Abstract

Millimeter wave imaging systems are a promising candidate for several applications such as indoor security, industrial non-destructive evaluation, and automotive radar systems. In this paper, we compare the performance of various array configurations that can be enabled by recent automotive radar chips, for imaging applications. High resolution real-time imaging requires an extensive number of measurements which demands a large number of emitters and receivers. Hence, cost and size become major considerations in the design process. In an attempt to reduce the number of emitter and receiver elements, we compare various antenna array architectures to optimize the hardware implementation for high resolution imaging. We consider mono-static single-input-single-output (SISO), multi-static multiple-input-multiple-output (Full-MIMO), and hybrid localized MIMO-SISO (Local-MIMO) architectures. The computationally reconstructed image quality and point spread function from each architecture are compared and traded for the system engineering complexity and cost. We present measurement results from a Synthetic Aperture Radar (SAR) system based on an automotive radar sensor to ensure it is representative of the system’s physics. The comparative results of the SISO, Full-MIMO and Local-MIMO simulations provide for affordable alternatives to the high cost SISO approach.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonics-based MIMO radar with high-resolution and fast detection capability

Fangzheng Zhang, Bindong Gao, and Shilong Pan
Opt. Express 26(13) 17529-17540 (2018)

Millimeter-wave spotlight imager using dynamic holographic metasurface antennas

Okan Yurduseven, Daniel L. Marks, Thomas Fromenteze, Jonah N. Gollub, and David R. Smith
Opt. Express 25(15) 18230-18249 (2017)

Image reconstruction algorithm based on frequency-wavenumber decoupling for three-dimensional MIMO-SAR imaging

Hang Gao, Chao Li, Shiyou Wu, Shen Zheng, Hongwei Li, and Guangyou Fang
Opt. Express 28(2) 2411-2426 (2020)

References

  • View by:
  • |
  • |
  • |

  1. S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
    [Crossref]
  2. D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. express 26, 9417–9431 (2018).
    [Crossref] [PubMed]
  3. D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
    [Crossref]
  4. F. Sanjuan, G. Gaborit, and J.-L. Coutaz, “Sub-wavelength terahertz imaging through optical rectification,” Sci. reports 8, 13492 (2018).
    [Crossref]
  5. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. photonics 1, 97 (2007).
    [Crossref]
  6. S. S. Ahmed, Electronic microwave imaging with planar multistatic arrays (Logos Verlag Berlin GmbH, 2014).
  7. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010).
    [Crossref] [PubMed]
  8. B. Nauwelaers, I. Ocket, Q. Feng, V. Tavakol, and D. Schreurs, “Is imaging with millimeter wave the same as optical imaging,” in European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), (2008), pp. 1.
  9. D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on microwave theory techniques 49, 1581–1592 (2001).
    [Crossref]
  10. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. express 11, 2549–2554 (2003).
    [Crossref] [PubMed]
  11. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57 (2010).
    [Crossref] [PubMed]
  12. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
    [Crossref]
  13. B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
    [Crossref]
  14. B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
    [Crossref]
  15. J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
    [Crossref]
  16. W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.
  17. D. Wang, “Cascaded Radar and Body and Chassis Automotive Applications,” https://training.ti.com/sites/default/files/docs/cascaded-radar-and-body_chassis-automotive-applications.pdf/ (2019). [Online; accessed 28-April-2019].
  18. A. Bourdoux, K. Parashar, and M. Bauduin, “Phenomenology of mutual interference of fmcw and pmcw automotive radars,” in Radar Conference (RadarConf), 2017 IEEE, (IEEE, 2017), pp. 1709–1714.
    [Crossref]
  19. D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
    [Crossref]
  20. N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.
  21. L. A. Gorham and L. J. Moore, “Sar image formation toolbox for matlab,” in Algorithms for Synthetic Aperture Radar Imagery XVII,, vol. 7699 (International Society for Optics and Photonics, 2010), p. 769906.
    [Crossref]
  22. J. Goodman, Introduction to Fourier optics (McGraw-hill, 2008).
  23. G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
    [Crossref] [PubMed]
  24. G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
    [Crossref] [PubMed]
  25. M. Born and E. Wolf, “Principles of optics, 7th (expanded) ed,” Camb. U. Press.Cambridge, UK890 (1999).
    [Crossref]
  26. M. Soumekh, Fourier array imaging (Prentice-Hall, Inc., 1994).
  27. J. Fortuny, “Efficient algorithms for three-dimensional near-field synthetic aperture radar imaging,” Ph.D. thesis, Inst. for the Protection and Security of the Citizen Humanitarian Security Unit (2001).
  28. J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Transactions on antennas propagation 48, 728–737 (2000).
    [Crossref]
  29. T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (mimo) phased array radar system,” in 2010 IEEE international symposium on phased array systems and technology, (IEEE, 2010), pp. 551–558.
    [Crossref]
  30. Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
    [Crossref]
  31. L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
    [Crossref]
  32. A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
    [Crossref]
  33. A. W. Doerry, E. E. Bishop, and J. A. Miller, “Basics of backprojection algorithm for processing synthetic aperture radar images,” Sandia Natl. Lab. Report, No. SAND2016–1682 (2016).
  34. L. Qiao, Y. Wang, Z. Shen, Z. Zhao, and Z. Chen, “Compressive sensing for direct millimeter-wave holographic imaging,” Appl. opt. 54, 3280–3289 (2015).
    [Crossref] [PubMed]
  35. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  36. R. J. Kozick and S. A. Kassam, “Synthetic aperture pulse-echo imaging with rectangular boundary arrays (acoustic imaging),” IEEE Transactions on Image Process. 2, 68–79 (1993).
    [Crossref]
  37. W.-Q. Wang, “Virtual antenna array analysis for mimo synthetic aperture radars,” Int. J. Antennas Propag. 2012587276 (2012).
    [Crossref]
  38. P. Liu, B. Lu, and X. Sun, “A method of two-dimensional mimo planar array design based on sub-array segmentation for through-wall imaging,” in PIERS Proceedings, (2014).

2018 (2)

D. M. Mittleman, “Twenty years of terahertz imaging,” Opt. express 26, 9417–9431 (2018).
[Crossref] [PubMed]

F. Sanjuan, G. Gaborit, and J.-L. Coutaz, “Sub-wavelength terahertz imaging through optical rectification,” Sci. reports 8, 13492 (2018).
[Crossref]

2017 (4)

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

2016 (2)

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

2015 (3)

2014 (1)

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

2013 (1)

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

2012 (1)

W.-Q. Wang, “Virtual antenna array analysis for mimo synthetic aperture radars,” Int. J. Antennas Propag. 2012587276 (2012).
[Crossref]

2011 (1)

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
[Crossref]

2010 (2)

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. photonics 1, 97 (2007).
[Crossref]

2003 (1)

2002 (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

2001 (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on microwave theory techniques 49, 1581–1592 (2001).
[Crossref]

2000 (1)

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Transactions on antennas propagation 48, 728–737 (2000).
[Crossref]

1993 (1)

R. J. Kozick and S. A. Kassam, “Synthetic aperture pulse-echo imaging with rectangular boundary arrays (acoustic imaging),” IEEE Transactions on Image Process. 2, 68–79 (1993).
[Crossref]

Ahmad, U.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Ahmed, S. S.

S. S. Ahmed, Electronic microwave imaging with planar multistatic arrays (Logos Verlag Berlin GmbH, 2014).

Alain, C.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Allan, G.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Alvarez, Y.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Anderson, T. L.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Arnitz, D.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Bauduin, M.

A. Bourdoux, K. Parashar, and M. Bauduin, “Phenomenology of mutual interference of fmcw and pmcw automotive radars,” in Radar Conference (RadarConf), 2017 IEEE, (IEEE, 2017), pp. 1709–1714.
[Crossref]

Beaupré, P.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Berkowitz, B.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Bishop, E. E.

A. W. Doerry, E. E. Bishop, and J. A. Miller, “Basics of backprojection algorithm for processing synthetic aperture radar images,” Sandia Natl. Lab. Report, No. SAND2016–1682 (2016).

Booske, J.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Born, M.

M. Born and E. Wolf, “Principles of optics, 7th (expanded) ed,” Camb. U. Press.Cambridge, UK890 (1999).
[Crossref]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Bourdoux, A.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

A. Bourdoux, K. Parashar, and M. Bauduin, “Phenomenology of mutual interference of fmcw and pmcw automotive radars,” in Radar Conference (RadarConf), 2017 IEEE, (IEEE, 2017), pp. 1709–1714.
[Crossref]

Boyarsky, M.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

Brady, D.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

Charvat, G. L.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (mimo) phased array radar system,” in 2010 IEEE international symposium on phased array systems and technology, (IEEE, 2010), pp. 551–558.
[Crossref]

Chen, Z.

Coldwell, C. M.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Coutaz, J.-L.

F. Sanjuan, G. Gaborit, and J.-L. Coutaz, “Sub-wavelength terahertz imaging through optical rectification,” Sci. reports 8, 13492 (2018).
[Crossref]

Craninckx, J.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Davies, A.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Derudder, V.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Dewilde, A.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Dhillon, S.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Diebold, A. V.

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

Doerry, A. W.

A. W. Doerry, E. E. Bishop, and J. A. Miller, “Basics of backprojection algorithm for processing synthetic aperture radar images,” Sandia Natl. Lab. Report, No. SAND2016–1682 (2016).

Doucet, M.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Driggers, R.

N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.

Driscoll, T.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

Dufilie, P.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Dufour, D.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Feng, Q.

B. Nauwelaers, I. Ocket, Q. Feng, V. Tavakol, and D. Schreurs, “Is imaging with millimeter wave the same as optical imaging,” in European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), (2008), pp. 1.

Fortuny, J.

J. Fortuny, “Efficient algorithms for three-dimensional near-field synthetic aperture radar imaging,” Ph.D. thesis, Inst. for the Protection and Security of the Citizen Humanitarian Security Unit (2001).

Fortuny-Guasch, J.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Transactions on antennas propagation 48, 728–737 (2000).
[Crossref]

Fromenteze, T.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

Furxhi, O.

N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.

Gaborit, G.

F. Sanjuan, G. Gaborit, and J.-L. Coutaz, “Sub-wavelength terahertz imaging through optical rectification,” Sci. reports 8, 13492 (2018).
[Crossref]

Généreux, F.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Gensch, M.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Ghazi, G.

N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.

Gollub, J.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
[Crossref] [PubMed]

Gonzalez-Valdes, B.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Goodman, J.

J. Goodman, Introduction to Fourier optics (McGraw-hill, 2008).

Gorham, L. A.

L. A. Gorham and L. J. Moore, “Sar image formation toolbox for matlab,” in Algorithms for Synthetic Aperture Radar Imagery XVII,, vol. 7699 (International Society for Optics and Photonics, 2010), p. 769906.
[Crossref]

Gowda, V. R.

Guermandi, D.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Hall, T. E.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on microwave theory techniques 49, 1581–1592 (2001).
[Crossref]

Herd, J. S.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Hochrein, T.

Hoffmann, M. C.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Hong, W.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Hunt, J.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

Imani, M.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

Imani, M. F.

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
[Crossref] [PubMed]

Inoue, H.

Jansen, C.

Jördens, C.

Kassam, S. A.

R. J. Kozick and S. A. Kassam, “Synthetic aperture pulse-echo imaging with rectangular boundary arrays (acoustic imaging),” IEEE Transactions on Image Process. 2, 68–79 (1993).
[Crossref]

Kawase, K.

Koch, M.

Kozick, R. J.

R. J. Kozick and S. A. Kassam, “Synthetic aperture pulse-echo imaging with rectangular boundary arrays (acoustic imaging),” IEEE Transactions on Image Process. 2, 68–79 (1993).
[Crossref]

Krieger, J. D.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Krumbholz, N.

Las-Heras, F.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Linfield, E.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Lipworth, G.

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

Liu, P.

P. Liu, B. Lu, and X. Sun, “A method of two-dimensional mimo planar array design based on sub-array segmentation for through-wall imaging,” in PIERS Proceedings, (2014).

Lopez-Sanchez, J. M.

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Transactions on antennas propagation 48, 728–737 (2000).
[Crossref]

Lu, B.

P. Liu, B. Lu, and X. Sun, “A method of two-dimensional mimo planar array design based on sub-array segmentation for through-wall imaging,” in PIERS Proceedings, (2014).

Majewski, J. J.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Mantzavinos, S.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Marchese, L.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Marks, D. L.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

Marti, J.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Martinez-Lorenzo, J. A.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

Maurais-Galejs, D. T.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

McMakin, D. L.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on microwave theory techniques 49, 1581–1592 (2001).
[Crossref]

Mercier, L.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Miller, J. A.

A. W. Doerry, E. E. Bishop, and J. A. Miller, “Basics of backprojection algorithm for processing synthetic aperture radar images,” Sandia Natl. Lab. Report, No. SAND2016–1682 (2016).

Mittleman, D. M.

Mohammadian, N.

N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.

Moore, L. J.

L. A. Gorham and L. J. Moore, “Sar image formation toolbox for matlab,” in Algorithms for Synthetic Aperture Radar Imagery XVII,, vol. 7699 (International Society for Optics and Photonics, 2010), p. 769906.
[Crossref]

Moulder, W. F.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Mrozack, A.

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

Nauwelaers, B.

B. Nauwelaers, I. Ocket, Q. Feng, V. Tavakol, and D. Schreurs, “Is imaging with millimeter wave the same as optical imaging,” in European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), (2008), pp. 1.

Nguyen, H. T.

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

Nickerson, M.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Ocket, I.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

B. Nauwelaers, I. Ocket, Q. Feng, V. Tavakol, and D. Schreurs, “Is imaging with millimeter wave the same as optical imaging,” in European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), (2008), pp. 1.

Odabasi, H.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
[Crossref] [PubMed]

Offermans, P.

N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.

Ogawa, Y.

Oulachgar, H.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Paoloni, C.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Parashar, K.

A. Bourdoux, K. Parashar, and M. Bauduin, “Phenomenology of mutual interference of fmcw and pmcw automotive radars,” in Radar Conference (RadarConf), 2017 IEEE, (IEEE, 2017), pp. 1709–1714.
[Crossref]

Peabody, J. E.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (mimo) phased array radar system,” in 2010 IEEE international symposium on phased array systems and technology, (IEEE, 2010), pp. 551–558.
[Crossref]

Pedross-Engel, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Peters, O.

Pulido-Mancera, L.

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Qi, Y.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Qiao, L.

Ralston, T. S.

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (mimo) phased array radar system,” in 2010 IEEE international symposium on phased array systems and technology, (IEEE, 2010), pp. 551–558.
[Crossref]

Rappaport, C. M.

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Reynolds, M.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

Rodriguez-Vaqueiro, Y.

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

Rose, A.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
[Crossref] [PubMed]

Salhi, M.

Sanjuan, F.

F. Sanjuan, G. Gaborit, and J.-L. Coutaz, “Sub-wavelength terahertz imaging through optical rectification,” Sci. reports 8, 13492 (2018).
[Crossref]

Scheller, M.

Schreurs, D.

B. Nauwelaers, I. Ocket, Q. Feng, V. Tavakol, and D. Schreurs, “Is imaging with millimeter wave the same as optical imaging,” in European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), (2008), pp. 1.

Sheen, D. M.

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on microwave theory techniques 49, 1581–1592 (2001).
[Crossref]

Shen, Z.

Shi, Q.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Sleasman, T.

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

Smith, D.

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

Smith, D. R.

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
[Crossref] [PubMed]

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

Soumekh, M.

M. Soumekh, Fourier array imaging (Prentice-Hall, Inc., 1994).

Spagnolo, A.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Sun, X.

P. Liu, B. Lu, and X. Sun, “A method of two-dimensional mimo planar array design based on sub-array segmentation for through-wall imaging,” in PIERS Proceedings, (2014).

Tan, W.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Tavakol, V.

B. Nauwelaers, I. Ocket, Q. Feng, V. Tavakol, and D. Schreurs, “Is imaging with millimeter wave the same as optical imaging,” in European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), (2008), pp. 1.

Terroux, M.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. photonics 1, 97 (2007).
[Crossref]

Tremblay, B.

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

Trofatter, K.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

Trofatter, P.

Vieweg, N.

Vitiello, M.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Wambacq, P.

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

Wang, W.-Q.

W.-Q. Wang, “Virtual antenna array analysis for mimo synthetic aperture radars,” Int. J. Antennas Propag. 2012587276 (2012).
[Crossref]

Wang, Y.

L. Qiao, Y. Wang, Z. Shen, Z. Zhao, and Z. Chen, “Compressive sensing for direct millimeter-wave holographic imaging,” Appl. opt. 54, 3280–3289 (2015).
[Crossref] [PubMed]

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Watanabe, Y.

Weightman, P.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Wietzke, S.

Williams, G.

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

Wolf, E.

M. Born and E. Wolf, “Principles of optics, 7th (expanded) ed,” Camb. U. Press.Cambridge, UK890 (1999).
[Crossref]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Wu, Y.

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Yurduseven, O.

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

G. Lipworth, A. Rose, O. Yurduseven, V. R. Gowda, M. F. Imani, H. Odabasi, P. Trofatter, J. Gollub, and D. R. Smith, “Comprehensive simulation platform for a metamaterial imaging system,” Appl. opt. 54, 9343–9353 (2015).
[Crossref] [PubMed]

Zhang, L.

N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.

Zhao, Z.

Appl. opt. (2)

IEEE Antennas Propag. Mag. (1)

B. Gonzalez-Valdes, Y. Alvarez, S. Mantzavinos, C. M. Rappaport, F. Las-Heras, and J. A. Martinez-Lorenzo, “Improving security screening: A comparison of multistatic radar configurations for human body imaging,” IEEE Antennas Propag. Mag. 58, 35–47 (2016).
[Crossref]

IEEE J. Solid-State Circuits (1)

D. Guermandi, Q. Shi, A. Dewilde, V. Derudder, U. Ahmad, A. Spagnolo, I. Ocket, A. Bourdoux, P. Wambacq, J. Craninckx, and et al., “A 79-ghz 2×2 mimo pmcw radar soc in 28-nm cmos,” IEEE J. Solid-State Circuits 52, 2613–2626 (2017).
[Crossref]

IEEE Transactions on Antennas Propag. (1)

B. Gonzalez-Valdes, G. Allan, Y. Rodriguez-Vaqueiro, Y. Alvarez, S. Mantzavinos, M. Nickerson, B. Berkowitz, J. Martı, F. Las-Heras, C. M. Rappaport, and et al., “Sparse array optimization using simulated annealing and compressed sensing for near-field millimeter wave imaging,” IEEE Transactions on Antennas Propag. 62, 1716–1722 (2014).
[Crossref]

IEEE Transactions on antennas propagation (1)

J. M. Lopez-Sanchez and J. Fortuny-Guasch, “3-d radar imaging using range migration techniques,” IEEE Transactions on antennas propagation 48, 728–737 (2000).
[Crossref]

IEEE Transactions on Image Process. (1)

R. J. Kozick and S. A. Kassam, “Synthetic aperture pulse-echo imaging with rectangular boundary arrays (acoustic imaging),” IEEE Transactions on Image Process. 2, 68–79 (1993).
[Crossref]

IEEE Transactions on microwave theory techniques (1)

D. M. Sheen, D. L. McMakin, and T. E. Hall, “Three-dimensional millimeter-wave imaging for concealed weapon detection,” IEEE Transactions on microwave theory techniques 49, 1581–1592 (2001).
[Crossref]

Int. J. Antennas Propag. (1)

W.-Q. Wang, “Virtual antenna array analysis for mimo synthetic aperture radars,” Int. J. Antennas Propag. 2012587276 (2012).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

D. Dufour, L. Marchese, M. Terroux, H. Oulachgar, F. Généreux, M. Doucet, L. Mercier, B. Tremblay, C. Alain, P. Beaupré, and et al., “Review of terahertz technology development at ino,” J. Infrared, Millimeter, Terahertz Waves 36, 922–946 (2015).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Dhillon, M. Vitiello, E. Linfield, A. Davies, M. C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G. Williams, and et al., “The 2017 terahertz science and technology roadmap,” J. Phys. D: Appl. Phys. 50, 043001 (2017).
[Crossref]

JOSA A (1)

G. Lipworth, A. Mrozack, J. Hunt, D. L. Marks, T. Driscoll, D. Brady, and D. R. Smith, “Metamaterial apertures for coherent computational imaging on the physical layer,” JOSA A 30, 1603–1612 (2013).
[Crossref] [PubMed]

JOSA B (2)

L. Pulido-Mancera, T. Fromenteze, T. Sleasman, M. Boyarsky, M. F. Imani, M. Reynolds, and D. Smith, “Application of range migration algorithms to imaging with a dynamic metasurface antenna,” JOSA B 33, 2082–2092 (2016).
[Crossref]

A. V. Diebold, L. Pulido-Mancera, T. Sleasman, M. Boyarsky, M. F. Imani, and D. R. Smith, “Generalized range migration algorithm for synthetic aperture radar image reconstruction of metasurface antenna measurements,” JOSA B 34, 2610–2623 (2017).
[Crossref]

Nat. photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. photonics 1, 97 (2007).
[Crossref]

Opt. express (2)

Phys. Medicine & Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Medicine & Biol. 47, 3853 (2002).
[Crossref]

Prog. In Electromagn. Res. (1)

Y. Qi, W. Tan, Y. Wang, W. Hong, and Y. Wu, “3d bistatic omega-k imaging algorithm for near range microwave imaging systems with bistatic planar scanning geometry,” Prog. In Electromagn. Res. 121, 409–431 (2011).
[Crossref]

Sci. reports (2)

F. Sanjuan, G. Gaborit, and J.-L. Coutaz, “Sub-wavelength terahertz imaging through optical rectification,” Sci. reports 8, 13492 (2018).
[Crossref]

J. Gollub, O. Yurduseven, K. Trofatter, D. Arnitz, M. Imani, T. Sleasman, M. Boyarsky, A. Rose, A. Pedross-Engel, H. Odabasi, and et al., “Large metasurface aperture for millimeter wave computational imaging at the human-scale,” Sci. reports 7, 42650 (2017).
[Crossref]

Other (15)

W. F. Moulder, J. D. Krieger, J. J. Majewski, C. M. Coldwell, H. T. Nguyen, D. T. Maurais-Galejs, T. L. Anderson, P. Dufilie, and J. S. Herd, “Development of a high-throughput microwave imaging system for concealed weapons detection,” in 2016 IEEE International Symposium on Phased Array Systems and Technology (PAST), (IEEE, 2016), pp. 1–6.

D. Wang, “Cascaded Radar and Body and Chassis Automotive Applications,” https://training.ti.com/sites/default/files/docs/cascaded-radar-and-body_chassis-automotive-applications.pdf/ (2019). [Online; accessed 28-April-2019].

A. Bourdoux, K. Parashar, and M. Bauduin, “Phenomenology of mutual interference of fmcw and pmcw automotive radars,” in Radar Conference (RadarConf), 2017 IEEE, (IEEE, 2017), pp. 1709–1714.
[Crossref]

S. S. Ahmed, Electronic microwave imaging with planar multistatic arrays (Logos Verlag Berlin GmbH, 2014).

B. Nauwelaers, I. Ocket, Q. Feng, V. Tavakol, and D. Schreurs, “Is imaging with millimeter wave the same as optical imaging,” in European Conference on the Use of Modern Information and Communication Technologies (ECUMICT), (2008), pp. 1.

M. Born and E. Wolf, “Principles of optics, 7th (expanded) ed,” Camb. U. Press.Cambridge, UK890 (1999).
[Crossref]

M. Soumekh, Fourier array imaging (Prentice-Hall, Inc., 1994).

J. Fortuny, “Efficient algorithms for three-dimensional near-field synthetic aperture radar imaging,” Ph.D. thesis, Inst. for the Protection and Security of the Citizen Humanitarian Security Unit (2001).

N. Mohammadian, O. Furxhi, L. Zhang, P. Offermans, G. Ghazi, and R. Driggers, “Performance modeling of terahertz (thz) and millimeter waves (mmw) pupil plane imaging,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXIX,, vol. 10625 (International Society for Optics and Photonics, 2018), p. 1062511.

L. A. Gorham and L. J. Moore, “Sar image formation toolbox for matlab,” in Algorithms for Synthetic Aperture Radar Imagery XVII,, vol. 7699 (International Society for Optics and Photonics, 2010), p. 769906.
[Crossref]

J. Goodman, Introduction to Fourier optics (McGraw-hill, 2008).

P. Liu, B. Lu, and X. Sun, “A method of two-dimensional mimo planar array design based on sub-array segmentation for through-wall imaging,” in PIERS Proceedings, (2014).

T. S. Ralston, G. L. Charvat, and J. E. Peabody, “Real-time through-wall imaging using an ultrawideband multiple-input multiple-output (mimo) phased array radar system,” in 2010 IEEE international symposium on phased array systems and technology, (IEEE, 2010), pp. 551–558.
[Crossref]

A. W. Doerry, E. E. Bishop, and J. A. Miller, “Basics of backprojection algorithm for processing synthetic aperture radar images,” Sandia Natl. Lab. Report, No. SAND2016–1682 (2016).

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Measurement Geometry of the mm-wave Imaging system (b) xy cross section of the spiral target versus antenna arrays (c) xz cross section of the spiral target versus antenna arrays (d) yz cross section of spiral target versus antenna arrays. Note that the red x is a transmitter, the blue o is a receiver, and black . is a target point.
Fig. 2
Fig. 2 Mono-Static: Single-Input-Single-Output SISO configuration
Fig. 3
Fig. 3 Full Multi-static: Multiple-Input-Multiple-Output Full-MIMO configuration
Fig. 4
Fig. 4 Multi-static: Multiple-Input-Multiple-Output Local-MIMO configuration
Fig. 5
Fig. 5 Multi-static: Multiple-Input-Multiple-Output Planar Randomized Local-MIMO configuration
Fig. 6
Fig. 6 xz cross section of the reconstructed image of the spiral target with (a) SISO with 1λ pitch (b) Full-MIMO with 1λ pitch (c) Local-MIMO type 1 with 2λ pitch (d) Local-MIMO type 2 with 2λ pitch (e) Randomized Local-MIMO type 1 with 2λ pitch (f) Randomized Local-MIMO type 2 with 2λ pitch
Fig. 7
Fig. 7 xy cross section of the reconstructed image of the spiral target with (a) SISO with 1λ pitch (b) Full-MIMO with 1λ pitch (c) Local-MIMO type 1 with 2λ pitch (d) Local-MIMO type 2 with 2λ pitch (e) Randomize Local-MIMO type 1 with 2λ pitch (f) Randomize Local-MIMO type 2 with 2λ pitch
Fig. 8
Fig. 8 (a)Point Spread Function (PSF) Comparison of the configurations with 1λ pitch (b)PSF comparison of the SISO and Full-MIMO configurations with 1λ pitch and Full-MIMO and Local-MIMO type 1 and type 2 with 2λ pitch between the elements
Fig. 9
Fig. 9 Extended field of view image of a point source at 2 meter range in the center of the cross range for the Local MIMO type 2 with 2λ pitch. Grating lobes/aliasing is at approximately 1m (0.5radian) as predicted. The inset shows the point spread function around the origin at 2 meter range.
Fig. 10
Fig. 10 Comparison of simulation with experimental results of SISO configuration (a) SAR experimental setup and the spiral target (b) SISO simulation reconstructed xy plane image (c) SISO measurement reconstructed xy plane image
Fig. 11
Fig. 11 Measurement results of SAR imaging of the mannequin target with unconcealed weapon.
Fig. 12
Fig. 12 Measurement results of SAR imaging of the mannequin target with concealed weapon.

Tables (1)

Tables Icon

Table 1 Key system characteristics for the architectures and configurations discussed in the paper. The score is based on the level of system cost, complexity or performance. A higher negative score means the characteristic makes the system less feasible. the measurement time is given as a function of τ which represents, a combination of integration time, sweep time, and other measurement delays.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E Tx ( k , r ¯ Tx ) = A Tx e j θ Tx .
E ( k , r ¯ Tx , r ¯ ) = E Tx ( k , r ¯ Tx ) e j k | r ¯ r ¯ Tx | | r ¯ r ¯ Tx | ,
E tgt ( k , r ¯ tgt ) = E ( k , r ¯ Tx , n , r ¯ tgt ) .
E Sampled Rx ( k , r ¯ Rx ) = n = all tgt points A tgt e j θ tgt E tgt e j k | r ¯ Rx r ¯ tgt | | r ¯ Rx r ¯ tgt | .
E Rx ( k , r ¯ Rx ) = A Rx e j θ Rx E sampled Rx ( k , r ¯ Rx , n ) .
E measured ( k ) = E Rx ( k , r ¯ Rx , n ) .
E ( r ¯ , r ¯ Tx , r ¯ Rx , k ) = A tgt ( r ¯ ) e j k ( | r ¯ r ¯ Tx | + | r ¯ r ¯ Rx | ) ,
E ( r ¯ Tx , r ¯ Rx , k ) = A tgt ( r ¯ ) e j k ( | r ¯ r ¯ Tx | + | r ¯ r ¯ Rx | ) d r ¯ .
A ^ tgt ( r ¯ ) = d k E ( r ¯ , k ) e j k ( | r ¯ r ¯ Rx | + | r ¯ r ¯ Tx | ) d r ,
A ^ tgt ( r ¯ i ) = 1 N K 1 N Rx Tx m = 1 N K n = 1 N Rx Tx E ( r , k ) e j k ( | r ¯ r ¯ Tx | + | r ¯ r ¯ Rx | ) ,
Δ x < λ 4 ,
Δ f < c 4 R max ,
δ Cross Resolution λ c 2 [ Sin ( θ btx / 2 ) + Sin ( θ brx / 2 ) ] ,
δ Cross Resolution λ c 2 D R ,
δ Range Resolution c 2 Bw ,
r ( θ ) = a θ [ a is constant ] , x ( θ ) = a θ cos ( θ ) , y ( θ ) = a θ sin ( θ ) , x 2 + y 2 = a 2 [ arctan ( y / x ) ] 2 .

Metrics