Abstract

An ultra-narrow angular optical transparency window based on photonic topological transition (PTT) is theoretically and numerically investigated in a low-loss hyperbolic metamaterial (HMM) platform, which consists of aligned metallic nanowires embedded indielectric host matrices. Our results indicate that, near the transition point of PTT, the designed system exhibits high-efficiency optical angular selectivity close to normal incidence by tailoring the topology of metamaterial’s equi-frequency surface (EFS). Moreover, the operating wavelength (λ0) is flexibly tunable by selecting appropriate material and geometrical parameters, which provides significant guidance for the later experimental design. Our method is further applied to super-resolution imaging, with a resolution of at least λ0/4 and over a significant distances (>12λ0). The HMM-supported angularly selective system could find promising applications for high-efficiency light manipulation and lensless on-chip imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Selective radiative heating of nanostructures using hyperbolic metamaterials

Ding Ding and Austin J Minnich
Opt. Express 23(7) A299-A308 (2015)

Dynamically tunable and active hyperbolic metamaterials

Joseph S. T. Smalley, Felipe Vallini, Xiang Zhang, and Yeshaiahu Fainman
Adv. Opt. Photon. 10(2) 354-408 (2018)

Enhanced and directional single-photon emission in hyperbolic metamaterials

Ward D. Newman, Cristian L. Cortes, and Zubin Jacob
J. Opt. Soc. Am. B 30(4) 766-775 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
    [Crossref] [PubMed]
  2. D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
    [Crossref] [PubMed]
  3. J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
    [Crossref] [PubMed]
  4. S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
    [Crossref] [PubMed]
  5. X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS 2 modified hybrid surface plasmons waveguides,” Nanotechnology 30, 125201 (2019).
    [Crossref]
  6. X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40, 178–181 (2015).
    [Crossref] [PubMed]
  7. C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
    [Crossref]
  8. X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9, 44–55 (2019).
    [Crossref]
  9. H. Lu, X. Gan, D. Mao, Y. Fan, D. Yang, and J. Zhao, “Nearly perfect absorption of light in monolayer molybdenum disulfide supported by multilayer structures,” Opt. Express 25, 21630–21636 (2017).
    [Crossref] [PubMed]
  10. X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25, 27028–27036 (2017).
    [Crossref] [PubMed]
  11. Y. He, S. He, J. Gao, and X. Yang, “Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Express 20, 22372–22382 (2012).
    [Crossref] [PubMed]
  12. P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
    [Crossref] [PubMed]
  13. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
    [Crossref] [PubMed]
  14. J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011).
    [Crossref]
  15. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
    [Crossref] [PubMed]
  16. S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
    [Crossref]
  17. L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821 (2014).
    [Crossref]
  18. W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
    [Crossref] [PubMed]
  19. P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
    [Crossref]
  20. X. Wu, “Angular optical transparency induced by photonic topological transition in hexagonal boron nitride,” https://doi.org/10.1007/s11468-018-0882-4 (2018).
  21. A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
    [Crossref] [PubMed]
  22. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
    [Crossref]
  23. Y. Lu, L. Yan, Y. Guo, Y. Pan, W. Pan, and B. Luo, “Elevation-azimuth angular selectivity and angle-frequency filtering in asymmetric photonic crystal,” Opt. Express 24, 24473–24482 (2016).
    [Crossref] [PubMed]
  24. J. Guo, S. Chen, and S. Jiang, “Optical broadband angular filters based on staggered photonic structures,” J. Mod. Opt. 65, 928–936 (2018).
    [Crossref]
  25. L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
    [Crossref]
  26. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
    [Crossref] [PubMed]
  27. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
    [Crossref] [PubMed]
  28. B. Casse, W. Lu, R. Banyal, Y. Huang, S. Selvarasah, M. Dokmeci, C. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
    [Crossref] [PubMed]
  29. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
    [Crossref] [PubMed]
  30. Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
    [Crossref]
  31. A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
    [Crossref] [PubMed]
  32. D. P. Edward and I. Palik, “Handbook of optical constants of solids,” (Elsevier, 1985).
  33. Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38, 1179–1181 (2013).
    [Crossref] [PubMed]
  34. N. h. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
    [Crossref]
  35. T. Pan, G. Xu, T. Zang, and L. Gao, “Goos–hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009).
    [Crossref]
  36. B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
    [Crossref]
  37. M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
    [Crossref]
  38. I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149 (2017).
    [Crossref]

2019 (3)

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9, 44–55 (2019).
[Crossref]

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS 2 modified hybrid surface plasmons waveguides,” Nanotechnology 30, 125201 (2019).
[Crossref]

2018 (3)

P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
[Crossref]

J. Guo, S. Chen, and S. Jiang, “Optical broadband angular filters based on staggered photonic structures,” J. Mod. Opt. 65, 928–936 (2018).
[Crossref]

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

2017 (3)

2016 (2)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Y. Lu, L. Yan, Y. Guo, Y. Pan, W. Pan, and B. Luo, “Elevation-azimuth angular selectivity and angle-frequency filtering in asymmetric photonic crystal,” Opt. Express 24, 24473–24482 (2016).
[Crossref] [PubMed]

2015 (4)

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40, 178–181 (2015).
[Crossref] [PubMed]

2014 (2)

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821 (2014).
[Crossref]

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

2013 (4)

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Y. He, H. Deng, X. Jiao, S. He, J. Gao, and X. Yang, “Infrared perfect absorber based on nanowire metamaterial cavities,” Opt. Lett. 38, 1179–1181 (2013).
[Crossref] [PubMed]

2012 (2)

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Y. He, S. He, J. Gao, and X. Yang, “Giant transverse optical forces in nanoscale slot waveguides of hyperbolic metamaterials,” Opt. Express 20, 22372–22382 (2012).
[Crossref] [PubMed]

2011 (2)

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[Crossref] [PubMed]

2010 (2)

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

2009 (3)

T. Pan, G. Xu, T. Zang, and L. Gao, “Goos–hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009).
[Crossref]

B. Casse, W. Lu, R. Banyal, Y. Huang, S. Selvarasah, M. Dokmeci, C. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[Crossref] [PubMed]

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

2008 (1)

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

2007 (2)

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

2006 (2)

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

2002 (1)

N. h. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[Crossref]

Alekseyev, L.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Alekseyev, L. V.

Altug, H.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Alu, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Atkinson, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Banyal, R.

Barnakov, Y. A.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Bartal, G.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Belov, P. A.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

Béri, B.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Bloemer, M. J.

A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[Crossref] [PubMed]

Casse, B.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

B. Casse, W. Lu, R. Banyal, Y. Huang, S. Selvarasah, M. Dokmeci, C. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[Crossref] [PubMed]

Chen, H.

N. h. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[Crossref]

Chen, S.

J. Guo, S. Chen, and S. Jiang, “Optical broadband angular filters based on staggered photonic structures,” J. Mod. Opt. 65, 928–936 (2018).
[Crossref]

Cheng, L.

Coskun, A. F.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[Crossref] [PubMed]

De Abajo, F. J. G.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

De Zuani, S.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Deng, H.

Dokmeci, M.

Drachev, V. P.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Edward, D. P.

D. P. Edward and I. Palik, “Handbook of optical constants of solids,” (Elsevier, 1985).

Engheta, N.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149 (2017).
[Crossref]

Esslinger, M.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Etezadi, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Evans, P.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Fan, Y.

Fang, F.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Gan, X.

Gao, J.

Gao, L.

T. Pan, G. Xu, T. Zang, and L. Gao, “Goos–hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009).
[Crossref]

Gao, W.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Gehring, P.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Ginzburg, P.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

Gompf, B.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Göröcs, Z.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Greenbaum, A.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Gultepe, E.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Guo, J.

J. Guo, S. Chen, and S. Jiang, “Optical broadband angular filters based on staggered photonic structures,” J. Mod. Opt. 65, 928–936 (2018).
[Crossref]

Guo, Y.

Han, X.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

He, S.

He, X.

X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9, 44–55 (2019).
[Crossref]

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS 2 modified hybrid surface plasmons waveguides,” Nanotechnology 30, 125201 (2019).
[Crossref]

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40, 178–181 (2015).
[Crossref] [PubMed]

He, Y.

Hendren, W.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Hillenbrand, R.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Huang, Y.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

B. Casse, W. Lu, R. Banyal, Y. Huang, S. Selvarasah, M. Dokmeci, C. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[Crossref] [PubMed]

Huo, P.

P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
[Crossref]

Ishii, S.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Isikman, S. O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Jacob, Z.

Janner, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Jiang, S.

J. Guo, S. Chen, and S. Jiang, “Optical broadband angular filters based on staggered photonic structures,” J. Mod. Opt. 65, 928–936 (2018).
[Crossref]

Jiang, X.

Jiao, X.

Joannopoulos, J. D.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821 (2014).
[Crossref]

Kabashin, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Kang, F.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

Kern, K.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Khunsin, W.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Kildishev, A. V.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Kivshar, Y. S.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

Korobkin, D.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Krasavin, A. V.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

Lawrence, M.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Li, B.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

Li, H.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Li, J.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Li, Q.

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

Liang, Y.

P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
[Crossref]

Liberal, I.

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149 (2017).
[Crossref]

Limaj, O.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Lin, F.

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS 2 modified hybrid surface plasmons waveguides,” Nanotechnology 30, 125201 (2019).
[Crossref]

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9, 44–55 (2019).
[Crossref]

Liu, F.

X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9, 44–55 (2019).
[Crossref]

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS 2 modified hybrid surface plasmons waveguides,” Nanotechnology 30, 125201 (2019).
[Crossref]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Liu, N. h.

N. h. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[Crossref]

Liu, W.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

Liu, Y.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Liu, Z.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Lu, H.

Lu, L.

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821 (2014).
[Crossref]

Lu, W.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

B. Casse, W. Lu, R. Banyal, Y. Huang, S. Selvarasah, M. Dokmeci, C. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[Crossref] [PubMed]

Lu, Y.

P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
[Crossref]

Y. Lu, L. Yan, Y. Guo, Y. Pan, W. Pan, and B. Luo, “Elevation-azimuth angular selectivity and angle-frequency filtering in asymmetric photonic crystal,” Opt. Express 24, 24473–24482 (2016).
[Crossref] [PubMed]

Luo, B.

Luo, W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Mao, D.

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[Crossref] [PubMed]

Menon, L.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

Merlin, R.

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[Crossref] [PubMed]

Mudanyali, O.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Narimanov, E.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).
[Crossref] [PubMed]

Noginov, M.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Ozcan, A.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Palik, I.

D. P. Edward and I. Palik, “Handbook of optical constants of solids,” (Elsevier, 1985).

Pan, T.

T. Pan, G. Xu, T. Zang, and L. Gao, “Goos–hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009).
[Crossref]

Pan, W.

Pan, Y.

Pastkovsky, S.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Peng, J.

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

Perry, C.

Poddubny, A. N.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

Podolskiy, V.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Pollard, R.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Pruneri, V.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Qin, S.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

Qiu, M.

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

Qu, Y.

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

Rodrigo, D.

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Selvarasah, S.

Shalaev, V. M.

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Shen, Y.

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

Shi, C.

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

Shi, W.

Shvets, G.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Soljacic, M.

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821 (2014).
[Crossref]

Sridhar, S.

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

B. Casse, W. Lu, R. Banyal, Y. Huang, S. Selvarasah, M. Dokmeci, C. Perry, and S. Sridhar, “Imaging with subwavelength resolution by a generalized superlens at infrared wavelengths,” Opt. Lett. 34, 1994–1996 (2009).
[Crossref] [PubMed]

Stacy, A. M.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Su, T. W.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Sun, C.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Sun, J.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

Talebi, N.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Taubner, T.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Tumkur, T.

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

Urzhumov, Y.

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Vogelgesang, R.

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Wang, T.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25, 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Wang, Y.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Wu, X.

N. h. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[Crossref]

Wurtz, G.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Xiao, G.

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS 2 modified hybrid surface plasmons waveguides,” Nanotechnology 30, 125201 (2019).
[Crossref]

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9, 44–55 (2019).
[Crossref]

Xiao, S.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25, 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Xu, C.

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Xu, G.

T. Pan, G. Xu, T. Zang, and L. Gao, “Goos–hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009).
[Crossref]

Xu, T.

P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
[Crossref]

Xue, L.

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Yan, L.

Yan, X.

X. Jiang, T. Wang, S. Xiao, X. Yan, and L. Cheng, “Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance,” Opt. Express 25, 27028–27036 (2017).
[Crossref] [PubMed]

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Yang, B.

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Yang, D.

Yang, X.

Yang, Y.

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

Yao, J.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Yin, K.

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

Yuan, X.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

Zang, T.

T. Pan, G. Xu, T. Zang, and L. Gao, “Goos–hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009).
[Crossref]

Zayats, A.

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Zayats, A. V.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

Zhang, H.

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

Zhang, J.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

Zhang, S.

P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
[Crossref]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Zhang, X.

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

Zhao, J.

Zhao, Z. Y.

Zhou, J.

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

Zhu, S. Y.

N. h. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[Crossref]

Zhu, Z.

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

ACS Photonics (2)

Y. Qu, Y. Shen, K. Yin, Y. Yang, Q. Li, M. Qiu, and M. Soljačić, “Polarization-independent optical broadband angular selectivity,” ACS Photonics 5, 4125–4131 (2018).
[Crossref]

M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. De Zuani, B. Gompf, and K. Kern, “Tetradymites as natural hyperbolic materials for the near-infrared to visible,” ACS Photonics 1, 1285–1289 (2014).
[Crossref]

Appl. Phys. Lett. (3)

L. Alekseyev, E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010).
[Crossref]

J. Sun, J. Zhou, B. Li, and F. Kang, “Indefinite permittivity and negative refraction in natural material: graphite,” Appl. Phys. Lett. 98, 101901 (2011).
[Crossref]

B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, and S. Sridhar, “Super-resolution imaging using a three-dimensional metamaterials nanolens,” Appl. Phys. Lett. 96, 023114 (2010).
[Crossref]

J. Mod. Opt. (1)

J. Guo, S. Chen, and S. Jiang, “Optical broadband angular filters based on staggered photonic structures,” J. Mod. Opt. 65, 928–936 (2018).
[Crossref]

Laser Photonics Rev. (2)

P. Huo, Y. Liang, S. Zhang, Y. Lu, and T. Xu, “Angular optical transparency induced by photonic topological transitions in metamaterials,” Laser Photonics Rev. 12, 1700309 (2018).
[Crossref]

S. Ishii, A. V. Kildishev, E. Narimanov, V. M. Shalaev, and V. P. Drachev, “Sub-wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium,” Laser Photonics Rev. 7, 265–271 (2013).
[Crossref]

Nanoscale (1)

J. Zhang, Z. Zhu, W. Liu, X. Yuan, and S. Qin, “Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering,” Nanoscale 7, 13530–13536 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

X. He, F. Liu, F. Lin, G. Xiao, and W. Shi, “Tunable MoS 2 modified hybrid surface plasmons waveguides,” Nanotechnology 30, 125201 (2019).
[Crossref]

Nat. Mater. (1)

A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. Podolskiy, and A. Zayats, “Plasmonic nanorod metamaterials for biosensing,” Nat. Mater. 8, 867 (2009).
[Crossref] [PubMed]

Nat. Methods (1)

A. Greenbaum, W. Luo, T. W. Su, Z. Göröcs, L. Xue, S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan, “Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy,” Nat. Methods 9,889 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

I. Liberal and N. Engheta, “Near-zero refractive index photonics,” Nat. Photonics 11, 149 (2017).
[Crossref]

L. Lu, J. D. Joannopoulos, and M. Soljačić, “Topological photonics,” Nat. Photonics 8, 821 (2014).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

C. Shi, X. He, J. Peng, G. Xiao, F. Liu, F. Lin, and H. Zhang, “Tunable terahertz hybrid graphene-metal patterns metamaterials,” Opt. Laser Technol. 114, 28–34 (2019).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Phys. Chem. Chem. Phys. (1)

S. Xiao, T. Wang, Y. Liu, C. Xu, X. Han, and X. Yan, “Tunable light trapping and absorption enhancement with graphene ring arrays,” Phys. Chem. Chem. Phys. 18, 26661–26669 (2016).
[Crossref] [PubMed]

Phys. Rev. B (1)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alu, “Broadband absorbers and selective emitters based on plasmonic brewster metasurfaces,” Phys. Rev. B 87, 205112 (2013).
[Crossref]

Phys. Rev. E (1)

N. h. Liu, S. Y. Zhu, H. Chen, and X. Wu, “Superluminal pulse propagation through one-dimensional photonic crystals with a dispersive defect,” Phys. Rev. E 65, 046607 (2002).
[Crossref]

Phys. Rev. Lett. (3)

A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011).
[Crossref] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 036804 (2013).
[Crossref] [PubMed]

W. Gao, M. Lawrence, B. Yang, F. Liu, F. Fang, B. Béri, J. Li, and S. Zhang, “Topological photonic phase in chiral hyperbolic metamaterials,” Phys. Rev. Lett. 114, 037402 (2015).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

T. Pan, G. Xu, T. Zang, and L. Gao, “Goos–hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009).
[Crossref]

Science (5)

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[Crossref] [PubMed]

T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science 313, 1595 (2006).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).
[Crossref] [PubMed]

J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930 (2008).
[Crossref] [PubMed]

D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. G. De Abajo, V. Pruneri, and H. Altug, “Mid-infrared plasmonic biosensing with graphene,” Science 349, 165–168 (2015).
[Crossref] [PubMed]

Other (2)

X. Wu, “Angular optical transparency induced by photonic topological transition in hexagonal boron nitride,” https://doi.org/10.1007/s11468-018-0882-4 (2018).

D. P. Edward and I. Palik, “Handbook of optical constants of solids,” (Elsevier, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Theoretical illustration. (a) Schematic diagram of the hexagonal metallic nanowires array on a silicon substrate. The lattice size between two adjacent nanowires is a, the diameter and height of nanowires are d and h, respectively. (b) Calculated effective permittivity ε(εz) and ε⊥(εx and εy) for HMM with filling fraction f = 0.0243. The real (imaginary) part is shown by the solid (dashed) line. The point where the gray dotted lines intersects represents the wavelength position (1551 nm), where Re(ε) = 0. (c-d) Calculated EFS for (c) Re(kz/k0) and (d) Im(kz/k0) as a function of kx/k0 and ky/k0 at the excitation wavelength of 1551 nm. The inset in (d) shows a degenerate state existing around the origin.
Fig. 2
Fig. 2 Augular optical transparency in the proposed system. (a) Schematic diagram of the p-polarized light at wavelength λ0 is coming from the surrounding medium (air) onto the proposed HMM-based configuration at different incident angles (θ). (b) Transmission (T) in the metamaterial with f = 0.0243 (corresponding to d = 18 nm and a = 110 nm) and h = 18.6 μm. The curves (dots) are the theoretical (numerical) results achieved by the TMM (FDTD) methods, and the inset shows the results of incident angles |θ| < 5°. |E|-field strength on the HMM-air interface for excitation with λ0 = 1551 nm at incident angle (c) θ = 0° and (d) θ = 2°. The hexagonal metallicnanowires are indicated by white dashed lines.
Fig. 3
Fig. 3 Broad spectral effects in metamaterial. (a) The numerically simulated angular optical transmission (T) as a function of incident angle (θ) and excitation wavelengths (λ0). (b) Angular FWHM and peak transmittance of transparency window for the structure extracted from (a). Other geometric parameters are assumed as d = 18 nm, a = 110 nm and h = 18.6 μm.
Fig. 4
Fig. 4 Parameters discussion. The theoretically calculate angular optical transmission (T) with different (a) h (HMM thickness) and (b) f (filling ratio) at the excitation wavelength of 1551 nm. Angular optical transparency off (0.0263 and 0.0223) at the corresponding transition wavelength of PTT are showed in the inset of (b), respectively. The curves (dots) are the theoretical (numerical) results achieved by the TMM (FDTD) methods. And a (lattice size) is fixed to be 110 nm.
Fig. 5
Fig. 5 Imaging performance of a HMM slab. (a) A gold film with two S(600 nm) slits spaced D(400 nm) apart, irradiated with p-polarized at normal incidence through the silicon substrate, is imaged by an 18.6 μm thick HMM slab toward the HMM-air interface for excitation wavelength of 1551 nm. (b) Averaged cross-section of the two-slit object in (a), imaged with (black curve) and without (red curve) the HMM. The inset shows the XY plane of the structure, where the X-axis is parallel to the slit. (c) Ex-field strength of the object (I) on the HMM-air interface (II) with and (III) without HMM coating. (d) Same as (c), but optical imaging of object is expressed in phase information. Other geometric parameters are consistent with Fig. 2.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε = ε z = f ε A u + ( 1 f ) ε A l 2 O 3 ,
ε = ε x = ε y = ε A l 2 O 3 [ ( 1 + f ) ε A u + ( 1 f ) ε A l 2 O 3 ] / [ ( 1 f ) ε A u + ( 1 + f ) ε A l 2 O 3 ] .
k x 2 + k y 2 ε + k z 2 ε = ( ω c ) 2 .
d 2 H y d z 2 + ( ω 2 c 2 ε ( λ ) ε ( λ ) ε ( λ ) k x 2 ) H y = 0.
M k ( λ , d ) = [ cos  ( γ k d k ) j q k sin  ( γ k d k ) j q k sin  ( γ k d k ) cos  ( γ k d k ) ] ,
γ k = ( ω c ) { ε k ( λ ) ε k ( λ ) [ ε k ( λ ) sin 2 θ ] } 1 2 ,
q k = γ k c / ( ε k ( λ ) ω ) .
[ M 11 ( λ ) M 12 ( λ ) M 21 ( λ ) M 22 ( λ ) ] = k = 1 n M k ( λ , d ) .
t ( λ ) = 2 M 11 ( λ ) + M 22 ( λ ) + q 0 M 12 ( λ ) + ( 1 / q 0 ) M 21 ( λ ) .

Metrics