Abstract

We demonstrated a bi-directional, Er-doped dual comb fiber laser consisting of all-polarization-maintaining fiber devices. Polyimide films in which single-wall carbon nanotubes (SWNTs) were dispersed were used as the in-line saturable absorber. In order to avoid synchronization of the two combs and associated damage to the SWNT film, a two-branch configuration with two SWNT films was employed. Soliton pulses with almost the same optical spectra were generated stably in each direction, and dual comb beats were observed simply by overlapping the two outputs. The repetition frequency was 28 MHz, and the frequency difference was 105–140 Hz. Thanks to the small frequency difference, dual comb beats corresponding to the whole optical spectrum were observed without any overlapping. Fourier transform spectroscopy using the developed dual comb source was examined, and the characteristics of an optical filter were successfully obtained.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultralow-repetition-rate, high-energy, polarization-maintaining, Er-doped, ultrashort-pulse fiber laser using single-wall-carbon-nanotube saturable absorber

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh
Opt. Express 18(20) 20673-20680 (2010)

Polarization-maintaining, high-energy, wavelength-tunable, Er-doped ultrashort pulse fiber laser using carbon-nanotube polyimide film

Y. Senoo, N. Nishizawa, Y. Sakakibara, K. Sumimura, E. Itoga, H. Kataura, and K. Itoh
Opt. Express 17(22) 20233-20241 (2009)

All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh
Opt. Express 16(13) 9429-9435 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
    [Crossref]
  2. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  3. N. Picqué and T. W. Hansch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
    [Crossref]
  4. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  5. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3(4), 414–426 (2016).
    [Crossref]
  6. K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett. 33(1), 64–66 (2008).
    [Crossref] [PubMed]
  7. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  8. T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
    [Crossref]
  9. X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
    [Crossref] [PubMed]
  10. S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
    [Crossref]
  11. Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, “Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser,” Opt. Express 24(19), 21392–21398 (2016).
    [Crossref] [PubMed]
  12. X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
    [Crossref] [PubMed]
  13. A. E. Akosman and M. Y. Sander, “Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses,” Opt. Express 25(16), 18592–18602 (2017).
    [Crossref] [PubMed]
  14. G. Hu, Y. Pan, X. Zhao, S. Yin, M. Zhang, and Z. Zheng, “Asynchronous and synchronous dual-wavelength pulse generation in a passively mode-locked fiber laser with a mode-locker,” Opt. Lett. 42(23), 4942–4945 (2017).
    [Crossref] [PubMed]
  15. R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
    [Crossref] [PubMed]
  16. Y. Nakjima, Y. Hata, and K. Minoshima, “High-coherence ultra-broadband bidirectional dual-comb fiber laser,” Opt. Express 27(5), 5931–5944 (2019).
    [Crossref] [PubMed]
  17. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
    [Crossref] [PubMed]
  18. N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
    [Crossref] [PubMed]
  19. J. Sotor, J. Bogusławski, T. Martynkien, P. Mergo, A. Krajewska, A. Przewłoka, W. StrupiŃski, and G. SoboŃ, “All-polarization-maintaining, stretched-pulse Tm-doped fiber laser, mode-locked by a graphene saturable absorber,” Opt. Lett. 42(8), 1592–1595 (2017).
    [Crossref] [PubMed]
  20. Y. Nakajima, Y. Hata, and K. Minoshima, “All-polarization-maintaining, dual-wavelength, dual-comb fiber laser with nonlinear amplifying loop mirror,” in CLEO 2018, OSA Technical Digest (Optical Society of America, 2018), paper STu4K.4.
  21. R. Wang, Z. Zhao, W. Bai, J. Chen, Y. Pan, and Z. Zheng, “Polarization maintaining, dual-wavelength, dual-comb mode-locked fiber laser,” in CLEO 2018, OSA Technical Digest (Optical Society of America, 2018), paper JTh2A.139.
  22. R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
    [Crossref] [PubMed]
  23. S. Saito, L. Jin, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Bidirectional, Er-doped, dual-comb fiber laser with carbon nanotube polyimide film,” in CLEO 2018, OSA Technical Digest (Optical Society of America, 2018), paper JTh2A.121.
  24. A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
    [Crossref] [PubMed]

2019 (2)

2018 (2)

2017 (3)

2016 (7)

2015 (1)

2011 (2)

2010 (2)

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

2008 (2)

Akosman, A. E.

Asahara, A.

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Boguslawski, J.

Chai, L.

Coddington, I.

Diddams, S. A.

Fermann, M. E.

Goda, K.

Golling, M.

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hansch, T. W.

N. Picqué and T. W. Hansch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hata, Y.

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hu, G.

Hu, M.

Ideguchi, T.

Itoga, E.

Itoh, K.

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jiang, J.

Jiang, Y.

Kataura, H.

Keller, U.

Kieu, K.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

K. Kieu and M. Mansuripur, “All-fiber bidirectional passively mode-locked ring laser,” Opt. Lett. 33(1), 64–66 (2008).
[Crossref] [PubMed]

Klenner, A.

Kobayashi, Y.

T. Ideguchi, T. Nakamura, Y. Kobayashi, and K. Goda, “Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy,” Optica 3(7), 748–753 (2016).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Kondo, K. I.

Krajewska, A.

Kuse, N.

Lee, C.-C.

Li, C.

Li, R.

Li, Y.

Liao, R.

Link, S. M.

Liu, B.

Liu, L.

Liu, W.

Liu, Y.

Mangold, M.

Mansuripur, M.

Martynkien, T.

Mehravar, S.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Mergo, P.

Minoshima, K.

Nakajima, Y.

Nakamura, T.

Nakjima, Y.

Newbury, N.

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Nishiyama, A.

Nishizawa, N.

Norwood, R. A.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pan, Y.

Peyghambarian, N.

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

Picque, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Picqué, N.

N. Picqué and T. W. Hansch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

Przewloka, A.

Sakakibara, Y.

Sander, M. Y.

Schibli, T. R.

Seno, Y.

Shi, H.

SoboN, G.

Song, Y.

Sotor, J.

StrupiNski, W.

Sumimura, K.

Swann, W.

Tian, H.

Tilma, B. W.

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Yang, X.

Yasui, T.

Yin, S.

Yoshida, S.

Zaugg, C. A.

Zhang, M.

Zhao, B.

Zhao, X.

Zheng, Z.

Zhu, J.

Appl. Phys. Lett. (1)

S. Mehravar, R. A. Norwood, N. Peyghambarian, and K. Kieu, “Real-time dual-comb spectroscopy with a free-running bidirectionally mode-locked fiber laser,” Appl. Phys. Lett. 108(23), 231104 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (3)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

N. Picqué and T. W. Hansch, “Frequency comb spectroscopy,” Nat. Photonics 13(3), 146–157 (2019).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Opt. Express (10)

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

X. Zhao, Z. Zheng, L. Liu, Y. Liu, Y. Jiang, X. Yang, and J. Zhu, “Switchable, dual-wavelength passively mode-locked ultrafast fiber laser based on a single-wall carbon nanotube modelocker and intracavity loss tuning,” Opt. Express 19(2), 1168–1173 (2011).
[Crossref] [PubMed]

Y. Liu, X. Zhao, G. Hu, C. Li, B. Zhao, and Z. Zheng, “Unidirectional, dual-comb lasing under multiple pulse formation mechanisms in a passively mode-locked fiber ring laser,” Opt. Express 24(19), 21392–21398 (2016).
[Crossref] [PubMed]

X. Zhao, G. Hu, B. Zhao, C. Li, Y. Pan, Y. Liu, T. Yasui, and Z. Zheng, “Picometer-resolution dual-comb spectroscopy with a free-running fiber laser,” Opt. Express 24(19), 21833–21845 (2016).
[Crossref] [PubMed]

A. E. Akosman and M. Y. Sander, “Dual comb generation from a mode-locked fiber laser with orthogonally polarized interlaced pulses,” Opt. Express 25(16), 18592–18602 (2017).
[Crossref] [PubMed]

R. Liao, Y. Song, W. Liu, H. Shi, L. Chai, and M. Hu, “Dual-comb spectroscopy with a single free-running thulium-doped fiber laser,” Opt. Express 26(8), 11046–11054 (2018).
[Crossref] [PubMed]

Y. Nakjima, Y. Hata, and K. Minoshima, “High-coherence ultra-broadband bidirectional dual-comb fiber laser,” Opt. Express 27(5), 5931–5944 (2019).
[Crossref] [PubMed]

N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
[Crossref] [PubMed]

N. Kuse, J. Jiang, C.-C. Lee, T. R. Schibli, and M. E. Fermann, “All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror,” Opt. Express 24(3), 3095–3102 (2016).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Opt. Lett. (4)

Optica (2)

Other (3)

Y. Nakajima, Y. Hata, and K. Minoshima, “All-polarization-maintaining, dual-wavelength, dual-comb fiber laser with nonlinear amplifying loop mirror,” in CLEO 2018, OSA Technical Digest (Optical Society of America, 2018), paper STu4K.4.

R. Wang, Z. Zhao, W. Bai, J. Chen, Y. Pan, and Z. Zheng, “Polarization maintaining, dual-wavelength, dual-comb mode-locked fiber laser,” in CLEO 2018, OSA Technical Digest (Optical Society of America, 2018), paper JTh2A.139.

S. Saito, L. Jin, Y. Sakakibara, E. Omoda, H. Kataura, and N. Nishizawa, “Bidirectional, Er-doped, dual-comb fiber laser with carbon nanotube polyimide film,” in CLEO 2018, OSA Technical Digest (Optical Society of America, 2018), paper JTh2A.121.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Configuration of all-PM type, Er-doped dual-comb fiber laser with SWNT film.
Fig. 2
Fig. 2 Output characteristics of all-PM dual-comb fiber laser: (a) optical spectra, (b-d) RF spectra of (b) fundamental frequencies, (c) from DC to 1 GHz, (d) enlarged fundamental frequency of cw pulse, (e) autocorrelation trace of cw pulse, and (f) pulse trains.
Fig. 3
Fig. 3 Variations of frep and Δf as functions of (a) time and (b) pump LD current.
Fig. 4
Fig. 4 Interference signal of dual-comb beats for (a) wide range, and (b) single interference signal.
Fig. 5
Fig. 5 RF signals of dual-comb beats in linear scale (a) for 0-30 MHz range, and (b) at 7.5 MHz with 2 kHz span.
Fig. 6
Fig. 6 (a, b) Temporal interference signals (a) without and (b) with wavelength filter, (c) obtained optical spectra, where broken line shows the spectrum of the optical pulse, and solid lines show the transmitted spectra of the tunable filter.

Metrics