Abstract

A precise measurement for the aerosol particle size distribution and fog droplet size distribution simultaneously in the open atmosphere is proposed. The extinction coefficient and small-angle forward scattering measurement are integrated into the detection for particle size distribution in the open atmosphere, and can achieve the fine detection of the particles in the atmosphere with radius between 0.1 to 30 μm. The key technology including optimal scattering angle in small-angle forward scattering measurement and optimal wavelengths selection are discussed and solved in detail. The fourteen different particle size distributions including aerosol size distributions and fog droplet size distributions are used for the determination of optimal forward scattering angle and wavelengths. The optimal forward scattering angle is calculated to be 1.1°. Seven wavelengths for extinction coefficients and five wavelengths for forward scattering coefficients are chosen for the retrieval of particle size distribution in the measurement. The regularization inversion of optical parameters for the retrieval of particle size distribution is described. The aerosol particle size distributions measured by particle spectrometer and actual fog particle size distributions are used for the method test and the reconstructions of particle size distributions. The inversion results show that the method can achieve the precise measurements of aerosol particle size distribution and fog droplet size distribution. The error influence on the inversion results of distributions is discussed. Based on the sensitivity analysis of inversion results, the feasibility of measurement in the real atmosphere is analyzed and discussed, and the scheme of detection system is provided.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol

Anna K. Jagodnicka, Tadeusz Stacewicz, Grzegorz Karasiński, Michał Posyniak, and Szymon P. Malinowski
Appl. Opt. 48(4) B8-B16 (2009)

Evolution of the Fog Droplet Size Distribution Observed by Laser Scattering

R. Ferrara, G. Fiocco, and G. Tonna
Appl. Opt. 9(11) 2517-2521 (1970)

Information content of multispectral lidar measurements with respect to the aerosol size distribution

Heinz Müller and Heinrich Quenzel
Appl. Opt. 24(5) 648-654 (1985)

References

  • View by:
  • |
  • |
  • |

  1. D. Wu, “A discussion on difference between haze and fog and warning of Ash Haze Weather,” Meteorol. Monogr. 31(4), 3–7 (2005).
  2. R. N. Mahalati and J. M. Kahn, “Effect of fog on free-space optical links employing imaging receivers,” Opt. Express 20(2), 1649–1661 (2012).
    [PubMed]
  3. D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).
  4. Z. Li and Z. Peng, “Physical and chemical characteristics of the Chongqing winter fog,” Acta Meteorol. Sin. 52(4), 477–483 (1994).
  5. B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
    [Crossref]
  6. X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).
  7. X. Li, Y. Gao, Y. Ji, and H. Hu, “Development optical particle counter of LED lamp-house,” J. Opt. Precision Eng. 14(5), 802–806 (2006).
  8. C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
    [Crossref]
  9. M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering,” J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019).
    [Crossref]
  10. B. Veihelmann, M. Konert, and W. J. van der Zande, “Size distribution of mineral aerosol: using light-scattering models in laser particle sizing,” Appl. Opt. 45(23), 6022–6029 (2006).
    [Crossref] [PubMed]
  11. D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
    [Crossref]
  12. K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
    [Crossref]
  13. D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
    [Crossref]
  14. H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
    [Crossref]
  15. Y. Ma, W. Gong, L. Wang, M. Zhang, Z. Chen, J. Li, and J. Yang, “Inversion of the haze aerosol sky columnar AVSD in central China by combining multiple ground observation equipment,” Opt. Express 24(8), 8170–8185 (2016).
    [Crossref] [PubMed]
  16. I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43(5), 1180–1195 (2004).
    [Crossref] [PubMed]
  17. D. R. Lv, X. J. Zhou, and J. H. Qiu, “Principle and numerical experiment of integrated remote sensing for aerosol size distribution using extinction and small- angle scattering coefficients,” Sci. China 12, 1516–1523 (1981).
  18. H. M. Wei, W. Zhao, and X. C. Dai, “Influence of fog and aerosol particles forward-scattering on light extinction,” Opt. Precis. Eng. 26(6), 1354–1361 (2018).
    [Crossref]
  19. A. K. Jagodnicka, T. Stacewicz, G. Karasiński, M. Posyniak, and S. P. Malinowski, “Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol,” Appl. Opt. 48(4), B8–B16 (2009).
    [Crossref] [PubMed]
  20. H. Horvath, R. L. Gunter, and S. W. Wilkison, “Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe,” Aerosol Sci. Technol. 12(4), 964–980 (1990).
    [Crossref]
  21. D. Deirmendjian, “Scattering and polarization properties of water clouds and hazes in the invisible and near infrared,” Appl. Opt. 3(2), 187–196 (1964).
    [Crossref]
  22. H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
    [Crossref]
  23. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38(12), 2346–2357 (1999).
    [Crossref] [PubMed]
  24. H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
    [Crossref]
  25. D. N. Whiteman, “Examination of the traditional raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42(15), 2593–2608 (2003).
    [Crossref] [PubMed]
  26. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105(D16), 20673–20696 (2000).
    [Crossref]
  27. D. P. Donovan and A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36(36), 9406–9424 (1997).
    [Crossref] [PubMed]
  28. I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
    [Crossref]
  29. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  30. X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).
  31. J. Yang, “Z. LiandS. Huang, “Influence of Relative Humidity on Shortwave Radiative Properties of Atmospheric Aerosol Particles,” Chin. J. Atmos. Sci. 23(02), 239–247 (1999).
  32. H. Wei, L. Shao, and T. Li, “Fog Field Scattering Analysis with Drop Size Distribution,” Las. Optoelect. Prog. 51(12), 93–99 (2014).
  33. D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38(12), 2358–2368 (1999).
    [Crossref] [PubMed]
  34. D. Segelstein, The Complex Refractive Index of Water, (University of Missouri, Kansas City, 1981).

2019 (1)

M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering,” J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019).
[Crossref]

2018 (4)

H. M. Wei, W. Zhao, and X. C. Dai, “Influence of fog and aerosol particles forward-scattering on light extinction,” Opt. Precis. Eng. 26(6), 1354–1361 (2018).
[Crossref]

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

2017 (1)

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

2016 (2)

Y. Ma, W. Gong, L. Wang, M. Zhang, Z. Chen, J. Li, and J. Yang, “Inversion of the haze aerosol sky columnar AVSD in central China by combining multiple ground observation equipment,” Opt. Express 24(8), 8170–8185 (2016).
[Crossref] [PubMed]

C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
[Crossref]

2014 (1)

H. Wei, L. Shao, and T. Li, “Fog Field Scattering Analysis with Drop Size Distribution,” Las. Optoelect. Prog. 51(12), 93–99 (2014).

2012 (2)

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

R. N. Mahalati and J. M. Kahn, “Effect of fog on free-space optical links employing imaging receivers,” Opt. Express 20(2), 1649–1661 (2012).
[PubMed]

2011 (1)

X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).

2010 (1)

B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
[Crossref]

2009 (3)

X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

A. K. Jagodnicka, T. Stacewicz, G. Karasiński, M. Posyniak, and S. P. Malinowski, “Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol,” Appl. Opt. 48(4), B8–B16 (2009).
[Crossref] [PubMed]

2007 (1)

D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
[Crossref]

2006 (2)

X. Li, Y. Gao, Y. Ji, and H. Hu, “Development optical particle counter of LED lamp-house,” J. Opt. Precision Eng. 14(5), 802–806 (2006).

B. Veihelmann, M. Konert, and W. J. van der Zande, “Size distribution of mineral aerosol: using light-scattering models in laser particle sizing,” Appl. Opt. 45(23), 6022–6029 (2006).
[Crossref] [PubMed]

2005 (1)

D. Wu, “A discussion on difference between haze and fog and warning of Ash Haze Weather,” Meteorol. Monogr. 31(4), 3–7 (2005).

2004 (1)

2003 (1)

2001 (1)

D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
[Crossref]

2000 (1)

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105(D16), 20673–20696 (2000).
[Crossref]

1999 (3)

1997 (1)

1994 (1)

Z. Li and Z. Peng, “Physical and chemical characteristics of the Chongqing winter fog,” Acta Meteorol. Sin. 52(4), 477–483 (1994).

1990 (1)

H. Horvath, R. L. Gunter, and S. W. Wilkison, “Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe,” Aerosol Sci. Technol. 12(4), 964–980 (1990).
[Crossref]

1981 (1)

D. R. Lv, X. J. Zhou, and J. H. Qiu, “Principle and numerical experiment of integrated remote sensing for aerosol size distribution using extinction and small- angle scattering coefficients,” Sci. China 12, 1516–1523 (1981).

1964 (1)

Adler, G.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Allakhverdiev, K.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

Ansmann, A.

Aycibin, M.

D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
[Crossref]

Baumgardner, D.

D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
[Crossref]

Birky, B.

C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
[Crossref]

Bouvier, M.

M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering,” J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019).
[Crossref]

Carswell, A. I.

Chen, Z.

Chien, C.

C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
[Crossref]

Chiruta, M.

B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
[Crossref]

Cui, Y.

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

Curtis, D. B.

D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
[Crossref]

Dai, X. C.

H. M. Wei, W. Zhao, and X. C. Dai, “Influence of fog and aerosol particles forward-scattering on light extinction,” Opt. Precis. Eng. 26(6), 1354–1361 (2018).
[Crossref]

Dawson, W.

D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
[Crossref]

Deirmendjian, D.

Di, H.

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

Dick, W. D.

B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
[Crossref]

Donovan, D. P.

Dubovik, O.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105(D16), 20673–20696 (2000).
[Crossref]

Erdesz, F.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Franchin, A.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Franke, K.

Gao, Y.

X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).

X. Li, Y. Gao, Y. Ji, and H. Hu, “Development optical particle counter of LED lamp-house,” J. Opt. Precision Eng. 14(5), 802–806 (2006).

Gong, W.

Grassian, V. H.

D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
[Crossref]

Griaznov, V.

Grisch, F.

M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering,” J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019).
[Crossref]

Gunter, R. L.

H. Horvath, R. L. Gunter, and S. W. Wilkison, “Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe,” Aerosol Sci. Technol. 12(4), 964–980 (1990).
[Crossref]

He, T.

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

Horvath, H.

H. Horvath, R. L. Gunter, and S. W. Wilkison, “Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe,” Aerosol Sci. Technol. 12(4), 964–980 (1990).
[Crossref]

Hsu, Y.

C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
[Crossref]

Hu, H.

X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).

X. Li, Y. Gao, Y. Ji, and H. Hu, “Development optical particle counter of LED lamp-house,” J. Opt. Precision Eng. 14(5), 802–806 (2006).

Hua, D.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

Hua, H.

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

Huseyinoglu, F.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

Jagodnicka, A. K.

Ji, Y.

X. Li, Y. Gao, Y. Ji, and H. Hu, “Development optical particle counter of LED lamp-house,” J. Opt. Precision Eng. 14(5), 802–806 (2006).

Jiand, Y.

X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).

Jonsson, H.

D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
[Crossref]

Kahn, J. M.

Karasinski, G.

King, M. D.

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105(D16), 20673–20696 (2000).
[Crossref]

Kleiber, P. D.

D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
[Crossref]

Kolgotin, A.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43(5), 1180–1195 (2004).
[Crossref] [PubMed]

Konert, M.

Korenskiy, M.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

Lamb, K. D.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Lefevre, G.

M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering,” J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019).
[Crossref]

Li, J.

Y. Ma, W. Gong, L. Wang, M. Zhang, Z. Chen, J. Li, and J. Yang, “Inversion of the haze aerosol sky columnar AVSD in central China by combining multiple ground observation equipment,” Opt. Express 24(8), 8170–8185 (2016).
[Crossref] [PubMed]

X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).

Li, S.

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

Li, T.

H. Wei, L. Shao, and T. Li, “Fog Field Scattering Analysis with Drop Size Distribution,” Las. Optoelect. Prog. 51(12), 93–99 (2014).

Li, X.

X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).

X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).

X. Li, Y. Gao, Y. Ji, and H. Hu, “Development optical particle counter of LED lamp-house,” J. Opt. Precision Eng. 14(5), 802–806 (2006).

Li, Z.

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

Z. Li and Z. Peng, “Physical and chemical characteristics of the Chongqing winter fog,” Acta Meteorol. Sin. 52(4), 477–483 (1994).

Liu, B. Y. H.

B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
[Crossref]

Liu, D.

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

Liu, J.

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

Lv, D. R.

D. R. Lv, X. J. Zhou, and J. H. Qiu, “Principle and numerical experiment of integrated remote sensing for aerosol size distribution using extinction and small- angle scattering coefficients,” Sci. China 12, 1516–1523 (1981).

Ma, Y.

Mahalati, R. N.

Malinowski, S. P.

Manfred, K. M.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Müller, D.

Murphy, D. M.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Newton, R.

D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
[Crossref]

O’ Connor, D.

D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
[Crossref]

Peng, Z.

Z. Li and Z. Peng, “Physical and chemical characteristics of the Chongqing winter fog,” Acta Meteorol. Sin. 52(4), 477–483 (1994).

Posyniak, M.

Pu, M.

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

Qie, L.

X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).

Qiu, J. H.

D. R. Lv, X. J. Zhou, and J. H. Qiu, “Principle and numerical experiment of integrated remote sensing for aerosol size distribution using extinction and small- angle scattering coefficients,” Sci. China 12, 1516–1523 (1981).

Romay, F. J.

B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
[Crossref]

Schwarz, J. P.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Selimovic, V.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Shao, L.

H. Wei, L. Shao, and T. Li, “Fog Field Scattering Analysis with Drop Size Distribution,” Las. Optoelect. Prog. 51(12), 93–99 (2014).

Song, Y.

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

Stacewicz, T.

Theodore, A.

C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
[Crossref]

van der Zande, W. J.

Veihelmann, B.

Veselovskii, I.

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43(5), 1180–1195 (2004).
[Crossref] [PubMed]

Wagner, N. L.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Wandinger, U.

Wang, L.

Wang, Q.

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

Wang, X.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

Wang, Y.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

Wang, Z.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

Washenfelder, R. A.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Wei, H.

H. Wei, L. Shao, and T. Li, “Fog Field Scattering Analysis with Drop Size Distribution,” Las. Optoelect. Prog. 51(12), 93–99 (2014).

X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).

Wei, H. M.

H. M. Wei, W. Zhao, and X. C. Dai, “Influence of fog and aerosol particles forward-scattering on light extinction,” Opt. Precis. Eng. 26(6), 1354–1361 (2018).
[Crossref]

Whiteman, D. N.

Wilkison, S. W.

H. Horvath, R. L. Gunter, and S. W. Wilkison, “Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe,” Aerosol Sci. Technol. 12(4), 964–980 (1990).
[Crossref]

Womack, C. C.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Woo, K.-S.

B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
[Crossref]

Wu, C.

C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
[Crossref]

Wu, D.

D. Wu, “A discussion on difference between haze and fog and warning of Ash Haze Weather,” Meteorol. Monogr. 31(4), 3–7 (2005).

Xu, Q.

X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).

Yan, Q.

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

Yan, W.

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

Yang, J.

Y. Ma, W. Gong, L. Wang, M. Zhang, Z. Chen, J. Li, and J. Yang, “Inversion of the haze aerosol sky columnar AVSD in central China by combining multiple ground observation equipment,” Opt. Express 24(8), 8170–8185 (2016).
[Crossref] [PubMed]

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

J. Yang, “Z. LiandS. Huang, “Influence of Relative Humidity on Shortwave Radiative Properties of Atmospheric Aerosol Particles,” Chin. J. Atmos. Sci. 23(02), 239–247 (1999).

Yokelson, R. J.

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Yon, J.

M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering,” J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019).
[Crossref]

Young, M. A.

D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
[Crossref]

Zhang, G.

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

Zhang, M.

Zhang, Y.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

Zhao, H.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

Zhao, J.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

Zhao, W.

H. M. Wei, W. Zhao, and X. C. Dai, “Influence of fog and aerosol particles forward-scattering on light extinction,” Opt. Precis. Eng. 26(6), 1354–1361 (2018).
[Crossref]

Zhao, X.

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

Zhou, K.

X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).

Zhou, X. J.

D. R. Lv, X. J. Zhou, and J. H. Qiu, “Principle and numerical experiment of integrated remote sensing for aerosol size distribution using extinction and small- angle scattering coefficients,” Sci. China 12, 1516–1523 (1981).

Acta Meteorol. Sin. (2)

D. Liu, M. Pu, J. Yang, G. Zhang, W. Yan, and Z. Li, “Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006,” Acta Meteorol. Sin. 67(1), 147–157 (2009).

Z. Li and Z. Peng, “Physical and chemical characteristics of the Chongqing winter fog,” Acta Meteorol. Sin. 52(4), 477–483 (1994).

Aerosol Air Qual. Res. (1)

B. Y. H. Liu, F. J. Romay, W. D. Dick, K.-S. Woo, and M. Chiruta, “A wide-range particle spectrometer for aerosol measurement from 0.010 µm to 10 µm,” Aerosol Air Qual. Res. 10(2), 125–139 (2010).
[Crossref]

Aerosol Sci. Technol. (1)

H. Horvath, R. L. Gunter, and S. W. Wilkison, “Determination of the coarse mode of the atmospheric aerosol using data from a forward-scattering spectrometer probe,” Aerosol Sci. Technol. 12(4), 964–980 (1990).
[Crossref]

Appl. Opt. (8)

D. Deirmendjian, “Scattering and polarization properties of water clouds and hazes in the invisible and near infrared,” Appl. Opt. 3(2), 187–196 (1964).
[Crossref]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory,” Appl. Opt. 38(12), 2346–2357 (1999).
[Crossref] [PubMed]

D. N. Whiteman, “Examination of the traditional raman lidar technique. II. Evaluating the ratios for water vapor and aerosols,” Appl. Opt. 42(15), 2593–2608 (2003).
[Crossref] [PubMed]

D. P. Donovan and A. I. Carswell, “Principal component analysis applied to multiwavelength lidar aerosol backscatter and extinction measurements,” Appl. Opt. 36(36), 9406–9424 (1997).
[Crossref] [PubMed]

A. K. Jagodnicka, T. Stacewicz, G. Karasiński, M. Posyniak, and S. P. Malinowski, “Particle size distribution retrieval from multiwavelength lidar signals for droplet aerosol,” Appl. Opt. 48(4), B8–B16 (2009).
[Crossref] [PubMed]

D. Müller, U. Wandinger, and A. Ansmann, “Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: simulation,” Appl. Opt. 38(12), 2358–2368 (1999).
[Crossref] [PubMed]

B. Veihelmann, M. Konert, and W. J. van der Zande, “Size distribution of mineral aerosol: using light-scattering models in laser particle sizing,” Appl. Opt. 45(23), 6022–6029 (2006).
[Crossref] [PubMed]

I. Veselovskii, A. Kolgotin, V. Griaznov, D. Müller, K. Franke, and D. N. Whiteman, “Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution,” Appl. Opt. 43(5), 1180–1195 (2004).
[Crossref] [PubMed]

Atmos. Chem. Phys. (1)

K. M. Manfred, R. A. Washenfelder, N. L. Wagner, G. Adler, F. Erdesz, C. C. Womack, K. D. Lamb, J. P. Schwarz, A. Franchin, V. Selimovic, R. J. Yokelson, and D. M. Murphy, “Investigating biomass burning aerosol morphology using a laser imaging nephelometer,” Atmos. Chem. Phys. 18(3), 1879–1894 (2018).
[Crossref]

Atmos. Environ. (1)

D. B. Curtis, M. Aycibin, M. A. Young, V. H. Grassian, and P. D. Kleiber, “Simultaneous measurement of light-scattering properties and particle size distribution for aerosols: Application to ammonium sulfate and quartz aerosol particles,” Atmos. Environ. 41(22), 4748–4758 (2007).
[Crossref]

Atmos. Meas. Tech. (1)

I. Veselovskii, O. Dubovik, A. Kolgotin, M. Korenskiy, D. N. Whiteman, K. Allakhverdiev, and F. Huseyinoglu, “Linear estimation of particle bulk parameters from multi-wavelength lidar measurements,” Atmos. Meas. Tech. 5(5), 1135–1145 (2012).
[Crossref]

Atmos. Res. (1)

D. Baumgardner, H. Jonsson, W. Dawson, D. O’ Connor, and R. Newton, “The cloud, aerosol and precipitation spectrometer: a new instrument for cloud investigations,” Atmos. Res. 59–60, 251–264 (2001).
[Crossref]

Chin. J. Atmos. Sci. (1)

J. Yang, “Z. LiandS. Huang, “Influence of Relative Humidity on Shortwave Radiative Properties of Atmospheric Aerosol Particles,” Chin. J. Atmos. Sci. 23(02), 239–247 (1999).

Daqi Yu Huanjing Guangxue Xuebao (1)

X. Li, L. Qie, J. Li, K. Zhou, and Q. Xu, “Characteristics of Size Distribution of Haze Particles,” Daqi Yu Huanjing Guangxue Xuebao 6(04), 274–279 (2011).

J. Aerosol Sci. (1)

C. Chien, A. Theodore, C. Wu, Y. Hsu, and B. Birky, “Upon correlating diameters measured by optical particle counters and aerodynamic particle sizers,” J. Aerosol Sci. 101, 77–85 (2016).
[Crossref]

J. Geophys. Res. (1)

O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105(D16), 20673–20696 (2000).
[Crossref]

J. Opt. Precision Eng. (1)

X. Li, Y. Gao, Y. Ji, and H. Hu, “Development optical particle counter of LED lamp-house,” J. Opt. Precision Eng. 14(5), 802–806 (2006).

J. Quant. Spectrosc. Radiat. (1)

H. Di, H. Hua, Y. Cui, D. Hua, T. He, Y. Wang, and Q. Yan, “Vertical distribution of optical and microphysical properties of smog aerosols measured by multi-wavelength polarization lidar in Xi’an, China,” J. Quant. Spectrosc. Radiat. 188, 28–38 (2017).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (2)

M. Bouvier, J. Yon, G. Lefevre, and F. Grisch, “A novel approach for in-situ soot size distribution measurement based on spectrally resolved light scattering,” J. Quant. Spectrosc. Radiat. Transf. 225, 58–68 (2019).
[Crossref]

H. Di, J. Zhao, X. Zhao, Y. Zhang, Z. Wang, X. Wang, Y. Wang, H. Zhao, and D. Hua, “Parameterization of aerosol number concentration distributions from aircraft measurements in the lower troposphere over Northern China,” J. Quant. Spectrosc. Radiat. Transf. 218, 46–53 (2018).
[Crossref]

Las. Optoelect. Prog. (1)

H. Wei, L. Shao, and T. Li, “Fog Field Scattering Analysis with Drop Size Distribution,” Las. Optoelect. Prog. 51(12), 93–99 (2014).

Meteorol. Monogr. (1)

D. Wu, “A discussion on difference between haze and fog and warning of Ash Haze Weather,” Meteorol. Monogr. 31(4), 3–7 (2005).

Opt. Express (2)

Opt. Precis. Eng. (2)

X. Li, Y. Gao, H. Wei, Y. Jiand, and H. Hu, “Development of optical particle counter with double scattering angles,” Opt. Precis. Eng. 17(7), 1528–1534 (2009).

H. M. Wei, W. Zhao, and X. C. Dai, “Influence of fog and aerosol particles forward-scattering on light extinction,” Opt. Precis. Eng. 26(6), 1354–1361 (2018).
[Crossref]

Remote Sens. (1)

H. Di, Q. Wang, H. Hua, S. Li, Q. Yan, J. Liu, Y. Song, and D. Hua, “Aerosol microphysical particle parameter inversion and error analysis based on remote sensing data,” Remote Sens. 10(11), 1753 (2018).
[Crossref]

Sci. China (1)

D. R. Lv, X. J. Zhou, and J. H. Qiu, “Principle and numerical experiment of integrated remote sensing for aerosol size distribution using extinction and small- angle scattering coefficients,” Sci. China 12, 1516–1523 (1981).

Other (2)

D. Segelstein, The Complex Refractive Index of Water, (University of Missouri, Kansas City, 1981).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 The schematic diagram of PSD measurement.
Fig. 2
Fig. 2 Extinction efficiencies (a) and the kernels (b) at the wavelengths of 0.2 μm, 1.06 μm and 3 μm.
Fig. 3
Fig. 3 Phase function (a) and scattering kernel function (b) at the wavelength of 0.3 μm, 0.55 μm and 1.06 μm and at the angle of 2°.
Figure 4
Figure 4 The APSDs and FDSDs for the simulation, (a) APSDs with low relative humidity, (b) APSDs with high relative humidity, and (c) FDSDs
Fig. 5
Fig. 5 The scattering phase functions of 14 PSDs at the angle from 0° to 180°.
Fig. 6
Fig. 6 The standard deviation coefficient CV with respect to the scattering angle of θ.
Fig. 7
Fig. 7 The overlapping area of scattering phase function P(r, θ, m, λn) and PSDs v(r)
Fig. 8
Fig. 8 The overlapping areas between the scattering phase functions and the PSDs at different scattering angles (0.1°-1.1°).
Fig. 9
Fig. 9 The extinction coefficients of 14 different PSDs at the wavelengths of 0.2 to 3 μm. (a) aerosol particles, and (b) fog droplets
Fig. 10
Fig. 10 The forward scattering coefficients of 14 PSDs at the wavelengths of 0.2 to 3 μm. (a) aerosol particles, and (b) fog droplets
Fig. 11
Fig. 11 The extinction and forward scattering kernel functions at the selected wavelengths.
Fig. 12
Fig. 12 The retrieval of four APSDs and their error distributions. (a) typical urban APSD1, (b) typical urban APSD2, (c) measured APSD1, (d) measured APSD2
Fig. 13
Fig. 13 The retrieval of two FDSDs and their error distributions. (a) typical FDSD1, (b) typical FDSD2
Fig. 14
Fig. 14 A series of PSDs and their retrievals before and during a haze process. (a) Measured APSDs, (b) Retrieved APSDs
Fig. 15
Fig. 15 Percentage deviation of the effective radius as a function of systematic bias in the optical data. (a) the error induced by the extinction coefficients, and (b) the error induced by the forward scattering coefficients.
Fig. 16
Fig. 16 Percentage deviation of the volume concentration as a function of systematic bias in the optical data. (a) the error induced by the extinction coefficients, and (b) the error induced by the forward scattering coefficients.
Fig. 17
Fig. 17 The designed optical system schematic diagram of PSD measurement.

Tables (3)

Tables Icon

Table 1 The Typical Parameters of Bimodal Distribution of Different Types of Aerosol

Tables Icon

Table 2 The parameters of 5 APSDs in low humidity

Tables Icon

Table 3 The parameters of FDSDs

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

n(r)= i=1 k N i ln σ i r exp( - ( lnr-ln r mi n ) 2 2 ( ln σ i ) 2 ), k=1,2,,
r i v = r i n exp[3 (lnσ) 2 ],
V i = N i 4 3 π ( r i n ) 3 exp[ 9 2 ( lnσ ) 2 ].
v F ( r )=a r c exp( -b r d ).
J α (λ)= J 0 (λ)T(λ)exp[ -L( α a (λ)+ α m (λ)) ],
J β (θ,λ)= J 0 (λ)T(λ)( β a (θ,λ)+ β m (θ,λ) )exp[ -L( α a (λ)+ α m (λ) ) ].
α a (λ)= 1 L [ ln( J α (λ) J 0 (λ)T(λ) ) α m (λ) ],
β a (θ,λ)= J β (θ,λ) J α (λ) β m (θ,λ).
{ α a ( λ 1 )= r min r max K a ( r,m, λ 1 )v( r )dr α a ( λ 2 )= r min r max K a ( r,m, λ 2 )v( r )dr α a ( λ n )= r min r max K a ( r,m, λ n )v( r )dr ,
{ β a ( θ, λ 1 )= r min r max K β ( r,θ,m, λ 1 )P(r,θ,m, λ 1 )v( r )dr β a ( θ, λ 2 )= r min r max K β ( r,θ,m, λ 2 )P(r,θ,m, λ 2 )v( r )dr β a ( θ, λ n )= r min r max K β ( r,θ,m, λ n )P(r,θ,m, λ n )v( r )dr .
K α (r,m,λ)= 3 4r Q i (r,m,λ).
P ( λ,θ,m )= r min r max 3 4r Q sca (r)P( r,λ,θ,m )v( r ) dr r min r max 3 4r Q sca (r)v( r ) dr ,
r( RH ) r 0 = ( 1-RH ) -( 1/d ) - ( 1-60% ) -( 1/d ) +1.
CV= σ μ ,
v(r)= j=1 n W j B j (r)+ ε math (r) ,
g (α,β) = j A (α,β) j (m) W j + ε math (r).
A αi (m)= r min r max K α ( r,m,λ ) B i ( r )dr,
A βj (m)= r min r max K β ( r,θ,m,λ )P(r,θ,m,λ) B j ( r )dr.
W= ( A T A+γH ) 1 A T g.
r eff = n(r) r 3 dr n(r) r 2 dr ,
N= n(r)d r,
V= 4π 3 n(r) r 3 d r.

Metrics