Abstract

In color-multiplexed optical camera communications (OCC) systems, data acquisition is restricted by the image processing algorithm capability for fast source recognition, region-of-interest (ROI) detection and tracking, packet synchronization within ROI, estimation of inter-channel interference and threshold computation. In this work, a novel modulation scheme for a practical RGB-LED-based OCC system is presented. The four above-described tasks are held simultaneously. Using confined spatial correlation of well-defined reference signals within the frame’s color channels is possible to obtain a fully operating link with low computational complexity algorithms. Prior channel adaptation also grants a substantial increase in the attainable data rate, making the system more robust to interferences.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
47-kbit/s RGB-LED-based optical camera communication based on 2D-CNN and XOR-based data loss compensation

Liqiong Liu, Rui Deng, and Lian-Kuan Chen
Opt. Express 27(23) 33840-33846 (2019)

Performance evaluation of neural network assisted motion detection schemes implemented within indoor optical camera based communications

Shivani Rajendra Teli, Stanislav Zvanovec, and Zabih Ghassemlooy
Opt. Express 27(17) 24082-24092 (2019)

Non-line-of-sight 2 × N indoor optical camera communications

Navid Bani Hassan, Zabih Ghassemlooy, Stanislav Zvanovec, Pengfei Luo, and Hoa Le-Minh
Appl. Opt. 57(7) B144-B149 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Aoyama and M. Oshima, “Line scan sampling for visible light communication: Theory and practice,” IEEE International Conference on Communications (ICC) (IEEE, 2015), pp. 5060–5065.
  2. N. T. Le, M. A. Hossain, and Y. M. Jang, “A survey of design and implementation for optical camera communication,” Signal Process. Image Commun. 53, 95–109 (2017).
    [Crossref]
  3. Z. Ghassemlooy, P. Luo, and S. Zvanovec, “Optical Camera Communications,” in Optical Wireless Communications: An Emerging Technology, M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, eds. (Springer, 2016), pp. 547–568.
    [Crossref]
  4. J.-W. Lee, S.-J. Kim, and S.-K. Han, “Multi-Level Optical Signal Reception by Blur Curved Approximation for Optical Camera Communication,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017).
    [Crossref]
  5. A. D. Griffiths, J. Herrnsdorf, M. J. Strain, and M. D. Dawson, “Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera,” Opt. Express 27, 15585 (2019).
    [Crossref] [PubMed]
  6. J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
    [Crossref]
  7. W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
    [Crossref]
  8. K. Liang, C.-W. Hsu, C.-W. Chow, C.-Y. Chen, Y. Liu, S.-H. Chen, and H.-Y. Chen, “Comparison of thresholding schemes for visible light communication using mobile-phone image sensor,” Opt. Express 24, 1973 (2016).
    [Crossref] [PubMed]
  9. K. Liang, C.-W. Chow, Y. Liu, and C.-H. Yeh, “Thresholding schemes for visible light communications with CMOS camera using entropy-based algorithms,” Opt. Express 24, 25641–25646 (2016).
    [Crossref] [PubMed]
  10. Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
    [Crossref]
  11. T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera,” in International Conference on Ubiquitous and Future Networks, ICUFN, (2015).
  12. K. Liang, C.-W. Chow, and Y. Liu, “RGB visible light communication using mobile-phone camera and multi-input multi-output,” Opt. Express 24, 9383–9388 (2016).
    [Crossref] [PubMed]
  13. P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
    [Crossref]
  14. P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
    [Crossref]

2019 (2)

A. D. Griffiths, J. Herrnsdorf, M. J. Strain, and M. D. Dawson, “Scalable visible light communications with a micro-LED array projector and high-speed smartphone camera,” Opt. Express 27, 15585 (2019).
[Crossref] [PubMed]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
[Crossref]

2018 (2)

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
[Crossref]

2017 (2)

N. T. Le, M. A. Hossain, and Y. M. Jang, “A survey of design and implementation for optical camera communication,” Signal Process. Image Commun. 53, 95–109 (2017).
[Crossref]

P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
[Crossref]

2016 (3)

2015 (1)

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Aoyama, H.

H. Aoyama and M. Oshima, “Line scan sampling for visible light communication: Theory and practice,” IEEE International Conference on Communications (ICC) (IEEE, 2015), pp. 5060–5065.

Chavez-Burbano, P.

P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
[Crossref]

Chen, C.-Y.

Chen, H.-Y.

Chen, S.-H.

Chen, Y.

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Chow, C.-W.

Dawson, M. D.

Fang, L.

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Ghassemlooy, Z.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Z. Ghassemlooy, P. Luo, and S. Zvanovec, “Optical Camera Communications,” in Optical Wireless Communications: An Emerging Technology, M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, eds. (Springer, 2016), pp. 547–568.
[Crossref]

Griffiths, A. D.

Guan, W.

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Guerra, V.

P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
[Crossref]

Han, D.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Han, S.-K.

J.-W. Lee, S.-J. Kim, and S.-K. Han, “Multi-Level Optical Signal Reception by Blur Curved Approximation for Optical Camera Communication,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017).
[Crossref]

He, J.

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
[Crossref]

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
[Crossref]

Herrnsdorf, J.

Hong, C. H.

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera,” in International Conference on Ubiquitous and Future Networks, ICUFN, (2015).

Hossain, M. A.

N. T. Le, M. A. Hossain, and Y. M. Jang, “A survey of design and implementation for optical camera communication,” Signal Process. Image Commun. 53, 95–109 (2017).
[Crossref]

Hsu, C.-W.

Jang, Y. M.

N. T. Le, M. A. Hossain, and Y. M. Jang, “A survey of design and implementation for optical camera communication,” Signal Process. Image Commun. 53, 95–109 (2017).
[Crossref]

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera,” in International Conference on Ubiquitous and Future Networks, ICUFN, (2015).

Jiang, Z.

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
[Crossref]

Kim, S.-J.

J.-W. Lee, S.-J. Kim, and S.-K. Han, “Multi-Level Optical Signal Reception by Blur Curved Approximation for Optical Camera Communication,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017).
[Crossref]

Le, N. T.

N. T. Le, M. A. Hossain, and Y. M. Jang, “A survey of design and implementation for optical camera communication,” Signal Process. Image Commun. 53, 95–109 (2017).
[Crossref]

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera,” in International Conference on Ubiquitous and Future Networks, ICUFN, (2015).

Le Minh, H.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Lee, J.-W.

J.-W. Lee, S.-J. Kim, and S.-K. Han, “Multi-Level Optical Signal Reception by Blur Curved Approximation for Optical Camera Communication,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017).
[Crossref]

Liang, K.

Liu, X.

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Liu, Y.

Lu, Y.

Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
[Crossref]

Luo, P.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Z. Ghassemlooy, P. Luo, and S. Zvanovec, “Optical Camera Communications,” in Optical Wireless Communications: An Emerging Technology, M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, eds. (Springer, 2016), pp. 547–568.
[Crossref]

Nguyen, T.

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera,” in International Conference on Ubiquitous and Future Networks, ICUFN, (2015).

Oshima, M.

H. Aoyama and M. Oshima, “Line scan sampling for visible light communication: Theory and practice,” IEEE International Conference on Communications (ICC) (IEEE, 2015), pp. 5060–5065.

Perez-Jimenez, R.

P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
[Crossref]

Png, L. C.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Qiao, Y.

Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
[Crossref]

Rabadan, J.

P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
[Crossref]

Rodriguez-Esparragon, D.

P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
[Crossref]

Shi, J.

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
[Crossref]

Strain, M. J.

Tang, X.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Tsai, H. M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Wu, Y.

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Xie, C.

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Yeh, C.-H.

Zhang, M.

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

Zhang, T.

Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
[Crossref]

Zhang, Z.

Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
[Crossref]

Zhou, J.

Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
[Crossref]

Zhou, Y.

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
[Crossref]

Zvanovec, S.

Z. Ghassemlooy, P. Luo, and S. Zvanovec, “Optical Camera Communications,” in Optical Wireless Communications: An Emerging Technology, M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, eds. (Springer, 2016), pp. 547–568.
[Crossref]

IEEE Access (1)

Z. Zhang, T. Zhang, J. Zhou, Y. Lu, and Y. Qiao, “Thresholding Scheme Based on Boundary Pixels of Stripes for Visible Light Communication With Mobile-Phone Camera,” IEEE Access 6, 53053–53061 (2018).
[Crossref]

IEEE Photonics J. (1)

P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. M. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental Demonstration of RGB LED-Based Optical Camera Communications,” IEEE Photonics J. 7, 1–12 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. He, Z. Jiang, J. Shi, Y. Zhou, and J. He, “A Novel Column Matrix Selection Scheme for VLC System With Mobile Phone Camera,” IEEE Photonics Technol. Lett. 31, 149–152 (2019).
[Crossref]

Opt. Commun. (1)

W. Guan, Y. Wu, C. Xie, L. Fang, X. Liu, and Y. Chen, “Performance analysis and enhancement for visible light communication using CMOS sensors,” Opt. Commun. 410, 531–551 (2018).
[Crossref]

Opt. Express (4)

Sensors (1)

P. Chavez-Burbano, V. Guerra, J. Rabadan, D. Rodriguez-Esparragon, and R. Perez-Jimenez, “Experimental characterization of close-emitter interference in an optical camera communication system,” Sensors 17, 1561 (2017).
[Crossref]

Signal Process. Image Commun. (1)

N. T. Le, M. A. Hossain, and Y. M. Jang, “A survey of design and implementation for optical camera communication,” Signal Process. Image Commun. 53, 95–109 (2017).
[Crossref]

Other (4)

Z. Ghassemlooy, P. Luo, and S. Zvanovec, “Optical Camera Communications,” in Optical Wireless Communications: An Emerging Technology, M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, eds. (Springer, 2016), pp. 547–568.
[Crossref]

J.-W. Lee, S.-J. Kim, and S.-K. Han, “Multi-Level Optical Signal Reception by Blur Curved Approximation for Optical Camera Communication,” in 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference (PGC), (2017).
[Crossref]

T. Nguyen, C. H. Hong, N. T. Le, and Y. M. Jang, “High-speed asynchronous Optical Camera Communication using LED and rolling shutter camera,” in International Conference on Ubiquitous and Future Networks, ICUFN, (2015).

H. Aoyama and M. Oshima, “Line scan sampling for visible light communication: Theory and practice,” IEEE International Conference on Communications (ICC) (IEEE, 2015), pp. 5060–5065.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Transmitter signals. (a) Beacon signal. (b) Data signal.
Fig. 2
Fig. 2 (a) Inter-frame motion example. (b) Comparison of training samples (dark dots) and curve fitting for motionless Ftx = 1800 Hz and Ftx = 2160 Hz.
Fig. 3
Fig. 3 Experiment setup.
Fig. 4
Fig. 4 Maximum Pearson correlation coefficient, ρmax. Ftx = 2160 Hz.
Fig. 5
Fig. 5 (a) Precision-Recall curve. (b) Average of Ndetection. Ftx = 2160 Hz.
Fig. 6
Fig. 6 (a) R2 determination coefficient versus number of frames for training. (b) Bit error rate versus distance (star points indicate that no errors were detected under the experiment conditions).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Rb H lamp 2 1 h fps 2 N
ρ ( x , y ) = x , y ( T ( x , y ) I ( x + x , y + y ) ) x , y T ( x , y ) 2 x , y I ( x + x , y + y ) 2

Metrics