Abstract

Transverse mode instability (TMI) is compared to thermal lensing (TL) power threshold and used to derive power scaling limits in high-power fiber amplifiers. The TMI power threshold is shown to be ~65% of the TL one and dominates power scaling. In addition to commonly used limiting effects, we introduce a bend-induced mechanical reliability criterion, which limits the maximum allowable cladding diameter to ~600μm. This also results in the introduction of a critical pump brightness, the minimum required pump brightness at which the maximum signal power is achieved. The maximum achievable power depends primarily on the choice of pumping wavelength, amplifier gain and heat coefficient. Maximum signal powers of ~28kW to ~38kW, for diode pumping (λp = 976nm), and ~35kW to ~52kW, for tandem pumping (λp = 1018nm), are predicted for single-mode fiber amplifiers operating at signal wavelength λs = 1070nm, when the amplifier gain is increased from 10dB to 20dB. For an amplifier gain of 10dB, the maximum achievable signal power varies from 85kW to 25kW for tandem pumping and 35kW to 20kW for diode pumping, when the heat coefficient varies from 1% to 15% and 5.5% to 20%, respectively. The corresponding critical pump brightness varies from ~0.50 W/(μm2 sr) to ~0.14 W/(μm2 sr) for tandem pumping and ~0.25 W/(μm2 sr) to ~0.13 W/(μm2 sr) for diode pumping.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann
Opt. Express 25(13) 14892-14899 (2017)

Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers

Jiajian Zhu, Pu Zhou, Yanxing Ma, Xiaojun Xu, and Zejin Liu
Opt. Express 19(19) 18645-18654 (2011)

Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities

Cesar Jauregui, Hans-Jürgen Otto, Sven Breitkopf, J. Limpert, and A. Tünnermann
Opt. Express 24(8) 7879-7892 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
    [Crossref]
  2. M. O’Connor and B. Shiner, “High power fiber lasers for industry and defense,” in High-Power Laser Handbook, H. Injeyan, G.D. Goodno (Eds), (McGraw Hill, 2011), Ch. 18.
  3. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
    [Crossref] [PubMed]
  4. J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
    [Crossref]
  5. J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
    [Crossref] [PubMed]
  6. W.-W. Ke, X.-J. Wang, X.-F. Bao, and X.-J. Shu, “Thermally induced mode distortion and its limit to power scaling of fiber lasers,” Opt. Express 21(12), 14272–14281 (2013).
    [Crossref] [PubMed]
  7. T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
    [Crossref] [PubMed]
  8. H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).
  9. M. N. Zervas, “Power scalability in high power fiber amplifiers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017) paper CJ-6.1.
  10. M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 10501205 (2018).
    [Crossref]
  11. C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
    [Crossref] [PubMed]
  12. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
    [Crossref] [PubMed]
  13. A. Steinkopff, C. Jauregui, F. Stutzki, J. Nold, C. Hupel, N. Haarlammert, J. Bierlich, A. Tünnermann, and J. Limpert, “Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter,” Opt. Lett. 44(3), 650–653 (2019).
    [Crossref] [PubMed]
  14. F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
    [Crossref] [PubMed]
  15. M. N. Zervas, “TMI threshold in high power fiber amplifiers,” in OSA Advanced Photonics Congress (Optical Society for America, 2016), paper SoW2H.2.
    [Crossref]
  16. M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
    [Crossref]
  17. M. N. Zervas, “Transverse-modal-instability gain in high power fiber amplifiers: effect of the perturbation relative phase,” APL Photonics 4(2), 022802 (2019).
    [Crossref]
  18. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref] [PubMed]
  19. J. D. Minelly, R. I. Laming, J. E. Townsend, W. L. Barnes, E. R. Taylor, K. P. Jedrzejewski, and D. N. Payne, “High gain fibre power amplifier tandem-pumped by a 3 W multistripe diode,” in Conference on Optical Fiber Communication (Optical Society of America, 1992), pp. 32–33.
  20. C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
    [Crossref]
  21. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
    [Crossref]
  22. K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
    [Crossref] [PubMed]
  23. D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
    [Crossref]
  24. F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
    [Crossref]
  25. F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
    [Crossref] [PubMed]
  26. O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
    [Crossref] [PubMed]
  27. Z. Li, Z. Huang, X. Xiang, X. Liang, H. Lin, S. Xu, Z. Yang, J. Wang, and F. Jing, “Experimental demonstration of transverse mode instability enhancement by a counter-pumped scheme in a 2 kW all-fiberized laser,” Photon. Res. 5(2), 77–81 (2017).
    [Crossref]
  28. M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
    [Crossref] [PubMed]
  29. M. M. Johansen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, and J. Lægsgaard, “Estimating modal instability threshold for photonic crystal rod fiber amplifiers,” Opt. Express 21(13), 15409–15417 (2013).
    [Crossref] [PubMed]
  30. M. Walorny, J. Abramczyk, N. Jacobson, and K. Tankala, “Mechanical reliability of double clad fibers in typical fiber laser deployment conditions,” Proc. SPIE 9728, 97283A (2016).
    [Crossref]
  31. Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53(7), 4847–4853 (1982).
    [Crossref]
  32. M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
    [Crossref]
  33. F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
    [Crossref] [PubMed]
  34. T. Yao, J. Ji, and J. Nilsson, “Ultra-low quantum defect heating in Ytterbium-doped aluminosilicate fibers,” J. Lightwave Technol. 32(3), 429–434 (2014).
    [Crossref]
  35. H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
    [Crossref] [PubMed]
  36. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [Crossref] [PubMed]
  37. A. V. Smith and J. J. Smith, “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, 860108 (2013).
    [Crossref] [PubMed]
  38. L. Huang, L. Kong, J. Leng, P. Zhou, S. Guo, and X. Cheng, “Impact of high-order-mode loss on high-power fiber amplifiers,” J. Opt. Soc. Am. B 33(6), 1030–1037 (2016).
    [Crossref]
  39. T. Y. Fan, “Efficient coupling of multiple diode laser arrays to an optical fiber by geometric multiplexing,” Appl. Opt. 30(6), 630–632 (1991).
    [Crossref] [PubMed]
  40. K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High-brightness fiber-coupled pump laser development,” Proc. SPIE 7583, 758308 (2010).
    [Crossref]
  41. R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).
  42. M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
    [Crossref]
  43. C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
    [Crossref]
  44. M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).
  45. E.A. Shcherbakov, V.V. Fomin, A.A. Abramov, A.A. Ferin, D.V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), paper ATh4A.2.
  46. P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
    [Crossref]
  47. D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
    [Crossref]
  48. J. M. Fini, “Design of large-mode-area amplifier fibers resistant to bend-induced distortion,” J. Opt. Soc. Am. B 24(8), 1669–1676 (2007).
    [Crossref]
  49. A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
    [Crossref]

2019 (4)

M. N. Zervas, “Transverse-modal-instability gain in high power fiber amplifiers: effect of the perturbation relative phase,” APL Photonics 4(2), 022802 (2019).
[Crossref]

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

A. Steinkopff, C. Jauregui, F. Stutzki, J. Nold, C. Hupel, N. Haarlammert, J. Bierlich, A. Tünnermann, and J. Limpert, “Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter,” Opt. Lett. 44(3), 650–653 (2019).
[Crossref] [PubMed]

2018 (2)

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 10501205 (2018).
[Crossref]

2017 (3)

2016 (6)

C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

L. Huang, L. Kong, J. Leng, P. Zhou, S. Guo, and X. Cheng, “Impact of high-order-mode loss on high-power fiber amplifiers,” J. Opt. Soc. Am. B 33(6), 1030–1037 (2016).
[Crossref]

O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

M. Walorny, J. Abramczyk, N. Jacobson, and K. Tankala, “Mechanical reliability of double clad fibers in typical fiber laser deployment conditions,” Proc. SPIE 9728, 97283A (2016).
[Crossref]

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

2015 (1)

2014 (3)

2013 (4)

2012 (5)

2011 (2)

2010 (3)

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High-brightness fiber-coupled pump laser development,” Proc. SPIE 7583, 758308 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

2008 (1)

2007 (1)

2005 (1)

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

2004 (1)

2001 (1)

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

2000 (1)

1991 (1)

1982 (1)

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53(7), 4847–4853 (1982).
[Crossref]

1977 (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

1976 (1)

1969 (1)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

Abramczyk, J.

M. Walorny, J. Abramczyk, N. Jacobson, and K. Tankala, “Mechanical reliability of double clad fibers in typical fiber laser deployment conditions,” Proc. SPIE 9728, 97283A (2016).
[Crossref]

Alekseev, D.

Alkeskjold, T. T.

Andrejco, M. J.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Antipov, O.

Bai, C.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Bao, L.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

Bao, X.-F.

Barty, C. P. J.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Beach, R. J.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Beier, F.

Biekert, N.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Bierlich, J.

Brar, K.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Breitkopf, S.

Broeng, J.

Brown, D. C.

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Bullington, A. L.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

Burgess, J.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Chann, B.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Chen, Z.

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Cheng, X.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

Cook, R.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Cruz, M.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Dawson, D.

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

Dawson, J. W.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

DeFranza, M.

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

DeVito, M.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

DiGiovanni, D. J.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Dubinskii, M.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

Dugmore, D.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Eberhardt, R.

Eidam, T.

Fan, T. Y.

Fini, J. M.

Fishteyn, M.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Fortier, K.

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Goldberg, L.

Gong, M.

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

Grimshaw, M.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Guan, X.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Guo, S.

Haarlammert, N.

Hansen, K. R.

Hanzawa, N.

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

Headley, C.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Heebner, J. E.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Hein, S.

Hemenway, M.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

Hoffman, H. J.

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

Huang, L.

Huang, R. K.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Huang, Y.

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

Huang, Z.

Hupel, C.

Ichii, K.

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

Ishida, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53(7), 4847–4853 (1982).
[Crossref]

Jacobson, N.

M. Walorny, J. Abramczyk, N. Jacobson, and K. Tankala, “Mechanical reliability of double clad fibers in typical fiber laser deployment conditions,” Proc. SPIE 9728, 97283A (2016).
[Crossref]

Jansen, F.

Jauregui, C.

A. Steinkopff, C. Jauregui, F. Stutzki, J. Nold, C. Hupel, N. Haarlammert, J. Bierlich, A. Tünnermann, and J. Limpert, “Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter,” Opt. Lett. 44(3), 650–653 (2019).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
[Crossref]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Jeong, Y.

Ji, J.

Jing, F.

Johansen, M. M.

Jørgensen, M. M.

Kanskar, M.

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Karlsen, S.

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High-brightness fiber-coupled pump laser development,” Proc. SPIE 7583, 758308 (2010).
[Crossref]

Katsuyama, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53(7), 4847–4853 (1982).
[Crossref]

Ke, W.-W.

Kliner, D. A. V.

Kobayashi, H.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53(7), 4847–4853 (1982).
[Crossref]

Kong, L.

Koplow, J. P.

Kuhn, S.

Kuznetsov, M.

Lægsgaard, J.

Laurila, M.

Leisher, P.

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High-brightness fiber-coupled pump laser development,” Proc. SPIE 7583, 758308 (2010).
[Crossref]

Leng, J.

Li, D.

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

Li, S.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Li, Z.

Liang, X.

Liem, A.

Limpert, J.

A. Steinkopff, C. Jauregui, F. Stutzki, J. Nold, C. Hupel, N. Haarlammert, J. Bierlich, A. Tünnermann, and J. Limpert, “Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter,” Opt. Lett. 44(3), 650–653 (2019).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
[Crossref]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Lin, H.

Liu, Z.

Lochman, B.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Ma, L.

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

Ma, Y.

Mann, J.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Am. 66(4), 311–320 (1976).
[Crossref]

Martin, E.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Martinsen, R.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High-brightness fiber-coupled pump laser development,” Proc. SPIE 7583, 758308 (2010).
[Crossref]

Matsuo, S.

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

Mermelstein, M. D.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Messerly, M. J.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Mitsunaga, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53(7), 4847–4853 (1982).
[Crossref]

Modsching, N.

Nilsson, J.

Nold, J.

Ono, H.

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

Otto, H.-J.

Pax, P. H.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Payne, D.

Price, K.

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High-brightness fiber-coupled pump laser development,” Proc. SPIE 7583, 758308 (2010).
[Crossref]

Proske, F.

Prunty, T.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Sahu, J.

Sahu, J. K.

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

Sattler, B.

Schmidt, O.

Schreiber, T.

Shattuck, J.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Shu, X.-J.

Shverdin, M. Y.

Siders, C. W.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Smith, A. V.

A. V. Smith and J. J. Smith, “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, 860108 (2013).
[Crossref] [PubMed]

Smith, J. J.

A. V. Smith and J. J. Smith, “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, 860108 (2013).
[Crossref] [PubMed]

Snyder, A. W.

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

Sridharan, A. K.

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

Stappaerts, E. A.

Steinkopff, A.

Stutzki, F.

Tankala, K.

M. Walorny, J. Abramczyk, N. Jacobson, and K. Tankala, “Mechanical reliability of double clad fibers in typical fiber laser deployment conditions,” Proc. SPIE 9728, 97283A (2016).
[Crossref]

Tayebati, P.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Tsujikawa, K.

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

Tünnermann, A.

A. Steinkopff, C. Jauregui, F. Stutzki, J. Nold, C. Hupel, N. Haarlammert, J. Bierlich, A. Tünnermann, and J. Limpert, “Transverse single-mode operation in a passive large pitch fiber with more than 200 μm mode-field diameter,” Opt. Lett. 44(3), 650–653 (2019).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Designing advanced very-large mode-area fibers for power scaling of fiber-laser systems,” Optica 1(4), 233–242 (2014).
[Crossref]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

F. Stutzki, F. Jansen, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “26 mJ, 130 W Q-switched fiber-laser system with near-diffraction-limited beam quality,” Opt. Lett. 37(6), 1073–1075 (2012).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

Tyrtyshnyy, V.

Urbanek, W.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

Walorny, M.

M. Walorny, J. Abramczyk, N. Jacobson, and K. Tankala, “Mechanical reliability of double clad fibers in typical fiber laser deployment conditions,” Proc. SPIE 9728, 97283A (2016).
[Crossref]

Wang, J.

Wang, X.

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

Wang, X.-J.

Wang, Z.

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

Welch, K.

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

Wilkins, B.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Wirth, C.

Xiang, X.

Xiao, Q.

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

Xu, S.

Xu, X.

Yablon, A. D.

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

Yamada, M.

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

Yan, P.

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

Yang, Z.

Yao, T.

Zervas, M. N.

M. N. Zervas, “Transverse-modal-instability gain in high power fiber amplifiers: effect of the perturbation relative phase,” APL Photonics 4(2), 022802 (2019).
[Crossref]

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 10501205 (2018).
[Crossref]

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

M. N. Zervas, “Power scalability in high power fiber amplifiers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017) paper CJ-6.1.

Zhang, J.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Zhang, S.

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

Zhou, P.

Zhou, W.

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

Zhu, J.

APL Photonics (1)

M. N. Zervas, “Transverse-modal-instability gain in high power fiber amplifiers: effect of the perturbation relative phase,” APL Photonics 4(2), 022802 (2019).
[Crossref]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J. 56(5), 703–718 (1977).
[Crossref]

IEEE J. Quantum Electron. (2)

D. C. Brown and H. J. Hoffman, “Thermal, Stress, and Thermo-Optic Effects in High Average Power Double-Clad Silica Fiber Lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001).
[Crossref]

C. A. Codemard, J. K. Sahu, and J. Nilsson, “Tandem cladding-pumping for control of excess gain in ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 46(12), 1860–1869 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 0904123 (2014).
[Crossref]

P. Yan, X. Wang, Z. Wang, Y. Huang, D. Li, Q. Xiao, and M. Gong, “A 1150-W 1018-nm fiber laser bidirectional pumped by wavelength-stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 24(3), 0902506 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Yamada, K. Tsujikawa, L. Ma, K. Ichii, S. Matsuo, N. Hanzawa, and H. Ono, “Optical fiber amplifier employing a bundle of reduced cladding erbium-doped fibers,” IEEE Photonics Technol. Lett. 24(21), 1910–1913 (2012).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. 17(12), 1130–1138 (1969).
[Crossref]

J. Appl. Phys. (1)

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, and Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53(7), 4847–4853 (1982).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Express (13)

O. Antipov, M. Kuznetsov, D. Alekseev, and V. Tyrtyshnyy, “Influence of a backward reflection on low-threshold mode instability in Yb3+-doped few-mode fiber amplifiers,” Opt. Express 24(13), 14871–14879 (2016).
[Crossref] [PubMed]

H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, and A. Tünnermann, “Impact of photodarkening on the mode instability threshold,” Opt. Express 23(12), 15265–15277 (2015).
[Crossref] [PubMed]

C. Jauregui, H.-J. Otto, S. Breitkopf, J. Limpert, and A. Tünnermann, “Optimizing high-power Yb-doped fiber amplifier systems in the presence of transverse mode instabilities,” Opt. Express 24(8), 7879–7892 (2016).
[Crossref] [PubMed]

K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Theoretical analysis of mode instability in high-power fiber amplifiers,” Opt. Express 21(2), 1944–1971 (2013).
[Crossref] [PubMed]

W.-W. Ke, X.-J. Wang, X.-F. Bao, and X.-J. Shu, “Thermally induced mode distortion and its limit to power scaling of fiber lasers,” Opt. Express 21(12), 14272–14281 (2013).
[Crossref] [PubMed]

M. M. Johansen, K. R. Hansen, M. Laurila, T. T. Alkeskjold, and J. Lægsgaard, “Estimating modal instability threshold for photonic crystal rod fiber amplifiers,” Opt. Express 21(13), 15409–15417 (2013).
[Crossref] [PubMed]

F. Beier, C. Hupel, S. Kuhn, S. Hein, J. Nold, F. Proske, B. Sattler, A. Liem, C. Jauregui, J. Limpert, N. Haarlammert, T. Schreiber, R. Eberhardt, and A. Tünnermann, “Single mode 4.3 kW output power from a diode-pumped Yb-doped fiber amplifier,” Opt. Express 25(13), 14892–14899 (2017).
[Crossref] [PubMed]

Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref] [PubMed]

J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, “Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power,” Opt. Express 16(17), 13240–13266 (2008).
[Crossref] [PubMed]

T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers,” Opt. Express 19(14), 13218–13224 (2011).
[Crossref] [PubMed]

J. Zhu, P. Zhou, Y. Ma, X. Xu, and Z. Liu, “Power scaling analysis of tandem-pumped Yb-doped fiber lasers and amplifiers,” Opt. Express 19(19), 18645–18654 (2011).
[Crossref] [PubMed]

F. Jansen, F. Stutzki, H.-J. Otto, T. Eidam, A. Liem, C. Jauregui, J. Limpert, and A. Tünnermann, “Thermally induced waveguide changes in active fibers,” Opt. Express 20(4), 3997–4008 (2012).
[Crossref] [PubMed]

M. Laurila, M. M. Jørgensen, K. R. Hansen, T. T. Alkeskjold, J. Broeng, and J. Lægsgaard, “Distributed mode filtering rod fiber amplifier delivering 292W with improved mode stability,” Opt. Express 20(5), 5742–5753 (2012).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (1)

Photon. Res. (1)

Proc. SPIE (11)

A. V. Smith and J. J. Smith, “Mode instability thresholds of fiber amplifiers,” Proc. SPIE 8601, 860108 (2013).
[Crossref] [PubMed]

K. Price, S. Karlsen, P. Leisher, and R. Martinsen, “High-brightness fiber-coupled pump laser development,” Proc. SPIE 7583, 758308 (2010).
[Crossref]

R. K. Huang, B. Chann, J. Burgess, B. Lochman, W. Zhou, M. Cruz, R. Cook, D. Dugmore, J. Shattuck, and P. Tayebati, “TeraDiode’s high brightness semiconductor lasers,” Proc. SPIE 9730, 97300C (2016).

M. Hemenway, Z. Chen, M. Kanskar, W. Urbanek, D. Dawson, L. Bao, M. DeFranza, M. DeVito, K. Fortier, R. Martinsen, and K. Welch, “976nm high brightness fiber-coupled laser modules for ytterbium fiber laser pumping,” Proc. SPIE 10900, 109000D (2019).
[Crossref]

C. Headley, M. Fishteyn, A. D. Yablon, M. J. Andrejco, K. Brar, J. Mann, M. D. Mermelstein, and D. J. DiGiovanni, “Tapered fiber bundles for combining laser pumps,” Proc. SPIE 5709, 263–272 (2005).
[Crossref]

M. Kanskar, C. Bai, L. Bao, N. Biekert, Z. Chen, M. DeFranza, M. DeVito, K. Fortier, M. Grimshaw, X. Guan, M. Hemenway, S. Li, E. Martin, R. Martinsen, T. Prunty, W. Urbanek, B. Wilkins, J. Zhang, and S. Zhang, “High Brightness Diodes and 600 W & 60% Efficient Low SWaP Fiber-coupled Package Enabled by Reduced-mode (REM) Diodes,” Proc. SPIE 10900, 109000H (2019).

M. N. Zervas, “Transverse mode instability analysis in fiber amplifiers,” Proc. SPIE 10083, 100830M (2017).
[Crossref]

M. Walorny, J. Abramczyk, N. Jacobson, and K. Tankala, “Mechanical reliability of double clad fibers in typical fiber laser deployment conditions,” Proc. SPIE 9728, 97283A (2016).
[Crossref]

J. W. Dawson, M. J. Messerly, J. E. Heebner, P. H. Pax, A. K. Sridharan, A. L. Bullington, R. J. Beach, C. W. Siders, C. P. J. Barty, and M. Dubinskii, “Power scaling analysis of fiber lasers and amplifiers based on nonsilica materials,” Proc. SPIE 7686, 768611 (2010).
[Crossref]

H.-J. Otto, C. Jauregui, J. Limpert, and A. Tünnermann, “Average power limit of Ytterbium-doped fiber-laser systems with nearly diffraction-limited beam quality,” Proc. SPIE 9728, 97280E (2016).

M. N. Zervas, “Power scaling limits in high power fiber amplifiers due to transverse mode instability, thermal lensing, and fiber mechanical reliability,” Proc. SPIE 10512, 10501205 (2018).
[Crossref]

Other (5)

M. N. Zervas, “TMI threshold in high power fiber amplifiers,” in OSA Advanced Photonics Congress (Optical Society for America, 2016), paper SoW2H.2.
[Crossref]

J. D. Minelly, R. I. Laming, J. E. Townsend, W. L. Barnes, E. R. Taylor, K. P. Jedrzejewski, and D. N. Payne, “High gain fibre power amplifier tandem-pumped by a 3 W multistripe diode,” in Conference on Optical Fiber Communication (Optical Society of America, 1992), pp. 32–33.

M. N. Zervas, “Power scalability in high power fiber amplifiers,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) (IEEE, 2017) paper CJ-6.1.

M. O’Connor and B. Shiner, “High power fiber lasers for industry and defense,” in High-Power Laser Handbook, H. Injeyan, G.D. Goodno (Eds), (McGraw Hill, 2011), Ch. 18.

E.A. Shcherbakov, V.V. Fomin, A.A. Abramov, A.A. Ferin, D.V. Mochalov, and V. P. Gapontsev, “Industrial grade 100 kW power CW fiber laser,” in Advanced Solid-State Lasers Congress (Optical Society of America, 2013), paper ATh4A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Schematic of (a) “cold” step-index fiber, and (b) “hot” fiber quasi-parabolic refractive index profile; (c) “hot”/”cold” SI fiber MFD ratio.
Fig. 2
Fig. 2 TMI and TL power limits in fibers with V = 3, ηheat = 0.3 and ηlaser = 0.7. The other parameters are given in Appendix C. The inset zooms into the dashed area and superimposes experimental data (open circles) [14].
Fig. 3
Fig. 3 MFD shrinkage with extracted power. Open circles: experimental data [14]; blue: LPF75, green: LPF45, red:LPF35. Solid lines: Theory (Eq. (5)) with V = 3, ηheat = 0.3 and ηlaser = 0.7 and d0 = 136μm (blue); 80μm (green); 63μm (blue). Dashed lines correspond to 70% “hot”-to”-cold” MFD shrinkage (ωth/ω0 = 0.7). Red and blue arrows denote the TL and TMI powers, respectively, for which PTMI/PTL = 0.65.
Fig. 4
Fig. 4 Contour plots of (a) power lower limits (in kW) due to pump brightness (blue area), SRS (green area) and TMI (orange area); and (b) required cladding diameter (in μm) as a function of amplifier length and core diameter. The parameters are similar to Ref [3]. (see Table 1 in Appendix C and Bp = 0.02W/μm2/sr; ηlaser = 0.85; ηheat = 0.10, G = 10dB).
Fig. 5
Fig. 5 Contour plots of power limits (in kW) due to pump brightness (blue area), SRS (green area) and TMI (orange area). The mechanical-reliability dominated parameter space (grey area) is also shown. (a) DP with Bp = 0.02W/μm2/sr; ηlaser = 0.85; ηheat = 0.10, G = 10dB; (b) DP with Bp = 0.18W/μm2/sr; ηlaser = 0.85; ηheat = 0.10, G = 10dB; (c) DP with Bp = 0.2W/μm2/sr; ηlaser = 0.85; ηheat = 0.10, G = 23dB; (d) TP with Bp = 0.3W/μm2/sr; ηlaser = 0.85; ηheat = 0.06, G = 10dB. Core pump absorption: (a)-(c) αcore = 250dB/m, (d) 100dB/m.
Fig. 6
Fig. 6 (a), Maximum signal power (right axis), minimum fiber length (left axis), and (b) Minimum core diameter (left axis), minimum cladding diameter (right axis). Diode pumping (DP): ηheat = 0.10, ηlaser = 0.85, αcore = 250dB/m; Tandem pumping (TP): ηheat = 0.06, ηlaser = 0.90, αcore = 100dB/m. Amplifier gain G = 10dB (vertical dashed lines show the corresponding critical pump brightness).
Fig. 7
Fig. 7 (a) maximum signal power, (b) minimum fiber length/core diameter for diode pumping (ηheat = 0.10, ηlaser = 0.80, αcore = 250dB/m); (c) maximum signal power, (d) minimum fiber length/core diameter for tandem pumping (ηheat = 0.06, ηlaser = 0.85, αcore = 100dB/m). Amplifier gain G = 10dB (blue lines), 15dB (green lines) and 20dB (red lines).
Fig. 8
Fig. 8 (a) the maximum achievable signal power, (b) the critical pump brightness, (c) corresponding core diameter and (d) the fiber length as a function of heat coefficient, for diode pumping (ηlaser = 0.80 - red lines) and tandem pumping (ηlaser = 0.85 - blue lines). G = 10dB.
Fig. 9
Fig. 9 Failures-in-Time (FIT) versus bending diameter Dbend., for different cladding diameters.
Fig. 10
Fig. 10 (a) Mode field deformation for core diameter Dcore = 40μm and bending diameter Dbend = 40cm, 50cm, 70cm and 100cm; (b) Mode effective area ratio versus core diameter for different bending diameters (V = 6). The inset zooms into the top-left highlighted area.

Tables (1)

Tables Icon

Table 1 List of parameters, symbols used in the text and values used in the calculations

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

ω 0 d 0 =0.65+ 1.619 V 3/2 + 2.879 V 6
Q 0 q D d I s / dz + α s I s =( q D g s + α s ) I s
Q ¯ heat = P heat L = η heat P pump absorbed L =( η heat η laser ) P signal extracted L =( η heat η laser ) P s (L) L G1 G
Δ n th Q ¯ heat ( dn/ dT ) 4πκ
ω th d 0 = 2 V th 1/2 + 0.23 V th 3/2 + 18.01 V th 6
P out TL = 2πκ [ η heat / ( η laser L ) ]( dn/ dT ) ( λ 0 d 0 ) 2
P out TMI = κ U ε 2 ( U ε 2 U s 2 ) 2π n eff [ η heat / ( η laser L ) ]( dn/ dT ) ( λ 0 d 0 ) 2 ,
P out TMI P out TL = U ε 2 ( U ε 2 U s 2 ) 4 π 2 n eff
L pumpSRS = 4Γ NA ln( G ) A p π g R η laser B p α core
d pumpTMI = 2κ U ε 2 ( U ε 2 U s 2 ) λ 0 2 A p π 3 n eff η heat ( dn/ dT ) B p α core N A 2 4
L TMISRS = 2π d 0 2 λ 0 2 n eff η heat ( dn/ dT ) Γ 2 ln( G ) η laser κ U ε 2 ( U ε 2 U s 2 ) g R
P TMISRS max = λ 0 2 η laser κ U ε 2 ( U ε 2 U s 2 ) Γ 2 ln(G) n eff η heat ( dn/ dT ) g R
L mech = A p d mech 2 α core d 0 2
P pump max = 1 4 η laser B p π 2 N A 2 d mech 2
B p crit = 4 λ 0 U ε Γ π 2 N A 2 d mech 2 2κ( U ε 2 U s 2 )ln(G) n eff η laser η heat ( dn/ dT ) g R
P s max ={ P pump max ; B p < B p crit P TMISRS max ; B p B p crit
d mechSRS = d mech π η laser g R N A 2 A p B p 16 Γ 2 ln(G) α core 4
d 0 min ={ d mechSRS ; B p < B p crit d pumpTMI ; B p B p crit
d clad min ={ d mech ; B p < B p crit d clad ; B p B p crit
d clad = 32κ Γ 2 U ε 2 ( U ε 2 U s 2 ) λ 0 2 ln(G) n eff g R η laser η heat ( dn/ dT ) π 4 N A 4 B p 2 4
FIT=αγ N p L ( e n t s ) β e p n p t p
γ= ( B p / E 2 )/ ( B/ E 2 ) β ,e= 0.83 d clad / D bend α=m/ ( n p 2 ) ,β= ( n p 2 )/ ( n2 )
P out pump = η laser B p ( π r clad 2 )( πN A 2 )= η laser B p π 2 N A 2 r 0 2 α core A p L,
d clad = d 0 α core / α clad = d 0 α core L/ A p
P out TMI = κ U ε 2 ( U ε 2 U s 2 ) 4π n eff α s ( dn/ dT ) ( λ 0 d 0 ) 2
P out TL = 2πκ [ η heat / ( η laser L ) ]( dn/ dT ) ( λ 0 d 0 ) 2
P out SRS 16 A eff G g R L eff = 16π r 0 2 Γ 2 ln(G) g R L ,
P out damage = I damage Γ 2 π r 0 2
P out rupture = η laser η heat 4π R m 1 r 0 2 2 r clad 2 L
P out melting = η laser η heat 4πκ( T m T c ) 1+ 2κ r clad h +2ln( r clad r 0 ) L
Δ n th TL = 1 2 ( λ 0 d 0 ) 2
ω th TL d 0 2 V th TL
ω th TL ω 0 2 V

Metrics