Abstract

For the purpose of preparing a sample of aligned and oriented molecules in the laser-field-free condition, we developed a plasma shutter, which enables laser pulses with 100-mJ-class, 10-ns pulse durations to be rapidly turned off within ∼150 fs. Inthis work, the residual field intensity after the rapid turn off is carefully examined by applying the shaped laser pulse to OCS molecules in the rotational ground state. Based on the comparison between the observation of alignment revivals of the OCS molecules and the results of numerical simulations, we demonstrate that the residual field intensity is actually negligible (below 0.4% of the peak intensity) and, if any, does not influence the alignment and orientation dynamics at all.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-dynamic-range laser-pulse-contrast measurement with a plasma-shuttered streak camera

An-Chun Tien, Marc Nantel, Gérard Mourou, Daniel Kaplan, and Marcel Bouvier
Opt. Lett. 22(20) 1559-1561 (1997)

Direct measurement of field-free molecular alignment by spatial (de)focusing effects

Yahui Feng, Haifeng Pan, Jia Liu, Cheng Chen, Jian Wu, and Heping Zeng
Opt. Express 19(4) 2852-2857 (2011)

Field-free alignment of molecules at room temperature

Nan Xu, Chengyin Wu, Juan Huang, Zhifeng Wu, Qingqing Liang, Hong Yang, and Qihuang Gong
Opt. Express 14(12) 4992-4997 (2006)

References

  • View by:
  • |
  • |
  • |

  1. B. Friedrich and D. Herschbach, “Alignment and Trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
    [Crossref] [PubMed]
  2. M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648–1682 (2013).
    [Crossref]
  3. T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal Control of Multiphoton Ionization Processes in Aligned I2 Molecules with Time-Dependent Polarization Pulses,” Phys. Rev. Lett. 92, 133005 (2004).
    [Crossref]
  4. J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
    [Crossref]
  5. T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high-order harmonic generation from aligned molecules,” Nature (London) 435, 470–474 (2005).
    [Crossref]
  6. T. Kanai, S. Minemoto, and H. Sakai, “Ellipticity Dependence of High-Order Harmonic Generation from Aligned Molecules,” Phys. Rev. Lett. 98, 053002 (2007).
    [Crossref] [PubMed]
  7. C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
    [Crossref]
  8. T. Seideman, “Revival Structure of Aligned Rotational Wave Packets,” Phys. Rev. Lett. 83, 4971–4974 (1999).
    [Crossref]
  9. Z.-C. Yan and T. Seideman, “Photomanipulation of external molecular modes: A time-dependent self-consistent-field approach,” J. Chem. Phys. 111, 4113–4120 (1999).
    [Crossref]
  10. C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, “Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability,” Phys. Rev. A 59, 1382–1391 (1999).
    [Crossref]
  11. J. Ortigoso, M. Rodríguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).
    [Crossref]
  12. F. Rosca-Pruna and M. J. J. Vrakking, “Experimental Observation of Revival Structures in Picosecond Laser-Induced Alignment of I2,” Phys. Rev. Lett. 87, 153902 (2001).
    [Crossref]
  13. N. E. Henriksen, “Molecular alignment and orientation in short pulse laser fields,” Chem. Phys. Lett. 312, 196–202 (1999).
    [Crossref]
  14. J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
    [Crossref] [PubMed]
  15. B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
    [Crossref]
  16. A. Goban, S. Minemoto, and H. Sakai, “Laser-Field-Free Molecular Orientation,” Phys. Rev. Lett. 101, 013001 (2008).
    [Crossref] [PubMed]
  17. Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields,” Phys. Rev. A 77, 031403 (2008).
    [Crossref]
  18. M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Phys. Rev. A 79, 011403 (2009).
    [Crossref]
  19. J. H. Mun and H. Sakai, “Improving molecular orientation by optimizing relative delay and intensities of two-color laser pulses,” Phys. Rev. A 98, 013404 (2018).
    [Crossref]
  20. W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
    [Crossref]
  21. Y.-C. Han, J.-W. Hu, and B.-B. Wang, “Thermal-average effects on photoassociation with a slowly-turned-on and rapidly-turned-off laser pulse,” Phys. Rev. A 98, 043420 (2018).
    [Crossref]
  22. A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
    [Crossref] [PubMed]
  23. This experimental study was originally aimed to achieve completely field-free molecular orientation by the shaped two-color pulse with a slow turn on and a rapid turn off. Although field-free molecular alignment was successfully achieved as demonstrated in Fig. 3(a), field-free molecular orientation was disturbed by the serious fluctuation of the relative phase between the two wavelengths, which was caused by the floating vapor and/or small particles produced from ethylene glycol upon its plasma formation. This problem will be solved by placing the plasma shutter in a vacuum chamber and evacuating the vapor and/or small particles.
  24. Although the pulse width of the ω pulse is 9 ns (FWHM) in the present measurement, it depends on the detailed alignment of the Nd:YAG laser system and ranges from 8 ns to 12 ns. Therefore, the typical pulse width is ∼10 ns.
  25. In the present experiment, the pulse energies of the ω and 2ω pulses are adjusted to optimize the molecular orientation dynamics (see the arguments given in Ref. [19]). In our previous study, the pulse energy of 80 mJ was employed [16]. Even higher pulse energies are available by employing larger 1/e 2 beam radius of the ns pulse at the ethylene glycol jet sheet. The available pulse energy of the ns pulse is determined by the available pulse energy of the fs pulse because the 1/e 2 beam radius of the fs pulse must be adjusted to be larger than that of the ns pulse to ensure the appropriate plasma shutter operation.
  26. J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, “Laser-field-free orientation of state-selected asymmetric top molecules,” Phys. Rev. A 89, 051402 (2014).
    [Crossref]
  27. D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).
    [Crossref]
  28. T. Kanai and H. Sakai, “Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields,” J. Chem. Phys. 115, 5492–5497 (2001).
    [Crossref]
  29. G. Herzberg, Molecular Spectra and Molecular Structure, Electronic Spectra and Electronic Structure of Polyatomic Molecules Vol. III (Van Nostrand, New York, 1966).
  30. J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
    [Crossref] [PubMed]
  31. H. T. Yura and S. G. Hanson, “Optical beam wave propagation through complex optical systems,” J. Opt. Soc. Am. A, 4, 1931–1948 (1987).
    [Crossref]
  32. D. R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition (CRC Press, 2004).
  33. G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001) and references therein.
    [Crossref]

2018 (3)

J. H. Mun and H. Sakai, “Improving molecular orientation by optimizing relative delay and intensities of two-color laser pulses,” Phys. Rev. A 98, 013404 (2018).
[Crossref]

Y.-C. Han, J.-W. Hu, and B.-B. Wang, “Thermal-average effects on photoassociation with a slowly-turned-on and rapidly-turned-off laser pulse,” Phys. Rev. A 98, 043420 (2018).
[Crossref]

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

2016 (1)

D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).
[Crossref]

2014 (1)

J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, “Laser-field-free orientation of state-selected asymmetric top molecules,” Phys. Rev. A 89, 051402 (2014).
[Crossref]

2013 (1)

M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648–1682 (2013).
[Crossref]

2011 (2)

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

2010 (1)

W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
[Crossref]

2009 (1)

M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Phys. Rev. A 79, 011403 (2009).
[Crossref]

2008 (2)

A. Goban, S. Minemoto, and H. Sakai, “Laser-Field-Free Molecular Orientation,” Phys. Rev. Lett. 101, 013001 (2008).
[Crossref] [PubMed]

Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields,” Phys. Rev. A 77, 031403 (2008).
[Crossref]

2007 (1)

T. Kanai, S. Minemoto, and H. Sakai, “Ellipticity Dependence of High-Order Harmonic Generation from Aligned Molecules,” Phys. Rev. Lett. 98, 053002 (2007).
[Crossref] [PubMed]

2006 (1)

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
[Crossref]

2005 (1)

T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high-order harmonic generation from aligned molecules,” Nature (London) 435, 470–474 (2005).
[Crossref]

2004 (2)

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal Control of Multiphoton Ionization Processes in Aligned I2 Molecules with Time-Dependent Polarization Pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

2003 (1)

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

2001 (3)

F. Rosca-Pruna and M. J. J. Vrakking, “Experimental Observation of Revival Structures in Picosecond Laser-Induced Alignment of I2,” Phys. Rev. Lett. 87, 153902 (2001).
[Crossref]

T. Kanai and H. Sakai, “Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields,” J. Chem. Phys. 115, 5492–5497 (2001).
[Crossref]

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001) and references therein.
[Crossref]

1999 (5)

N. E. Henriksen, “Molecular alignment and orientation in short pulse laser fields,” Chem. Phys. Lett. 312, 196–202 (1999).
[Crossref]

T. Seideman, “Revival Structure of Aligned Rotational Wave Packets,” Phys. Rev. Lett. 83, 4971–4974 (1999).
[Crossref]

Z.-C. Yan and T. Seideman, “Photomanipulation of external molecular modes: A time-dependent self-consistent-field approach,” J. Chem. Phys. 111, 4113–4120 (1999).
[Crossref]

C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, “Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability,” Phys. Rev. A 59, 1382–1391 (1999).
[Crossref]

J. Ortigoso, M. Rodríguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).
[Crossref]

1995 (1)

B. Friedrich and D. Herschbach, “Alignment and Trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

1987 (1)

Atabek, O.

C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, “Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability,” Phys. Rev. A 59, 1382–1391 (1999).
[Crossref]

Bandrauk, A. D.

C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, “Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability,” Phys. Rev. A 59, 1382–1391 (1999).
[Crossref]

Bisgaard, C. Z.

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Calegari, F.

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Chatterley, A. S.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

Christiansen, L.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

Cong, S.-L.

W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
[Crossref]

Corkum, P. B.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

De Silvestri, S.

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Dion, C. M.

C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, “Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability,” Phys. Rev. A 59, 1382–1391 (1999).
[Crossref]

Doyle, J. M.

M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648–1682 (2013).
[Crossref]

Filsinger, F.

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Friedrich, B.

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

J. Ortigoso, M. Rodríguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).
[Crossref]

B. Friedrich and D. Herschbach, “Alignment and Trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

Goban, A.

A. Goban, S. Minemoto, and H. Sakai, “Laser-Field-Free Molecular Orientation,” Phys. Rev. Lett. 101, 013001 (2008).
[Crossref] [PubMed]

Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields,” Phys. Rev. A 77, 031403 (2008).
[Crossref]

Gupta, M.

J. Ortigoso, M. Rodríguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).
[Crossref]

Han, Y.-C.

Y.-C. Han, J.-W. Hu, and B.-B. Wang, “Thermal-average effects on photoassociation with a slowly-turned-on and rapidly-turned-off laser pulse,” Phys. Rev. A 98, 043420 (2018).
[Crossref]

Hanson, S. G.

Henriksen, N. E.

N. E. Henriksen, “Molecular alignment and orientation in short pulse laser fields,” Chem. Phys. Lett. 312, 196–202 (1999).
[Crossref]

Herschbach, D.

B. Friedrich and D. Herschbach, “Alignment and Trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure, Electronic Spectra and Electronic Structure of Polyatomic Molecules Vol. III (Van Nostrand, New York, 1966).

Hita, M.

M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Phys. Rev. A 79, 011403 (2009).
[Crossref]

Hu, J.-W.

Y.-C. Han, J.-W. Hu, and B.-B. Wang, “Thermal-average effects on photoassociation with a slowly-turned-on and rapidly-turned-off laser pulse,” Phys. Rev. A 98, 043420 (2018).
[Crossref]

Huang, Y.

W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
[Crossref]

Itatani, J.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

Ivanov, M. Y.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
[Crossref]

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

Ivanov, M. Yu.

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001) and references therein.
[Crossref]

Jørgensen, A. V.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

Kais, S.

M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648–1682 (2013).
[Crossref]

Kanai, T.

T. Kanai, S. Minemoto, and H. Sakai, “Ellipticity Dependence of High-Order Harmonic Generation from Aligned Molecules,” Phys. Rev. Lett. 98, 053002 (2007).
[Crossref] [PubMed]

T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high-order harmonic generation from aligned molecules,” Nature (London) 435, 470–474 (2005).
[Crossref]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal Control of Multiphoton Ionization Processes in Aligned I2 Molecules with Time-Dependent Polarization Pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

T. Kanai and H. Sakai, “Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields,” J. Chem. Phys. 115, 5492–5497 (2001).
[Crossref]

Karamatskos, E. T.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

Keller, A.

C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, “Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability,” Phys. Rev. A 59, 1382–1391 (1999).
[Crossref]

Kieffer, J. C.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

Krems, R. V.

M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648–1682 (2013).
[Crossref]

Küpper, J.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Lausten, R.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
[Crossref]

Lemeshko, M.

M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648–1682 (2013).
[Crossref]

Levesque, J.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

Lide, D. R.

D. R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition (CRC Press, 2004).

Meijer, G.

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Minemoto, S.

D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).
[Crossref]

J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, “Laser-field-free orientation of state-selected asymmetric top molecules,” Phys. Rev. A 89, 051402 (2014).
[Crossref]

M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Phys. Rev. A 79, 011403 (2009).
[Crossref]

Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields,” Phys. Rev. A 77, 031403 (2008).
[Crossref]

A. Goban, S. Minemoto, and H. Sakai, “Laser-Field-Free Molecular Orientation,” Phys. Rev. Lett. 101, 013001 (2008).
[Crossref] [PubMed]

T. Kanai, S. Minemoto, and H. Sakai, “Ellipticity Dependence of High-Order Harmonic Generation from Aligned Molecules,” Phys. Rev. Lett. 98, 053002 (2007).
[Crossref] [PubMed]

T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high-order harmonic generation from aligned molecules,” Nature (London) 435, 470–474 (2005).
[Crossref]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal Control of Multiphoton Ionization Processes in Aligned I2 Molecules with Time-Dependent Polarization Pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Mottershead, J.

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

Mullins, T.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

Mun, J. H.

J. H. Mun and H. Sakai, “Improving molecular orientation by optimizing relative delay and intensities of two-color laser pulses,” Phys. Rev. A 98, 013404 (2018).
[Crossref]

D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).
[Crossref]

J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, “Laser-field-free orientation of state-selected asymmetric top molecules,” Phys. Rev. A 89, 051402 (2014).
[Crossref]

Muramatsu, M.

M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Phys. Rev. A 79, 011403 (2009).
[Crossref]

Negro, M.

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Nielsen, J. H.

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Niikura, H.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

Nisoli, M.

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Ortigoso, J.

J. Ortigoso, M. Rodríguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).
[Crossref]

Pépin, H.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

Rodríguez, M.

J. Ortigoso, M. Rodríguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).
[Crossref]

Rosca-Pruna, F.

F. Rosca-Pruna and M. J. J. Vrakking, “Experimental Observation of Revival Structures in Picosecond Laser-Induced Alignment of I2,” Phys. Rev. Lett. 87, 153902 (2001).
[Crossref]

Sakai, H.

J. H. Mun and H. Sakai, “Improving molecular orientation by optimizing relative delay and intensities of two-color laser pulses,” Phys. Rev. A 98, 013404 (2018).
[Crossref]

D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).
[Crossref]

J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, “Laser-field-free orientation of state-selected asymmetric top molecules,” Phys. Rev. A 89, 051402 (2014).
[Crossref]

M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Phys. Rev. A 79, 011403 (2009).
[Crossref]

Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields,” Phys. Rev. A 77, 031403 (2008).
[Crossref]

A. Goban, S. Minemoto, and H. Sakai, “Laser-Field-Free Molecular Orientation,” Phys. Rev. Lett. 101, 013001 (2008).
[Crossref] [PubMed]

T. Kanai, S. Minemoto, and H. Sakai, “Ellipticity Dependence of High-Order Harmonic Generation from Aligned Molecules,” Phys. Rev. Lett. 98, 053002 (2007).
[Crossref] [PubMed]

T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high-order harmonic generation from aligned molecules,” Nature (London) 435, 470–474 (2005).
[Crossref]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal Control of Multiphoton Ionization Processes in Aligned I2 Molecules with Time-Dependent Polarization Pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

T. Kanai and H. Sakai, “Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields,” J. Chem. Phys. 115, 5492–5497 (2001).
[Crossref]

Sansone, G.

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Schouder, C.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

Seideman, T.

Z.-C. Yan and T. Seideman, “Photomanipulation of external molecular modes: A time-dependent self-consistent-field approach,” J. Chem. Phys. 111, 4113–4120 (1999).
[Crossref]

T. Seideman, “Revival Structure of Aligned Rotational Wave Packets,” Phys. Rev. Lett. 83, 4971–4974 (1999).
[Crossref]

Simesen, P.

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Spanner, M.

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

Stagira, S.

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Stapelfeldt, H.

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Stolow, A.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
[Crossref]

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

Sugawara, Y.

Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields,” Phys. Rev. A 77, 031403 (2008).
[Crossref]

Sussman, B. J.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
[Crossref]

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

Suzuki, T.

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal Control of Multiphoton Ionization Processes in Aligned I2 Molecules with Time-Dependent Polarization Pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

Takei, D.

D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).
[Crossref]

J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, “Laser-field-free orientation of state-selected asymmetric top molecules,” Phys. Rev. A 89, 051402 (2014).
[Crossref]

Underwood, J. G.

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
[Crossref]

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

Villeneuve, D. M.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

Vozzi, C.

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Vrakking, M. J. J.

F. Rosca-Pruna and M. J. J. Vrakking, “Experimental Observation of Revival Structures in Picosecond Laser-Induced Alignment of I2,” Phys. Rev. Lett. 87, 153902 (2001).
[Crossref]

Wang, B.-B.

Y.-C. Han, J.-W. Hu, and B.-B. Wang, “Thermal-average effects on photoassociation with a slowly-turned-on and rapidly-turned-off laser pulse,” Phys. Rev. A 98, 043420 (2018).
[Crossref]

Wang, G.-R.

W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
[Crossref]

Xie, T.

W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
[Crossref]

Yan, Z.-C.

Z.-C. Yan and T. Seideman, “Photomanipulation of external molecular modes: A time-dependent self-consistent-field approach,” J. Chem. Phys. 111, 4113–4120 (1999).
[Crossref]

Yudin, G. L.

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001) and references therein.
[Crossref]

Yura, H. T.

Zeidler, D.

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

Zhang, W.

W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
[Crossref]

Chem. Phys. Lett. (1)

N. E. Henriksen, “Molecular alignment and orientation in short pulse laser fields,” Chem. Phys. Lett. 312, 196–202 (1999).
[Crossref]

J. Chem. Phys. (4)

J. Ortigoso, M. Rodríguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).
[Crossref]

Z.-C. Yan and T. Seideman, “Photomanipulation of external molecular modes: A time-dependent self-consistent-field approach,” J. Chem. Phys. 111, 4113–4120 (1999).
[Crossref]

A. S. Chatterley, E. T. Karamatskos, C. Schouder, L. Christiansen, A. V. Jørgensen, T. Mullins, J. Küpper, and H. Stapelfeldt, “Communication: Switched wave packets with spectrally truncated chirped pulses,” J. Chem. Phys. 148, 221105 (2018).
[Crossref] [PubMed]

T. Kanai and H. Sakai, “Numerical simulations of molecular orientation using strong, nonresonant, two-color laser fields,” J. Chem. Phys. 115, 5492–5497 (2001).
[Crossref]

J. Opt. Soc. Am. A (1)

Mol. Phys. (1)

M. Lemeshko, R. V. Krems, J. M. Doyle, and S. Kais, “Manipulation of molecules with electromagnetic fields,” Mol. Phys. 111, 1648–1682 (2013).
[Crossref]

Nat. Phys. (1)

C. Vozzi, M. Negro, F. Calegari, G. Sansone, M. Nisoli, S. De Silvestri, and S. Stagira, “Generalized molecular orbital tomography,” Nat. Phys. 7, 822–826 (2011).
[Crossref]

Nature (London) (2)

J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Tomographic imaging of molecular orbitals,” Nature (London) 432, 867–871 (2004).
[Crossref]

T. Kanai, S. Minemoto, and H. Sakai, “Quantum interference during high-order harmonic generation from aligned molecules,” Nature (London) 435, 470–474 (2005).
[Crossref]

Phys. Chem. Chem. Phys. (1)

J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, “Stark-selected beam of ground-state OCS molecules characterized by revivals of impulsive alignment,” Phys. Chem. Chem. Phys. 13, 18971–18975 (2011).
[Crossref] [PubMed]

Phys. Rev. A (10)

G. L. Yudin and M. Yu. Ivanov, “Nonadiabatic tunnel ionization: Looking inside a laser cycle,” Phys. Rev. A 64, 013409 (2001) and references therein.
[Crossref]

B. J. Sussman, J. G. Underwood, R. Lausten, M. Y. Ivanov, and A. Stolow, “Quantum control via the dynamic Stark effect: Application to switched rotational wave packets and molecular axis alignment,” Phys. Rev. A 73, 053403 (2006).
[Crossref]

J. H. Mun, D. Takei, S. Minemoto, and H. Sakai, “Laser-field-free orientation of state-selected asymmetric top molecules,” Phys. Rev. A 89, 051402 (2014).
[Crossref]

D. Takei, J. H. Mun, S. Minemoto, and H. Sakai, “Laser-field-free three-dimensional molecular orientation,” Phys. Rev. A 94, 013401 (2016).
[Crossref]

C. M. Dion, A. Keller, O. Atabek, and A. D. Bandrauk, “Laser-induced alignment dynamics of HCN: Roles of the permanent dipole moment and the polarizability,” Phys. Rev. A 59, 1382–1391 (1999).
[Crossref]

Y. Sugawara, A. Goban, S. Minemoto, and H. Sakai, “Laser-field-free molecular orientation with combined electrostatic and rapidly-turned-off laser fields,” Phys. Rev. A 77, 031403 (2008).
[Crossref]

M. Muramatsu, M. Hita, S. Minemoto, and H. Sakai, “Field-free molecular orientation by an intense nonresonant two-color laser field with a slow turn on and rapid turn off,” Phys. Rev. A 79, 011403 (2009).
[Crossref]

J. H. Mun and H. Sakai, “Improving molecular orientation by optimizing relative delay and intensities of two-color laser pulses,” Phys. Rev. A 98, 013404 (2018).
[Crossref]

W. Zhang, Y. Huang, T. Xie, G.-R. Wang, and S.-L. Cong, “Efficient photoassociation with a slowly-turned-on and rapidly-turned-off laser field,” Phys. Rev. A 82, 063411 (2010).
[Crossref]

Y.-C. Han, J.-W. Hu, and B.-B. Wang, “Thermal-average effects on photoassociation with a slowly-turned-on and rapidly-turned-off laser pulse,” Phys. Rev. A 98, 043420 (2018).
[Crossref]

Phys. Rev. Lett. (7)

F. Rosca-Pruna and M. J. J. Vrakking, “Experimental Observation of Revival Structures in Picosecond Laser-Induced Alignment of I2,” Phys. Rev. Lett. 87, 153902 (2001).
[Crossref]

J. G. Underwood, M. Spanner, M. Y. Ivanov, J. Mottershead, B. J. Sussman, and A. Stolow, “Switched Wave Packets: A Route to Nonperturbative Quantum Control,” Phys. Rev. Lett. 90, 223001 (2003).
[Crossref] [PubMed]

T. Seideman, “Revival Structure of Aligned Rotational Wave Packets,” Phys. Rev. Lett. 83, 4971–4974 (1999).
[Crossref]

T. Kanai, S. Minemoto, and H. Sakai, “Ellipticity Dependence of High-Order Harmonic Generation from Aligned Molecules,” Phys. Rev. Lett. 98, 053002 (2007).
[Crossref] [PubMed]

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, “Optimal Control of Multiphoton Ionization Processes in Aligned I2 Molecules with Time-Dependent Polarization Pulses,” Phys. Rev. Lett. 92, 133005 (2004).
[Crossref]

A. Goban, S. Minemoto, and H. Sakai, “Laser-Field-Free Molecular Orientation,” Phys. Rev. Lett. 101, 013001 (2008).
[Crossref] [PubMed]

B. Friedrich and D. Herschbach, “Alignment and Trapping of Molecules in Intense Laser Fields,” Phys. Rev. Lett. 74, 4623–4626 (1995).
[Crossref] [PubMed]

Other (5)

G. Herzberg, Molecular Spectra and Molecular Structure, Electronic Spectra and Electronic Structure of Polyatomic Molecules Vol. III (Van Nostrand, New York, 1966).

D. R. Lide, CRC Handbook of Chemistry and Physics, 85th Edition (CRC Press, 2004).

This experimental study was originally aimed to achieve completely field-free molecular orientation by the shaped two-color pulse with a slow turn on and a rapid turn off. Although field-free molecular alignment was successfully achieved as demonstrated in Fig. 3(a), field-free molecular orientation was disturbed by the serious fluctuation of the relative phase between the two wavelengths, which was caused by the floating vapor and/or small particles produced from ethylene glycol upon its plasma formation. This problem will be solved by placing the plasma shutter in a vacuum chamber and evacuating the vapor and/or small particles.

Although the pulse width of the ω pulse is 9 ns (FWHM) in the present measurement, it depends on the detailed alignment of the Nd:YAG laser system and ranges from 8 ns to 12 ns. Therefore, the typical pulse width is ∼10 ns.

In the present experiment, the pulse energies of the ω and 2ω pulses are adjusted to optimize the molecular orientation dynamics (see the arguments given in Ref. [19]). In our previous study, the pulse energy of 80 mJ was employed [16]. Even higher pulse energies are available by employing larger 1/e 2 beam radius of the ns pulse at the ethylene glycol jet sheet. The available pulse energy of the ns pulse is determined by the available pulse energy of the fs pulse because the 1/e 2 beam radius of the fs pulse must be adjusted to be larger than that of the ns pulse to ensure the appropriate plasma shutter operation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The experimental setup. L1, L2, L3: lens. T1, T2: telescope for beam collimation. DM: dichroic mirror. BS: beam splitter. FS: fused silica.
Fig. 2
Fig. 2 Results of the cross-correlation measurement. Temporal profiles of the unshaped ω pulse (a) and the shaped ω pulse ((b) and (c)) are shown for different temporal resolutions.
Fig. 3
Fig. 3 Time evolutions of the degrees of alignment obtained from the experiment (a) and the numerical simulations (b), (c), and (d). In (a), the cross-correlation result is also shown by a blue solid line. In (b), (c), and (d), the intensities of the residual field are set at 0, 4, and 8% of the peak intensity, respectively. A blue dotted line is drawn at the rotational period of an OCS molecule (82.2 ps). Red solid lines are the Lorentzian functions fitted to the full revivals of the degrees of alignment and red dotted lines are drawn at the peaks of the Lorentzian functions.
Fig. 4
Fig. 4 The effective full revival time of the alignment of OCS molecules as a function of the residual field ratio for different peak intensities of the ns pulses. Green symbols show the experimentally observed full revival times (82.3±0.5 ps) with error bars. The other symbols show the simulated full revival times as functions of the intensity ratio of the residual laser field. Black, red, and blue symbols are results with the peak intensities scaled from the ones used in the experiment by factors of 0.2, 0.3, and 0.4, respectively.
Fig. 5
Fig. 5 (a) A sketch of a beam propagation through the plasma shutter (PS). (b) Shapes and (c) phases of beams with (blue) and without (black) the absorbing plasma at the position of the ethylene glycol jet sheet z = −2.5 mm. (d) Plasma density distribution at z = −2.5 mm in units of the critical density of the plasma for the ω laser, Nc. (e) Spatial optical path difference D(r) introduced by a focal mirror or lens with the focal length f. (f) Shapes of the beams at the position of the collimation lens (Lens2). (g) and (h) show the phases of the beam at z = 700 mm, before and after the collimation, respectively.
Fig. 6
Fig. 6 (a) and (d) show the sketches of beam propagation in the cross-correlation measurement and in the molecular alignment experiment, respectively. In the cross-correlation measurement, (b) beam shapes and (c) wavefronts of the beams at z = zCC with (blue) and without (black) the absorbing plasma. In the molecular alignment experiment, (e) beam shapes and (f) wavefronts of the beams at z = zMA with (blue) and without (black) the absorbing plasma. In (e), the peak of the absorbed beam is indicated by the arrow.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E ω ( r ) = i ω 2 π L c exp  ( i ω L c ) d 2 r 0 E ω ( r 0 ) × exp  [ i ω 2 L c ( r 2 2 r r 0 + r 0 2 ) ] ,
E ω PA ( r , z PA ) = E ω ( r , z PA ) × exp  [ i n ω ( r ) ω d c ] ,
n ω ( r ) = 1 N e ( r ) / N c ,
d N e d t = [ N jet N e ( t ) ] × Γ ( | E fs ( t ) | , I P ) .

Metrics