Abstract

In a multi optical probe confocal imaging system utilizing a microlens arrays as an objective lens, a high numerical aperture is required to improve resolving power. Glass microlens arrays are suitable for high-resolution imaging since they provide outstanding optical properties with a high refractive index. We demonstrated the rapid fabrication of microlens arrays on a high refractive index optical glass substrate via laser assisted thermal imprinting. The optical performance of the fabricated glass microlens arrays were evaluated and compared to that of a polymer microlens. In contrast to the polymer, the real image afforded by, and the calculated resolution of, the imprinted glass microlens arrays were significantly better, at about 0.73 µm compared to the polymer (∼1.56 µm). Our results reveal the considerable potential of direct thermal imprinting as a rapid, single-step, low cost fabrication method for replication of glass microlens array of high dimensional accuracy affording excellent optical performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

27 June 2019: A correction was made to the funding section.


OSA Recommended Articles
Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching

Siyu Tong, Hao Bian, Qing Yang, Feng Chen, Zefang Deng, Jinhai Si, and Xun Hou
Opt. Express 22(23) 29283-29291 (2014)

Replication of a glass microlens array using a vitreous carbon mold

Young Kyu Kim, Jong Hyun Ju, and Seok-Min Kim
Opt. Express 26(12) 14936-14944 (2018)

Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique

Miao He, Xiaocong Yuan, Jing Bu, and Wai Chye Cheong
Opt. Lett. 29(9) 1007-1009 (2004)

References

  • View by:
  • |
  • |
  • |

  1. R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
    [Crossref]
  2. W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6(1), 33278 (2016).
    [Crossref]
  3. Y. Lee, C. Yu, and J. Kim, “Polarizer-free liquid crystal display with double microlens array layers and polarization-controlling liquid crystal layer,” Opt. Express 23(21), 27627–27632 (2015).
    [Crossref]
  4. C. Liu and G. J. Su, “Enhanced light extraction from UV LEDs using spin-on glass microlenses,” J. Micromech. Microeng. 26(5), 055003 (2016).
    [Crossref]
  5. F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron. 14(1), 212–218 (2013).
    [Crossref]
  6. K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated Light Collimating System for Extended Optical-Path-Length Absorbance Detection in Microchip-Based Capillary Electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
    [Crossref]
  7. I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
    [Crossref]
  8. G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777–33791 (2015).
    [Crossref]
  9. J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
    [Crossref]
  10. K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
    [Crossref]
  11. M. Chakrabarti, C. Dam-Hansen, J. Stubager, T. F. Pedersen, and H. C. Pedersen, “Replication of optical microlens array using photoresist coated molds,” Opt. Express 24(9), 9528–9540 (2016).
    [Crossref]
  12. K. Kawahara, T Kikuchi, S. Natsui, and R. O. Suzuki, “Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold,” Microelectron. Eng. 185-186(5), 61–68 (2018).
    [Crossref]
  13. J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
    [Crossref]
  14. H. Xiong and Z. Wang, “Fabrication of Chalcogenide Microlens Array Using Hot Embossing Method,” in 2018 IEEE Sens. 1–3 (2018).
  15. J. Chen, C. Gu, H. Lin, and S. Chen, “Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces,” Opt. Express 23(16), 20977–20985 (2015).
    [Crossref]
  16. C. Chang and M. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 125014 (2015).
    [Crossref]
  17. C. Chang and J. Chu, “Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films,” Int. J. Adv. Des. Manuf. Technol. 89(5-8), 2411–2420 (2017).
    [Crossref]
  18. H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
    [Crossref]
  19. O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” International Society for Optics and Photonics In High-Power Diode Laser Technology and Applications VI (6876), 68760B International Society for Optics and Photonics (2008).
  20. K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).
  21. P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
    [Crossref]
  22. X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
    [Crossref]
  23. F. Chen, Z. Deng, Q. Yang, H. Bian, G. Du, J. Si, and X. Hou, “Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass,” Opt. Lett. 39(3), 606–609 (2014).
    [Crossref]
  24. Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
    [Crossref]
  25. S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
    [Crossref]
  26. D. Nieto, M. T. Flores-Arias, G. M. O’Connor, and C. Gomez-Reino, “Laser direct-write technique for fabricating microlens arrays on soda-lime glass with a Nd: YVO 4 laser,” Appl. Opt. 49(26), 4979–4983 (2010).
    [Crossref]
  27. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref]
  28. P. Li, J. Xie, J. Cheng, and Y. N. Jiang, “Study on weak-light photovoltaic characteristics of solar cell with a microgroove lens array on glass substrate,” Opt. Express 23(7), A192–A203 (2015).
    [Crossref]
  29. S. D. Zilio, G. D. Giustina, G. Brusatin, and M. Tormen, “Microlens arrays on large area UV transparent hybrid sol–gel materials for optical tools,” Microelectron. Eng. 87(5-8), 1143–1146 (2010).
    [Crossref]
  30. X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
    [Crossref]
  31. M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
    [Crossref]
  32. Y. K. Kim, J. H. Ju, and S. M. Kim, “Replication of a glass microlens array using a vitreous carbon mold,” Opt. Express 26(12), 14936–14944 (2018).
    [Crossref]
  33. C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
    [Crossref]
  34. Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
    [Crossref]
  35. G. C. Firestone and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays—an experimental study,” Appl. Opt. 44(29), 6115–6122 (2005).
    [Crossref]
  36. H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
    [Crossref]
  37. N. G. Sultanova, S. N. Kasarova, and I. D. Nikolov, “Characterization of optical properties of optical polymers,” Opt. Quantum Electron. 45(3), 221–232 (2013).
    [Crossref]

2019 (1)

I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
[Crossref]

2018 (3)

K. Kawahara, T Kikuchi, S. Natsui, and R. O. Suzuki, “Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold,” Microelectron. Eng. 185-186(5), 61–68 (2018).
[Crossref]

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

Y. K. Kim, J. H. Ju, and S. M. Kim, “Replication of a glass microlens array using a vitreous carbon mold,” Opt. Express 26(12), 14936–14944 (2018).
[Crossref]

2017 (2)

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

C. Chang and J. Chu, “Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films,” Int. J. Adv. Des. Manuf. Technol. 89(5-8), 2411–2420 (2017).
[Crossref]

2016 (6)

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6(1), 33278 (2016).
[Crossref]

K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
[Crossref]

C. Liu and G. J. Su, “Enhanced light extraction from UV LEDs using spin-on glass microlenses,” J. Micromech. Microeng. 26(5), 055003 (2016).
[Crossref]

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

M. Chakrabarti, C. Dam-Hansen, J. Stubager, T. F. Pedersen, and H. C. Pedersen, “Replication of optical microlens array using photoresist coated molds,” Opt. Express 24(9), 9528–9540 (2016).
[Crossref]

2015 (5)

2014 (3)

2013 (2)

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron. 14(1), 212–218 (2013).
[Crossref]

N. G. Sultanova, S. N. Kasarova, and I. D. Nikolov, “Characterization of optical properties of optical polymers,” Opt. Quantum Electron. 45(3), 221–232 (2013).
[Crossref]

2011 (1)

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

2010 (3)

2008 (2)

Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

2006 (2)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

2005 (3)

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated Light Collimating System for Extended Optical-Path-Length Absorbance Detection in Microchip-Based Capillary Electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref]

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

G. C. Firestone and A. Y. Yi, “Precision compression molding of glass microlenses and microlens arrays—an experimental study,” Appl. Opt. 44(29), 6115–6122 (2005).
[Crossref]

2003 (1)

Ahsan, M. S.

I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
[Crossref]

Allen, Y. Y.

Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Aschke, L.

O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” International Society for Optics and Photonics In High-Power Diode Laser Technology and Applications VI (6876), 68760B International Society for Optics and Photonics (2008).

Balasa, I.

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Bayer, A.

O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” International Society for Optics and Photonics In High-Power Diode Laser Technology and Applications VI (6876), 68760B International Society for Optics and Photonics (2008).

Bian, H.

Botta, C.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron. 14(1), 212–218 (2013).
[Crossref]

Brusatin, G.

S. D. Zilio, G. D. Giustina, G. Brusatin, and M. Tormen, “Microlens arrays on large area UV transparent hybrid sol–gel materials for optical tools,” Microelectron. Eng. 87(5-8), 1143–1146 (2010).
[Crossref]

Bu, J.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref]

Buczynski, R.

Buller, G. S.

Chakrabarti, M.

Chang, C.

C. Chang and J. Chu, “Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films,” Int. J. Adv. Des. Manuf. Technol. 89(5-8), 2411–2420 (2017).
[Crossref]

C. Chang and M. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 125014 (2015).
[Crossref]

Chang, K.

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Charbon, E.

Chen, F.

Chen, J.

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

J. Chen, C. Gu, H. Lin, and S. Chen, “Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces,” Opt. Express 23(16), 20977–20985 (2015).
[Crossref]

Chen, S.

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

J. Chen, C. Gu, H. Lin, and S. Chen, “Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces,” Opt. Express 23(16), 20977–20985 (2015).
[Crossref]

Chen, Y.

Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Cheng, J.

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

P. Li, J. Xie, J. Cheng, and Y. N. Jiang, “Study on weak-light photovoltaic characteristics of solar cell with a microgroove lens array on glass substrate,” Opt. Express 23(7), A192–A203 (2015).
[Crossref]

Cheong, W. C.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

Cho, H. J.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

Choi, H.

I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
[Crossref]

Choi, W.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6(1), 33278 (2016).
[Crossref]

Chou, C.

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Chou, H.

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Chu, J.

C. Chang and J. Chu, “Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films,” Int. J. Adv. Des. Manuf. Technol. 89(5-8), 2411–2420 (2017).
[Crossref]

Cox, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Dai, Y.

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

Dam-Hansen, C.

Deng, Z.

Du, G.

Fang, F.

K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
[Crossref]

Filipkowski, A.

Firestone, G. C.

Flores-Arias, M. T.

Galeotti, F.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron. 14(1), 212–218 (2013).
[Crossref]

Giustina, G. D.

S. D. Zilio, G. D. Giustina, G. Brusatin, and M. Tormen, “Microlens arrays on large area UV transparent hybrid sol–gel materials for optical tools,” Microelectron. Eng. 87(5-8), 1143–1146 (2010).
[Crossref]

Gomez-Reino, C.

Gu, C.

Hahn, J. H.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated Light Collimating System for Extended Optical-Path-Length Absorbance Detection in Microchip-Based Capillary Electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref]

He, M.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

M. He, X.-C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, “Simple reflow technique for fabrication of a microlens array in solgel glass,” Opt. Lett. 28(9), 731–733 (2003).
[Crossref]

Herzig, H. P.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Homburg, O.

O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” International Society for Optics and Photonics In High-Power Diode Laser Technology and Applications VI (6876), 68760B International Society for Optics and Photonics (2008).

Hou, C.

Hou, X.

Hou, Y.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Hsiao, W.

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Huang, C.

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Huang, K.

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Huang, X.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Intermite, G.

Jakobs, F.

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Jiang, Y. N.

Jiao, J.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Johnson, E.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

Ju, J. H.

Kang, S.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6(1), 33278 (2016).
[Crossref]

Kasarova, S. N.

N. G. Sultanova, S. N. Kasarova, and I. D. Nikolov, “Characterization of optical properties of optical polymers,” Opt. Quantum Electron. 45(3), 221–232 (2013).
[Crossref]

Kasztelanic, R.

Kawahara, K.

K. Kawahara, T Kikuchi, S. Natsui, and R. O. Suzuki, “Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold,” Microelectron. Eng. 185-186(5), 61–68 (2018).
[Crossref]

Kiedrowski, K.

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Kielhorn, J.

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Kikuchi, T

K. Kawahara, T Kikuchi, S. Natsui, and R. O. Suzuki, “Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold,” Microelectron. Eng. 185-186(5), 61–68 (2018).
[Crossref]

Kim, J.

I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
[Crossref]

Y. Lee, C. Yu, and J. Kim, “Polarizer-free liquid crystal display with double microlens array layers and polarization-controlling liquid crystal layer,” Opt. Express 23(21), 27627–27632 (2015).
[Crossref]

Kim, S. M.

Kim, Y. K.

Klocke, F.

Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Kracht, D.

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Kudryashov, V.

Lee, M.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

Lee, Y.

Li, M.

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

Li, P.

Li, Y.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Liang, W.

Lim, J.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6(1), 33278 (2016).
[Crossref]

Lim, K.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated Light Collimating System for Extended Optical-Path-Length Absorbance Detection in Microchip-Based Capillary Electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref]

Lin, E.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Lin, H.

Liu, C.

C. Liu and G. J. Su, “Enhanced light extraction from UV LEDs using spin-on glass microlenses,” J. Micromech. Microeng. 26(5), 055003 (2016).
[Crossref]

Liu, H.

Londe, G.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

Lussana, R.

McCarthy, A.

Meinschien, J.

O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” International Society for Optics and Photonics In High-Power Diode Laser Technology and Applications VI (6876), 68760B International Society for Optics and Photonics (2008).

Mekaru, H.

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

Mitra, T.

O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” International Society for Optics and Photonics In High-Power Diode Laser Technology and Applications VI (6876), 68760B International Society for Optics and Photonics (2008).

Miyashita, T.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Mróz, W.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron. 14(1), 212–218 (2013).
[Crossref]

Naessens, K.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Natsui, S.

K. Kawahara, T Kikuchi, S. Natsui, and R. O. Suzuki, “Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold,” Microelectron. Eng. 185-186(5), 61–68 (2018).
[Crossref]

Ngo, N. Q.

Nieto, D.

Nikolov, I. D.

N. G. Sultanova, S. N. Kasarova, and I. D. Nikolov, “Characterization of optical properties of optical polymers,” Opt. Quantum Electron. 45(3), 221–232 (2013).
[Crossref]

Niu, H. B.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

Noh, Y.

I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
[Crossref]

O’Connor, G. M.

Ottevaere, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Pang, K.

K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
[Crossref]

Pavia, J. M.

Pedersen, H. C.

Pedersen, T. F.

Peng, X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

Pongs, G.

Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Pysz, D.

Ren, X.

Ristau, D.

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Ro, K. W.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated Light Collimating System for Extended Optical-Path-Length Absorbance Detection in Microchip-Based Capillary Electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref]

Scavia, G.

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron. 14(1), 212–218 (2013).
[Crossref]

Shim, B. C.

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated Light Collimating System for Extended Optical-Path-Length Absorbance Detection in Microchip-Based Capillary Electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref]

Shin, R.

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6(1), 33278 (2016).
[Crossref]

Si, J.

Sohn, I.

I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
[Crossref]

Song, L.

K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
[Crossref]

Stepien, R.

Stubager, J.

Su, G. J.

C. Liu and G. J. Su, “Enhanced light extraction from UV LEDs using spin-on glass microlenses,” J. Micromech. Microeng. 26(5), 055003 (2016).
[Crossref]

Sultanova, N. G.

N. G. Sultanova, S. N. Kasarova, and I. D. Nikolov, “Characterization of optical properties of optical polymers,” Opt. Quantum Electron. 45(3), 221–232 (2013).
[Crossref]

Sung, J.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

Suzuki, R. O.

K. Kawahara, T Kikuchi, S. Natsui, and R. O. Suzuki, “Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold,” Microelectron. Eng. 185-186(5), 61–68 (2018).
[Crossref]

Taghizadeh, M.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Taghizadeh, M. R.

Takahashi, M.

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

Thiem, J.

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Thienpont, H.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Tong, S.

Tormen, M.

S. D. Zilio, G. D. Giustina, G. Brusatin, and M. Tormen, “Microlens arrays on large area UV transparent hybrid sol–gel materials for optical tools,” Microelectron. Eng. 87(5-8), 1143–1146 (2010).
[Crossref]

Tosi, A.

Tsai, M.

C. Chang and M. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 125014 (2015).
[Crossref]

Tsuchida, T.

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

Uegaki, J.

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

Villa, F.

Völkel, R.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Waddie, A. J.

Wang, P.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Wang, X.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref]

Wang, Z.

H. Xiong and Z. Wang, “Fabrication of Chalcogenide Microlens Array Using Hot Embossing Method,” in 2018 IEEE Sens. 1–3 (2018).

Warburton, R. E.

Wei, Y.

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

Wolf, M.

Woo, H. J.

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Xie, J.

Xiong, H.

H. Xiong and Z. Wang, “Fabrication of Chalcogenide Microlens Array Using Hot Embossing Method,” in 2018 IEEE Sens. 1–3 (2018).

Yamashita, M.

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

Yang, Q.

Yao, D.

Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

Yasui, M.

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

Yi, A. Y.

Yu, C.

Yu, W. X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

Yuan, X. C.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

Yuan, X.-C.

Zappa, F.

Zhang, D.

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Zhang, H.

K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
[Crossref]

Zhang, P.

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

Zhang, Y.

K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
[Crossref]

Zhao, Q.

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Zilio, S. D.

S. D. Zilio, G. D. Giustina, G. Brusatin, and M. Tormen, “Microlens arrays on large area UV transparent hybrid sol–gel materials for optical tools,” Microelectron. Eng. 87(5-8), 1143–1146 (2010).
[Crossref]

Anal. Chem. (1)

K. W. Ro, K. Lim, B. C. Shim, and J. H. Hahn, “Integrated Light Collimating System for Extended Optical-Path-Length Absorbance Detection in Microchip-Based Capillary Electrophoresis,” Anal. Chem. 77(16), 5160–5166 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. A: Mater. Sci. Process. (1)

X. Huang, P. Wang, E. Lin, J. Jiao, X. Wang, Y. Li, Y. Hou, and Q. Zhao, “Fabrication of the glass microlens arrays and the collimating property on nanolaser,” Appl. Phys. A: Mater. Sci. Process. 122(7), 649 (2016).
[Crossref]

Appl. Phys. Lett. (1)

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, “Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2–TiO2 sol-gel glass,” Appl. Phys. Lett. 86(11), 114102 (2005).
[Crossref]

Appl. Surf. Sci. (2)

Y. Wei, Q. Yang, H. Bian, F. Chen, M. Li, Y. Dai, and X. Hou, “Fabrication of high integrated microlens arrays on a glass substrate for 3D micro-optical systems,” Appl. Surf. Sci. 457, 1202–1207 (2018).
[Crossref]

I. Sohn, H. Choi, Y. Noh, J. Kim, and M. S. Ahsan, “Laser assisted fabrication of micro-lens array and characterization of their beam shaping property,” Appl. Surf. Sci. 479(15), 375–385 (2019).
[Crossref]

CIRP Ann. (1)

K. Pang, L. Song, F. Fang, Y. Zhang, and H. Zhang, “An imaging system with a large depth of field based on an overlapped micro-lens array,” CIRP Ann. 65(1), 471–474 (2016).
[Crossref]

Int. J. Adv. Des. Manuf. Technol. (1)

C. Chang and J. Chu, “Innovative design of reel-to-reel hot embossing system for production of plastic microlens array films,” Int. J. Adv. Des. Manuf. Technol. 89(5-8), 2411–2420 (2017).
[Crossref]

J. Micromech. Microeng. (4)

C. Liu and G. J. Su, “Enhanced light extraction from UV LEDs using spin-on glass microlenses,” J. Micromech. Microeng. 26(5), 055003 (2016).
[Crossref]

C. Chang and M. Tsai, “Development of a continuous roll-to-roll processing system for mass production of plastic optical film,” J. Micromech. Microeng. 25(12), 125014 (2015).
[Crossref]

C. Huang, W. Hsiao, K. Huang, K. Chang, H. Chou, and C. Chou, “Fabrication of a double-sided micro-lens array by a glass molding technique,” J. Micromech. Microeng. 21(8), 085020 (2011).
[Crossref]

Y. Chen, Y. Y. Allen, D. Yao, F. Klocke, and G. Pongs, “A reflow process for glass microlens array fabrication by use of precision compression molding,” J. Micromech. Microeng. 18(5), 055022 (2008).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

H. Ottevaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, R. Völkel, H. J. Woo, and H. Thienpont, “Comparing glass and plastic refractive microlenses fabricated with different technologies,” J. Opt. A: Pure Appl. Opt. 8(7), S407–S429 (2006).
[Crossref]

Microelectron. Eng. (3)

K. Kawahara, T Kikuchi, S. Natsui, and R. O. Suzuki, “Fabrication of ordered submicrometer-scale convex lens array via nanoimprint lithography using an anodized aluminum mold,” Microelectron. Eng. 185-186(5), 61–68 (2018).
[Crossref]

S. D. Zilio, G. D. Giustina, G. Brusatin, and M. Tormen, “Microlens arrays on large area UV transparent hybrid sol–gel materials for optical tools,” Microelectron. Eng. 87(5-8), 1143–1146 (2010).
[Crossref]

H. Mekaru, T. Tsuchida, J. Uegaki, M. Yasui, M. Yamashita, and M. Takahashi, “Micro lens imprinted on Pyrex glass by using amorphous Ni–P alloy mold,” Microelectron. Eng. 85(5-6), 873–876 (2008).
[Crossref]

Microsyst. Technol. (1)

P. Zhang, G. Londe, J. Sung, E. Johnson, M. Lee, and H. J. Cho, “Microlens fabrication using an etched glass master,” Microsyst. Technol. 13(3-4), 339–342 (2006).
[Crossref]

Opt. Express (10)

Y. Lee, C. Yu, and J. Kim, “Polarizer-free liquid crystal display with double microlens array layers and polarization-controlling liquid crystal layer,” Opt. Express 23(21), 27627–27632 (2015).
[Crossref]

J. Chen, C. Gu, H. Lin, and S. Chen, “Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces,” Opt. Express 23(16), 20977–20985 (2015).
[Crossref]

S. Tong, H. Bian, Q. Yang, F. Chen, Z. Deng, J. Si, and X. Hou, “Large-scale high quality glass microlens arrays fabricated by laser enhanced wet etching,” Opt. Express 22(23), 29283–29291 (2014).
[Crossref]

Y. K. Kim, J. H. Ju, and S. M. Kim, “Replication of a glass microlens array using a vitreous carbon mold,” Opt. Express 26(12), 14936–14944 (2018).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref]

P. Li, J. Xie, J. Cheng, and Y. N. Jiang, “Study on weak-light photovoltaic characteristics of solar cell with a microgroove lens array on glass substrate,” Opt. Express 23(7), A192–A203 (2015).
[Crossref]

M. Chakrabarti, C. Dam-Hansen, J. Stubager, T. F. Pedersen, and H. C. Pedersen, “Replication of optical microlens array using photoresist coated molds,” Opt. Express 24(9), 9528–9540 (2016).
[Crossref]

R. Kasztelanic, A. Filipkowski, D. Pysz, R. Stepien, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “High resolution Shack-Hartmann sensor based on array of nanostructured GRIN lenses,” Opt. Express 25(3), 1680–1691 (2017).
[Crossref]

G. Intermite, A. McCarthy, R. E. Warburton, X. Ren, F. Villa, R. Lussana, A. J. Waddie, M. R. Taghizadeh, A. Tosi, F. Zappa, and G. S. Buller, “Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays,” Opt. Express 23(26), 33777–33791 (2015).
[Crossref]

J. M. Pavia, M. Wolf, and E. Charbon, “Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery,” Opt. Express 22(4), 4202–4213 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

N. G. Sultanova, S. N. Kasarova, and I. D. Nikolov, “Characterization of optical properties of optical polymers,” Opt. Quantum Electron. 45(3), 221–232 (2013).
[Crossref]

Org. Electron. (1)

F. Galeotti, W. Mróz, G. Scavia, and C. Botta, “Microlens arrays for light extraction enhancement in organic light-emitting diodes: A facile approach,” Org. Electron. 14(1), 212–218 (2013).
[Crossref]

Precis. Eng. (1)

J. Chen, J. Cheng, D. Zhang, and S. Chen, “Precision UV imprinting system for parallel fabrication of large-area micro-lens arrays on non-planar surfaces,” Precis. Eng. 44, 70–74 (2016).
[Crossref]

Sci. Rep. (1)

W. Choi, R. Shin, J. Lim, and S. Kang, “Design methodology for a confocal imaging system using an objective microlens array with an increased working distance,” Sci. Rep. 6(1), 33278 (2016).
[Crossref]

Other (3)

H. Xiong and Z. Wang, “Fabrication of Chalcogenide Microlens Array Using Hot Embossing Method,” in 2018 IEEE Sens. 1–3 (2018).

O. Homburg, A. Bayer, T. Mitra, J. Meinschien, and L. Aschke, “Beam shaping of high power diode lasers benefits from asymmetrical refractive micro-lens arrays,” International Society for Optics and Photonics In High-Power Diode Laser Technology and Applications VI (6876), 68760B International Society for Optics and Photonics (2008).

K. Kiedrowski, J. Thiem, F. Jakobs, J. Kielhorn, I. Balasa, D. Kracht, and D. Ristau, “Determination of the laser-induced damage threshold of polymer optical fibers,” In Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, 10805, 108052C International Society for Optics and Photonics (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Schematic diagrams of the multi-optical probe confocal imaging system using the objective MLAs. (b) The pinhole effect in the multi-optical probe confocal imaging system. The aperture in objective-side telecentric relay lens, acting as a pinhole for the confocal imaging system, blocks optical information from out of the focal point. (c) Calculated resolution as a function of numerical aperture for glass and polymer objective MLAs. Within same geometry, glass objective MLAs can achieve higher resolution due to high refractive index compare to polymer MLAs.
Fig. 2.
Fig. 2. Schematic of (a) the laser-assisted glass imprinting process and (b) surface temperature of K-PSFn214 optical glass rise and the imprint pressure history; the temperature was measured by infrared pyrometer after CO2 laser irradiation at 30 W with irradiation time of 3 s. The imprint pressure was monitored using a load cell. The proposed imprinting process is as follows. Firstly, the glass substrate is preheated to a preheating temperature for 3 min. Then, CO2 laser is irradiated to the preheated glass for 3 s to raise the surface temperature of the glass to above Tg. Subsequently, the glass is immediately transferred to the imprinting system. After imprinting step for 3s, the cooling of the glass to the preheating temperature for 10 s is required. Finally, the glass is slowly cooled down to the room temperature for 3 min.
Fig. 3.
Fig. 3. (a) Temperature history profiles of the glass substrate and (b) sag height of the replicated microlens array (MLA) with respect to the laser irradiation time.
Fig. 4.
Fig. 4. K-PSFn214 glass imprinted using the proposed method. (a) SEM image of an imprinted glass MLAs and (b) magnified SEM image (c) comparison of surface profiles. The height of the concave MLAs in the metallic mold was 15.2 µm. The height of the replicated glass MLAs was 14.8 µm.
Fig. 5.
Fig. 5. Lateral resolution of MLAs fabricated from highly refractive index glass derived from the first-order derivative of the knife-edge measures, and the theoretical data derived by Gaussian fitting.
Fig. 6.
Fig. 6. A USAF-1951 Resolution Test Target image obtained by confocal microscopy of (a) the glass MLAs and (b) a polymer MLAs. (c) The intensity distribution along the dashed lines in the five-fold magnified inset images in (a) and (b). Unlike the glass MLAs, the polymer MLAs could not resolve the minimum linewidth of 1.55 µm (the third element of group 8).
Fig. 7.
Fig. 7. Image of OLEDs TFT glass obtained using the multi optical probe confocal setup with a highly refractive glass MLAs.

Tables (1)

Tables Icon

Table 1. Glass MLA sag heights across 5 mm diameter of imprinted area based on surface profiler measurements

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = D 2 + 4 h 2 8 h .
f = R ( n 1 ) .
N A M L A = D / 2 ( f + h ) 2 + ( D / 2 ) 2 .
r e s o l u t i o n M L A = 0.37 0.61 × W D M L A × sin 1 ( N A r e l a y , o b j ) .

Metrics