  34. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
    [Crossref]
  35. R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
    [Crossref]
  36. P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
    [Crossref] [PubMed]
  37. A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
    [Crossref]
  38. D. M. Surmick and C. G. Parigger, “Time-resolved aluminum laser-induced plasma temperature measurements,” J. Phys. Conf. Ser. 548, 012046 (2014).
    [Crossref]
  39. X. Bai, “Laser-induced plasma as a function of the laser parameters and the ambient gas,” Plasma Physics Université Claude Bernard-Lyon I (2014).
  40. A. M. Keszler and L. Nemes, “Time averaged emission spectra of Nd:YAG laser induced carbon plasmas,” J. Mol. Struct. 695–696, 211–218 (2004).
    [Crossref]
  41. A. Thorne, U. Litzén, and S. Johansson, Spectrophysics, (Springer, 1999), Chapter 9.4.2.
  42. L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
    [Crossref] [PubMed]
  43. H. H. Lurie and G. W. Sherman, “Flame Temperatures of Combustible Gas-Oxygen Mixtures,” Ind. Eng. Chem. 25(4), 404–409 (1933).
    [Crossref]
  44. Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
    [Crossref]
  45. T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
    [Crossref]
  46. A. Tinti, V. Tugnoli, S. Bonora, and O. Francioso, “Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review,” J. Cent. Eur. Agric. 16(1), 1–22 (2015).
    [Crossref]
  47. L. P. Sarma, P. S. R. Prasad, and N. Ravikumar, “Raman spectroscopic study of phase transitions in natural gypsum’,” J. Raman Spectrosc. 29(9), 851–856 (1998).
    [Crossref]
  48. M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” Am. Mineral. 92(1), 1–18 (2007).
    [Crossref]
  49. M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
    [Crossref]
  50. J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).
  51. Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
    [Crossref]
  52. X. Mao, S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
    [Crossref]
  53. L. Nemes, “Carbon vapor and carbon plasma infrared emission,” J. Astrophys. Aerospace Technol. 05(02), 154–157 (2017).
    [Crossref]
  54. X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
    [Crossref] [PubMed]
  55. J. Liu, R. Zhang, X. Li, J. Chen, J. Liu, J. Qiu, X. Gao, J. Cui, and B. Heshig, “Continuous background correction using effective points selected in third-order minima segments in low-cost laser-induced breakdown spectroscopy without intensified CCD,” Opt. Express 26(13), 16171–16186 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (5)

2016 (4)

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

D. L’Hermite, E. Vors, T. Vercouter, and G. Moutiers, “Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces,” Environ. Sci. Pollut. Res. Int. 23(9), 8219–8226 (2016).
[Crossref] [PubMed]

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (5)

D. M. Surmick and C. G. Parigger, “Time-resolved aluminum laser-induced plasma temperature measurements,” J. Phys. Conf. Ser. 548, 012046 (2014).
[Crossref]

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 96, 12–20 (2014).
[Crossref]

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

C. S. C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hömmerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[PubMed]

X. H. Zou, L. B. Guo, M. Shen, X. Y. Li, Z. Q. Hao, Q. D. Zeng, Y. F. Lu, Z. M. Wang, and X. Y. Zeng, “Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform,” Opt. Express 22(9), 10233–10238 (2014).
[Crossref] [PubMed]

2013 (4)

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: Using Lasers to Determine the Chemistry of the Red Planet,” Opt. Photonics News 24(1), 26–33 (2013).
[Crossref]

Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
[Crossref]

2012 (2)

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectroscopy 285240, 1–12 (2012).

2011 (1)

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

2010 (3)

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

2009 (2)

J. S. Cowpe, R. D. Pilkington, J. S. Astin, and A. E. Hill, “The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology,” J. Phys. D Appl. Phys. 42(16), 165202 (2009).
[Crossref]

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

2008 (1)

2007 (4)

C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” Am. Mineral. 92(1), 1–18 (2007).
[Crossref]

M. A. Gondal and M. N. Siddiqui, “Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management,” J Environ Sci Health A Tox Hazard Subst Environ Eng 42(13), 1989–1997 (2007).
[Crossref] [PubMed]

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

2005 (2)

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

2004 (2)

V. I. Mazhukin, V. V. Nossov, I. Smurov, and G. Flamant, “Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour,” J. Phys. D Appl. Phys. 37(2), 185–199 (2004).
[Crossref]

A. M. Keszler and L. Nemes, “Time averaged emission spectra of Nd:YAG laser induced carbon plasmas,” J. Mol. Struct. 695–696, 211–218 (2004).
[Crossref]

2003 (3)

X. Mao, S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

1998 (1)

L. P. Sarma, P. S. R. Prasad, and N. Ravikumar, “Raman spectroscopic study of phase transitions in natural gypsum’,” J. Raman Spectrosc. 29(9), 851–856 (1998).
[Crossref]

1995 (1)

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

1948 (1)

E. K. Plyler and C. J. Humphreys, “Infrared Emission Spectra of Flames,” J. Res. Natl. Bur. Stand. 40(6), 449 (1948).
[Crossref]

1933 (1)

H. H. Lurie and G. W. Sherman, “Flame Temperatures of Combustible Gas-Oxygen Mixtures,” Ind. Eng. Chem. 25(4), 404–409 (1933).
[Crossref]

Alessio, P. D.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Allen, C. C.

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

Anabitarte, F.

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectroscopy 285240, 1–12 (2012).

Anderson, R. B.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Astin, J. S.

J. S. Cowpe, R. D. Pilkington, J. S. Astin, and A. E. Hill, “The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology,” J. Phys. D Appl. Phys. 42(16), 165202 (2009).
[Crossref]

Barber, R. J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Barraclough, B. L.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Bender, S.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Bernath, P.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Bernath, P. F.

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Blaney, D.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Bonora, S.

A. Tinti, V. Tugnoli, S. Bonora, and O. Francioso, “Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review,” J. Cent. Eur. Agric. 16(1), 1–22 (2015).
[Crossref]

Brown, E.

Brown, E. E.

L. Nemes, E. E. Brown, C. S-C Yang, and U. Hommerich, “Mid infrared emission spectroscopy of carbon plasma,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 170, 145–149 (2017).
[Crossref] [PubMed]

C. S. C. Yang, F. Jin, S. R. Swaminathan, S. Patel, E. D. Ramer, S. B. Trivedi, E. E. Brown, U. Hommerich, and A. C. Samuels, “Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer,” Opt. Express 25(22), 26885–26897 (2017).
[Crossref] [PubMed]

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

C. S. C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hömmerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[PubMed]

C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

Busler, J.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Calvet, N.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Carleer, M.

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Chen, J.

Clark, R. N.

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

Clegg, S.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Cobo, A.

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectroscopy 285240, 1–12 (2012).

Coheur, P. F.

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Colin, R.

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Combe, J.-P.

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

Cousin, A.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Cowpe, J. S.

J. S. Cowpe, R. D. Pilkington, J. S. Astin, and A. E. Hill, “The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology,” J. Phys. D Appl. Phys. 42(16), 165202 (2009).
[Crossref]

Cui, J.

D’souza, A. I.

De Giacomo, A.

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]

De Lucia, F. C.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Decuir, E. A.

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[Crossref] [PubMed]

Deflores, L.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Delapp, D.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

DeLucia, F. C.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Dothe, H.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Duan, Y.

Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
[Crossref]

Dyar, M. D.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Eiler, J. M.

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

Fabre, C.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Flamant, G.

V. I. Mazhukin, V. V. Nossov, I. Smurov, and G. Flamant, “Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour,” J. Phys. D Appl. Phys. 37(2), 185–199 (2004).
[Crossref]

Florek, S.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

Forni, O.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Forrest, W.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Francioso, O.

A. Tinti, V. Tugnoli, S. Bonora, and O. Francioso, “Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review,” J. Cent. Eur. Agric. 16(1), 1–22 (2015).
[Crossref]

French, P. D.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Furlan, E.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Gamache, R. R.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Gao, X.

Gaona, I.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 96, 12–20 (2014).
[Crossref]

Gasnault, O.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Golden, D. C.

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

Goldman, A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Gondal, M. A.

M. A. Gondal and M. N. Siddiqui, “Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management,” J Environ Sci Health A Tox Hazard Subst Environ Eng 42(13), 1989–1997 (2007).
[Crossref] [PubMed]

Gonzalez, J. J.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

Gordon, I. E.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Gordon, M. S.

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

Gornushkin, I.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

Gottfried, J. L.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Green, J.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Guan, Y.

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

Guo, B.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Guo, L. B.

Hahn, D. W.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Hao, Z. Q.

Harmon, R. S.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Hermann, J.

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]

Heshig, B.

Hill, A. E.

J. S. Cowpe, R. D. Pilkington, J. S. Astin, and A. E. Hill, “The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology,” J. Phys. D Appl. Phys. 42(16), 165202 (2009).
[Crossref]

Hill, C.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

Hinkle, K.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Ho, K. M.

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

Hoehse, M.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

Hommerich, U.

L. Nemes, E. E. Brown, C. S-C Yang, and U. Hommerich, “Mid infrared emission spectroscopy of carbon plasma,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 170, 145–149 (2017).
[Crossref] [PubMed]

C. S. C. Yang, F. Jin, S. R. Swaminathan, S. Patel, E. D. Ramer, S. B. Trivedi, E. E. Brown, U. Hommerich, and A. C. Samuels, “Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer,” Opt. Express 25(22), 26885–26897 (2017).
[Crossref] [PubMed]

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

Hommerich, U. H.

Hömmerich, U. H.

Humphreys, C. J.

E. K. Plyler and C. J. Humphreys, “Infrared Emission Spectra of Flames,” J. Res. Natl. Bur. Stand. 40(6), 449 (1948).
[Crossref]

Jager, K. M.

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

Jia, Y.

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[Crossref] [PubMed]

Jin, F.

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

C. S. C. Yang, F. Jin, S. R. Swaminathan, S. Patel, E. D. Ramer, S. B. Trivedi, E. E. Brown, U. Hommerich, and A. C. Samuels, “Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer,” Opt. Express 25(22), 26885–26897 (2017).
[Crossref] [PubMed]

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[Crossref] [PubMed]

C. S. C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hömmerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[PubMed]

Keszler, A. M.

A. M. Keszler and L. Nemes, “Time averaged emission spectra of Nd:YAG laser induced carbon plasmas,” J. Mol. Struct. 695–696, 211–218 (2004).
[Crossref]

Khurgin, J. B.

Kim, K. H.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Kochanov, R. V.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

Kramer, G.

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

Kumi-Barimah, E.

L’Hermite, D.

D. L’Hermite, E. Vors, T. Vercouter, and G. Moutiers, “Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces,” Environ. Sci. Pollut. Res. Int. 23(9), 8219–8226 (2016).
[Crossref] [PubMed]

Lane, M. D.

M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” Am. Mineral. 92(1), 1–18 (2007).
[Crossref]

Lanza, N.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Laserna, J. J.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 96, 12–20 (2014).
[Crossref]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).

Lasue, J.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Li, X.

Li, X. Y.

Lin, Q.

Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
[Crossref]

Lindstrom, D. J.

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

Lindstrom, M. M.

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

Liu, J.

Liu, Y.

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

Livingston, W.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Lockwood, J. P.

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

Lopez-Higuera, J. M.

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectroscopy 285240, 1–12 (2012).

Lorenzo, J. A.

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).

Lu, W. C.

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

Lu, Y. F.

Lucena, P.

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).

Lurie, H. H.

H. H. Lurie and G. W. Sherman, “Flame Temperatures of Combustible Gas-Oxygen Mixtures,” Ind. Eng. Chem. 25(4), 404–409 (1933).
[Crossref]

Mao, S.

X. Mao, S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Mao, X.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

X. Mao, S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Maurice, S.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: Using Lasers to Determine the Chemistry of the Red Planet,” Opt. Photonics News 24(1), 26–33 (2013).
[Crossref]

Mazhukin, V. I.

V. I. Mazhukin, V. V. Nossov, I. Smurov, and G. Flamant, “Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour,” J. Phys. D Appl. Phys. 37(2), 185–199 (2004).
[Crossref]

Mazoyer, J.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

McCord, T. B.

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

McNesby, K. L.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Melikechi, N.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: Using Lasers to Determine the Chemistry of the Red Planet,” Opt. Photonics News 24(1), 26–33 (2013).
[Crossref]

Meslin, P.-Y.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Miziolek, A. W.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

F. C. De Lucia, R. S. Harmon, K. L. McNesby, R. J. Winkel, and A. W. Miziolek, “Laser-induced breakdown spectroscopy analysis of energetic materials,” Appl. Opt. 42(30), 6148–6152 (2003).
[Crossref] [PubMed]

Moros, J.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 96, 12–20 (2014).
[Crossref]

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).

Morris, R. V.

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

Mory, D.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

Moutiers, G.

D. L’Hermite, E. Vors, T. Vercouter, and G. Moutiers, “Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces,” Environ. Sci. Pollut. Res. Int. 23(9), 8219–8226 (2016).
[Crossref] [PubMed]

Munson, C. A.

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Nemes, L.

L. Nemes, “Carbon vapor and carbon plasma infrared emission,” J. Astrophys. Aerospace Technol. 05(02), 154–157 (2017).
[Crossref]

L. Nemes, E. E. Brown, C. S-C Yang, and U. Hommerich, “Mid infrared emission spectroscopy of carbon plasma,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 170, 145–149 (2017).
[Crossref] [PubMed]

A. M. Keszler and L. Nemes, “Time averaged emission spectra of Nd:YAG laser induced carbon plasmas,” J. Mol. Struct. 695–696, 211–218 (2004).
[Crossref]

Newsom, H.

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: Using Lasers to Determine the Chemistry of the Red Planet,” Opt. Photonics News 24(1), 26–33 (2013).
[Crossref]

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Nguyen, V.

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

Niu, G.

Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
[Crossref]

Nossov, V. V.

V. I. Mazhukin, V. V. Nossov, I. Smurov, and G. Flamant, “Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour,” J. Phys. D Appl. Phys. 37(2), 185–199 (2004).
[Crossref]

Ollila, A.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Omenetto, N.

D. W. Hahn and N. Omenetto, “Laser-induced breakdown spectroscopy (LIBS), part I: review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community,” Appl. Spectrosc. 64(12), 335–366 (2010).
[Crossref] [PubMed]

Panne, U.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

Parigger, C. G.

D. M. Surmick and C. G. Parigger, “Time-resolved aluminum laser-induced plasma temperature measurements,” J. Phys. Conf. Ser. 548, 012046 (2014).
[Crossref]

Patel, S.

Perevalov, V. I.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Perez, R.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Pieters, C. M.

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

Pilkington, R. D.

J. S. Cowpe, R. D. Pilkington, J. S. Astin, and A. E. Hill, “The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology,” J. Phys. D Appl. Phys. 42(16), 165202 (2009).
[Crossref]

Plyler, E. K.

E. K. Plyler and C. J. Humphreys, “Infrared Emission Spectra of Flames,” J. Res. Natl. Bur. Stand. 40(6), 449 (1948).
[Crossref]

Polyansky, O. L.

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Pontoppidan, K.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Prasad, N. S.

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

Prasad, P. S. R.

L. P. Sarma, P. S. R. Prasad, and N. Ravikumar, “Raman spectroscopic study of phase transitions in natural gypsum’,” J. Raman Spectrosc. 29(9), 851–856 (1998).
[Crossref]

Qiu, J.

Ramer, E. D.

Ravikumar, N.

L. P. Sarma, P. S. R. Prasad, and N. Ravikumar, “Raman spectroscopic study of phase transitions in natural gypsum’,” J. Raman Spectrosc. 29(9), 851–856 (1998).
[Crossref]

Richter, I.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Rossman, G. R.

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

Rothman, L. S.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Russo, R. E.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

X. Mao, S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Samuels, A. C.

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

C. S. C. Yang, F. Jin, S. R. Swaminathan, S. Patel, E. D. Ramer, S. B. Trivedi, E. E. Brown, U. Hommerich, and A. C. Samuels, “Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer,” Opt. Express 25(22), 26885–26897 (2017).
[Crossref] [PubMed]

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[Crossref] [PubMed]

C. S. C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hömmerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[PubMed]

C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

Sargent, B. A.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Sarma, L. P.

L. P. Sarma, P. S. R. Prasad, and N. Ravikumar, “Raman spectroscopic study of phase transitions in natural gypsum’,” J. Raman Spectrosc. 29(9), 851–856 (1998).
[Crossref]

S-C Yang, C.

L. Nemes, E. E. Brown, C. S-C Yang, and U. Hommerich, “Mid infrared emission spectroscopy of carbon plasma,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 170, 145–149 (2017).
[Crossref] [PubMed]

Schmidt, M. W.

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

Serrano, J.

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 96, 12–20 (2014).
[Crossref]

Shen, M.

Sherman, G. W.

H. H. Lurie and G. W. Sherman, “Flame Temperatures of Combustible Gas-Oxygen Mixtures,” Ind. Eng. Chem. 25(4), 404–409 (1933).
[Crossref]

Shirin, S. V.

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Siddiqui, M. N.

M. A. Gondal and M. N. Siddiqui, “Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management,” J Environ Sci Health A Tox Hazard Subst Environ Eng 42(13), 1989–1997 (2007).
[Crossref] [PubMed]

Smurov, I.

V. I. Mazhukin, V. V. Nossov, I. Smurov, and G. Flamant, “Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour,” J. Phys. D Appl. Phys. 37(2), 185–199 (2004).
[Crossref]

Snyder, A. P.

Sunshine, J. M.

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

Surmick, D. M.

D. M. Surmick and C. G. Parigger, “Time-resolved aluminum laser-induced plasma temperature measurements,” J. Phys. Conf. Ser. 548, 012046 (2014).
[Crossref]

Swaminathan, S. R.

Tashkun, S. A.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

Taylor, L. A.

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

Tayrien, C.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Tennyson, J.

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Tinti, A.

A. Tinti, V. Tugnoli, S. Bonora, and O. Francioso, “Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review,” J. Cent. Eur. Agric. 16(1), 1–22 (2015).
[Crossref]

Tobaria, L. M.

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).

Tokar, R. L.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Tripathi, A.

Trivedi, S.

Trivedi, S. B.

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

C. S. C. Yang, F. Jin, S. R. Swaminathan, S. Patel, E. D. Ramer, S. B. Trivedi, E. E. Brown, U. Hommerich, and A. C. Samuels, “Comprehensive study of solid pharmaceutical tablets in visible, near infrared (NIR), and longwave infrared (LWIR) spectral regions using a rapid simultaneous ultraviolet/visible/NIR (UVN) + LWIR laser-induced breakdown spectroscopy linear arrays detection system and a fast acousto-optic tunable filter NIR spectrometer,” Opt. Express 25(22), 26885–26897 (2017).
[Crossref] [PubMed]

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S. C. Yang, E. E. Brown, E. Kumi-Barimah, U. H. Hömmerich, F. Jin, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS),” Appl. Spectrosc. 68(2), 226–231 (2014).
[PubMed]

C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

Tugnoli, V.

A. Tinti, V. Tugnoli, S. Bonora, and O. Francioso, “Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review,” J. Cent. Eur. Agric. 16(1), 1–22 (2015).
[Crossref]

Vaniman, D.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Vercouter, T.

D. L’Hermite, E. Vors, T. Vercouter, and G. Moutiers, “Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces,” Environ. Sci. Pollut. Res. Int. 23(9), 8219–8226 (2016).
[Crossref] [PubMed]

Vors, E.

D. L’Hermite, E. Vors, T. Vercouter, and G. Moutiers, “Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces,” Environ. Sci. Pollut. Res. Int. 23(9), 8219–8226 (2016).
[Crossref] [PubMed]

Wallace, L.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Walters, R.

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Wang, C. Z.

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

Wang, Q.

Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
[Crossref]

Wang, Z. M.

Watson, D. M.

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Wcislo, P.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

Weritz, F.

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

Wiens, R.

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: Using Lasers to Determine the Chemistry of the Red Planet,” Opt. Photonics News 24(1), 26–33 (2013).
[Crossref]

Wiens, R. C.

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Wijewarnasuriya, P. S.

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[Crossref] [PubMed]

Wilzewski, J. S.

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

Winkel, R. J.

Yang, C. S. C.

Yang, C. S.-C.

C. S.-C. Yang, F. Jin, S. B. Trivedi, E. E. Brown, U. Hommerich, A. Tripathi, and A. C. Samuels, “Long-Wave Infrared (LWIR) Molecular Laser-Induced Breakdown Spectroscopy (LIBS) Emissions of Thin Solid Explosive Powder Films Deposited on Aluminum Substrates,” Appl. Spectrosc. 71(4), 728–734 (2017).
[Crossref] [PubMed]

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

C. S.-C. Yang, F. Jin, S. Trivedi, E. Brown, U. Hommerich, J. B. Khurgin, and A. C. Samuels, “Time resolved long-wave infrared laser-induced breakdown spectroscopy of inorganic energetic materials by a rapid mercury-cadmium-telluride linear array detection system,” Appl. Opt. 55(32), 9166–9172 (2016).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. Trivedi, A. I. D’souza, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system,” Appl. Opt. 54(33), 9695–9702 (2015).
[Crossref] [PubMed]

C. S.-C. Yang, E. Brown, U. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared laser-induced breakdown spectroscopy emissions from alkali metal halides,” Appl. Spectrosc. 62(6), 714–716 (2008).
[Crossref] [PubMed]

C. S.-C. Yang, E. E. Brown, U. H. Hommerich, S. B. Trivedi, A. C. Samuels, and A. P. Snyder, “Mid-infrared emission from laser-induced breakdown spectroscopy,” Appl. Spectrosc. 61(3), 321–326 (2007).
[Crossref] [PubMed]

Yoo, J.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

Yu, Q.

Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
[Crossref]

Zeng, Q. D.

Zeng, X. Y.

Zhang, K.

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Zhang, R.

Zhang, Y.

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

Zobov, N. F.

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

Zorba, V.

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

Zou, X. H.

Am. Mineral. (1)

M. D. Lane, “Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals,” Am. Mineral. 92(1), 1–18 (2007).
[Crossref]

Anal. Chem. (1)

R. E. Russo, X. Mao, J. J. Gonzalez, V. Zorba, and J. Yoo, “Laser ablation in analytical chemistry,” Anal. Chem. 85(13), 6162–6177 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

X. Mao, S. Mao, and R. E. Russo, “Imaging femtosecond laser-induced electronic excitation in glass,” Appl. Phys. Lett. 82(5), 697–699 (2003).
[Crossref]

Appl. Spectrosc. (5)

Appl. Spectrosc. Rev. (1)

Q. Lin, G. Niu, Q. Wang, Q. Yu, and Y. Duan, “Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications,” Appl. Spectrosc. Rev. 48(6), 487–508 (2013).
[Crossref]

Astrophys. J. (1)

B. A. Sargent, W. Forrest, D. M. Watson, P. D. Alessio, N. Calvet, E. Furlan, K. H. Kim, J. Green, K. Pontoppidan, I. Richter, and C. Tayrien, “Emission From Water Vapor And Absorption From Other Gases At 5-7.5 Mu M In Spitzer-Irs Spectra Of Protoplanetary Disks,” Astrophys. J. 792(2), 83–94 (2014).

Environ. Sci. Pollut. Res. Int. (1)

D. L’Hermite, E. Vors, T. Vercouter, and G. Moutiers, “Evaluation of the efficacy of a portable LIBS system for detection of CWA on surfaces,” Environ. Sci. Pollut. Res. Int. 23(9), 8219–8226 (2016).
[Crossref] [PubMed]

Geochem. Explor. Environ. Anal. (1)

R. S. Harmon, F. C. De Lucia, A. W. Miziolek, K. L. McNesby, R. Walters, and P. D. French, “Laser-inducedbreakdown spectroscopy (LIBS)-an emerging field-portable sensor technology for real-time, in-situ geochemicaland environmental analysis,” Geochem. Explor. Environ. Anal. 5(1), 21–28 (2005).
[Crossref]

Ind. Eng. Chem. (1)

H. H. Lurie and G. W. Sherman, “Flame Temperatures of Combustible Gas-Oxygen Mixtures,” Ind. Eng. Chem. 25(4), 404–409 (1933).
[Crossref]

ISRN Spectroscopy (1)

F. Anabitarte, A. Cobo, and J. M. Lopez-Higuera, “Laser-induced breakdown spectroscopy: fundamentals, applications, and challenges,” ISRN Spectroscopy 285240, 1–12 (2012).

J Environ Sci Health A Tox Hazard Subst Environ Eng (1)

M. A. Gondal and M. N. Siddiqui, “Identification of different kinds of plastics using laser-induced breakdown spectroscopy for waste management,” J Environ Sci Health A Tox Hazard Subst Environ Eng 42(13), 1989–1997 (2007).
[Crossref] [PubMed]

J. Astrophys. Aerospace Technol. (1)

L. Nemes, “Carbon vapor and carbon plasma infrared emission,” J. Astrophys. Aerospace Technol. 05(02), 154–157 (2017).
[Crossref]

J. Cent. Eur. Agric. (1)

A. Tinti, V. Tugnoli, S. Bonora, and O. Francioso, “Recent applications of vibrational mid-Infrared (IR) spectroscopy for studying soil components: a review,” J. Cent. Eur. Agric. 16(1), 1–22 (2015).
[Crossref]

J. Chem. Phys. (1)

P. F. Coheur, P. F. Bernath, M. Carleer, R. Colin, O. L. Polyansky, N. F. Zobov, S. V. Shirin, R. J. Barber, and J. Tennyson, “A 3000 K laboratory emission spectrum of water,” J. Chem. Phys. 122(7), 074307 (2005).
[Crossref] [PubMed]

J. Geophys. Res. (1)

T. B. McCord, L. A. Taylor, J.-P. Combe, G. Kramer, C. M. Pieters, J. M. Sunshine, and R. N. Clark, “Sources and physical processes responsible for OH/H2Oin the lunar soil as revealed by the Moon Mineralogy Mapper (M3),” J. Geophys. Res. 116, E00G05 (2011).
[Crossref]

J. Mol. Struct. (1)

A. M. Keszler and L. Nemes, “Time averaged emission spectra of Nd:YAG laser induced carbon plasmas,” J. Mol. Struct. 695–696, 211–218 (2004).
[Crossref]

J. Phys. Chem. A (1)

W. C. Lu, C. Z. Wang, V. Nguyen, M. W. Schmidt, M. S. Gordon, and K. M. Ho, “Structures and Fragmentations of Small Silicon Oxide Clusters by ab Initio Calculations,” J. Phys. Chem. A 107(36), 6936–6943 (2003).
[Crossref]

J. Phys. Conf. Ser. (1)

D. M. Surmick and C. G. Parigger, “Time-resolved aluminum laser-induced plasma temperature measurements,” J. Phys. Conf. Ser. 548, 012046 (2014).
[Crossref]

J. Phys. D Appl. Phys. (3)

A. De Giacomo and J. Hermann, “Laser-induced plasma emission: from atomic to molecular spectra,” J. Phys. D Appl. Phys. 50(18), 183002 (2017).
[Crossref]

V. I. Mazhukin, V. V. Nossov, I. Smurov, and G. Flamant, “Modelling of radiation transfer in low temperature nanosecond laser-induced plasma of Al vapour,” J. Phys. D Appl. Phys. 37(2), 185–199 (2004).
[Crossref]

J. S. Cowpe, R. D. Pilkington, J. S. Astin, and A. E. Hill, “The effect of ambient pressure on laser-induced silicon plasma temperature, density and morphology,” J. Phys. D Appl. Phys. 42(16), 165202 (2009).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. I. Perevalov, S. A. Tashkun, and J. Tennyson, “HITEMP, the high-temperature molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139–2150 (2010).
[Crossref]

R. V. Kochanov, I. E. Gordon, L. S. Rothman, P. Wcislo, C. Hill, and J. S. Wilzewski, “HITRAN Application Programming Interface (HAPI): A comprehensive approach to working with spectroscopic data,” J. Quant. Spectrosc. Radiat. Transf. 177, 15–30 (2016).
[Crossref]

J. Raman Spectrosc. (1)

L. P. Sarma, P. S. R. Prasad, and N. Ravikumar, “Raman spectroscopic study of phase transitions in natural gypsum’,” J. Raman Spectrosc. 29(9), 851–856 (1998).
[Crossref]

J. Res. Natl. Bur. Stand. (1)

E. K. Plyler and C. J. Humphreys, “Infrared Emission Spectra of Flames,” J. Res. Natl. Bur. Stand. 40(6), 449 (1948).
[Crossref]

Nat. Geosci. (1)

Y. Liu, Y. Guan, Y. Zhang, G. R. Rossman, J. M. Eiler, and L. A. Taylor, “Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water,” Nat. Geosci. 5(11), 779–782 (2012).
[Crossref]

Opt. Express (3)

Opt. Photonics News (1)

N. Melikechi, R. Wiens, H. Newsom, and S. Maurice, “Zapping Mars: Using Lasers to Determine the Chemistry of the Red Planet,” Opt. Photonics News 24(1), 26–33 (2013).
[Crossref]

Proc. SPIE (1)

N. S. Prasad, C. S.-C. Yang, E. Brown, E. Kumi-Barimah, U. Hommerich, F. Jin, Y. Jia, S. B. Trivedi, E. A. Decuir, P. S. Wijewarnasuriya, and A. C. Samuels, “Probing organic residues on Martian regolith simulants using a long-wave infrared Laser-induced breakdown spectroscopy linear array detection system,” Proc. SPIE 9981, 99810I (2016).
[Crossref]

Science (1)

L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, and K. Zhang, “Water on the sun,” Science 268(5214), 1155–1158 (1995).
[Crossref] [PubMed]

Spectrochemica Acta B (1)

R. C. Wiens, S. Maurice, J. Lasue, O. Forni, R. B. Anderson, S. Clegg, S. Bender, D. Blaney, B. L. Barraclough, A. Cousin, L. Deflores, D. Delapp, M. D. Dyar, C. Fabre, O. Gasnault, N. Lanza, J. Mazoyer, N. Melikechi, P.-Y. Meslin, H. Newsom, A. Ollila, R. Perez, R. L. Tokar, and D. Vaniman, “Pre-flight calibration and initial data processing for the ChemCam laser-induced breakdown spectroscopy instrument on the Mars Science Laboratory rover,” Spectrochemica Acta B 82, 1–27 (2013).
[Crossref]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

L. Nemes, E. E. Brown, C. S-C Yang, and U. Hommerich, “Mid infrared emission spectroscopy of carbon plasma,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 170, 145–149 (2017).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (1)

J. L. Gottfried, F. C. DeLucia, C. A. Munson, and A. W. Miziolek, “Double-pulse standoff laser-induced breakdown spectroscopy for versatile hazardous materials detection,” Spectrochim. Acta B At. Spectrosc. 62(12), 1405–1411 (2007).
[Crossref]

Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy (2)

I. Gaona, J. Serrano, J. Moros, and J. J. Laserna, “Evaluation of laser-induced breakdown spectroscopy analysis potential for addressing radiological threats from a distance,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 96, 12–20 (2014).
[Crossref]

M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, and U. Panne, “A combined laser-induced breakdown and Raman spectroscopy Echelle system forelemental and molecular microanalysis,” Spectrochimica Acta Part B: Molecular and Biomolecular Spectroscopy 64(11-12), 1219–1227 (2009).
[Crossref]

Spectroscopy Europe (1)

J. Moros, J. A. Lorenzo, P. Lucena, L. M. Tobaria, and J. J. Laserna, “Simultaneous Raman-LIBS for the standoff analysis of explosive materials,” Spectroscopy Europe 22, 18–22 (2010).

Other (10)

C. C. Allen, R. V. Morris, K. M. Jager, D. C. Golden, D. J. Lindstrom, M. M. Lindstrom, and J. P. Lockwood, “Martian Regolith Simulant JSC Mars-1,” 29th Annual Lunar and Planetary Science Conference, Houston, TX, 1690 (1998).

A. Kramida, Y. Ralchenko, J. Reader, and NIST ASD Team, NIST atomic spectra database, (version 5.2) (2014).

S. E. Stein, “NIST Chemistry WebBook”; W.G Mallard, P.J. Linstrom, Eds.; NIST Standard Reference Database 69; National Institute of Standards and Technology, Gaithersburg, MD.

F. Y. Yueh, J. P. Singh, and H. Zhang, “Laser-induced breakdown spectroscopy, elemental analysis,” in Encyclopedia of analytical chemistry: applications, theory, and instrumentation. R. A. Meyers, ed. (John Wiley&Sons Ltd. Chichester, 2000), 2066–2088.

A. Thorne, U. Litzén, and S. Johansson, Spectrophysics, (Springer, 1999), Chapter 9.4.2.

X. Bai, “Laser-induced plasma as a function of the laser parameters and the ambient gas,” Plasma Physics Université Claude Bernard-Lyon I (2014).

C. D. Chaffe, “LIBS continue to evolve,” Optics & Photonics News, May 2017, 42–49 (2017).

J. B. Spicer, “Spectroscopic and Time-Domain Detection of Trace Explosives in Condensed and Vapor Phases,” ARO MURI Final Report on Real Time, Explosive Specific Chemical Sensors, (2008).

Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, (CRC Press, 2007).

K. Chaudhary, S. Z. H. Rizvi, and J. Ali, “Laser-Induced Plasma and Its Applications”, Plasma Science and Technology - Progress in Physical States and Chemical Reactions, ed. T. Miero, InTech 259–291 (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Conceptual diagram of temperature gradient in the laser-induced plasma plume with colder zone located nearer the perimeter of the plasma. The colored regions are schematically reproduced from simulations of nanosecond laser-induced plasma on the surface of aluminum [12] and characterized by different electron temperatures (in eV) in the plasma plume (see the color codes).
Fig. 2
Fig. 2 Conceptual Diagram of the Simultaneous UVN + LWIR LIBS Setup with Standoff Distance of ≥ 1 Meter (1000 cm).
Fig. 3
Fig. 3 The simultaneous UVN (a) + LWIR (b) LIBS spectra of the Martian regolith simulant JSC Mars-1A and the simultaneous UVN (c) + LWIR (d) LIBS spectra of a mock mixture sample made with 18% Fe2O3, 30% Al2O3, and 52% SiO2.
Fig. 4
Fig. 4 The LWIR LIBS spectra between 5.6 to 10 µm of the Martian regolith simulant JSC Mars-1A (black curve) and the flame emission spectrum of hydrogen flame with abundant amount of oxygen in the ambient environment [33] (red curve).
Fig. 5
Fig. 5 The simultaneous UVN (a) + LWIR (b) LIBS spectra of the Martian regolith simulant JSC Mars-1A in ambient air (red curves) and in Ar-flow atmosphere (black curves).
Fig. 6
Fig. 6 The UVN LIBS spectra of the reference graphite sample in Ar-flow atmosphere.
Fig. 7
Fig. 7 The LWIR LIBS spectra between 4.7 to 9 µm of (a) the Martian regolith simulant JSC Mars-1A and (b) ice. The water bending band in the emission spectrum of hydrogen flame [33] shown in (a) (red curve).
Fig. 8
Fig. 8 The simultaneous UVN (a) + LWIR (b) LIBS spectra of the oven-dried (black curves) and DI water re-hydrated (red curves) Mars regolith simulant JSC Mars-1A sample disks.
Fig. 9
Fig. 9 The comparison of LWIR LIBS spectra of DI water re-hydrated Mars regolith simulant JSC Mars-1A sample disks (black curves) and HAPI simulations of vibration-rotation emissions of water vapor at three temperatures: T = 1000 K (red), T = 1700 K (green) and T = 2500 K (blue).
Fig. 10
Fig. 10 The UVN (640-800 nm) + LWIR (4.7 to 9 µm) LIBS emission spectra of JSC Mars-1A at different delay times.
Fig. 11
Fig. 11 The UVN (640-800 nm) + LWIR (4.7 to 9 µm) LIBS emission spectra of ice at different delay times.
Fig. 12
Fig. 12 The LWIR LIBS spectra between 4.7 to 9 µm of water absorbed in dried Martian regolith simulant JSC Mars-1A (black curve) and isopropanol absorbed in dried Martian regolith simulant JSC Mars-1A (red curve) in an oxygen-free atmosphere.
Fig. 13
Fig. 13 The simultaneous UVN (a) + LWIR (b) LIBS spectra of the Martian regolith simulant JSC Mars-1A with (black curves) and without (red curves) organic methyl salicylate (MeS) residues. The FTIR absorption spectrum of MeS in gas phase (blue curve) from NIST database [31] is shown in (b).
Fig. 14
Fig. 14 The simultaneous UVN (a) + LWIR (b) LIBS spectra of Shale.
Fig. 15
Fig. 15 The simultaneous UVN (a) + LWIR (b) LIBS spectra of Tufa.
Fig. 16
Fig. 16 The simultaneous UVN (a) + LWIR (b) LIBS spectra of Gypsum.

Metrics