Abstract

Ultra-narrowband perfect absorbers and emitters are proposed and realized by engineering multiple-beam interference in Gires-Tournois etalon with the presence of low metallic loss. The absorption mechanism and spectral characteristics of the Gires-Tournois resonators are numerically and experimentally investigated for three configurations: dielectric cavity on metal, metal–dielectric–metal resonator, and distributed Bragg reflector (DBR)–dielectric–metal resonator. Narrowband thermal emitters based on the metal–dielectric–metal cavity and (DBR)–dielectric–metal cavity are experimentally demonstrated with an emissivity of 0.8 and 0.82, and a quality factor of 21 and 85, respectively. A DBR–dielectric–metal resonator-based absorber is directly loaded onto a LiTaO 3 film for the first time to constitute an on-chip ultra-narrowband pyroelectric detector with an excellent quality factor of 151 at the absorption band of methane.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: Application to metals,” Infrared Phys. Technol. 51, 292 – 299 (2008).
    [Crossref]
  2. D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
    [Crossref]
  3. B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
    [Crossref]
  4. A. Araújo, “Multi-spectral pyrometry-a review,” Meas. Sci. Technol. 28, 082002 (2017).
    [Crossref]
  5. H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
    [Crossref]
  6. K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
    [Crossref]
  7. A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
    [Crossref]
  8. A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
    [Crossref] [PubMed]
  9. T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sens. Actuator B-Chem. 231, 529–538 (2016).
    [Crossref]
  10. S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: a review,” J. Food Process Eng. 40, e12308 (2017).
    [Crossref]
  11. D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
    [Crossref]
  12. N. K. Rastogi, “Recent trends and developments in infrared heating in food processing,” Crit. Rev. Food Sci. Nutr. 52, 737–760 (2012).
    [Crossref] [PubMed]
  13. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the shockley-queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref] [PubMed]
  14. C. Simovski, S. Maslovski, I. Nefedov, and S. Tretyakov, “Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications,” Opt. Express 21, 14988–15013 (2013).
    [Crossref] [PubMed]
  15. T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
    [Crossref]
  16. M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
    [Crossref]
  17. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
    [Crossref]
  18. T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
    [Crossref]
  19. T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
    [Crossref]
  20. T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
    [Crossref]
  21. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
    [Crossref] [PubMed]
  22. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
    [PubMed]
  23. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538–1541 (2003).
    [Crossref]
  24. I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
    [Crossref]
  25. V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
    [Crossref] [PubMed]
  26. J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
    [Crossref] [PubMed]
  27. O. E. Daif, E. Drouard, G. Gomard, A. Kaminski, A. Fave, M. Lemiti, S. Ahn, S. Kim, P. R. i Cabarrocas, H. Jeon, and C. Seassal, “Absorbing one-dimensional planar photonic crystal for amorphous silicon solar cell,” Opt. Express 18, A293–A299 (2010).
    [Crossref] [PubMed]
  28. J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2 (2015).
    [Crossref] [PubMed]
  29. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2013).
    [Crossref]
  30. W. Streyer, S. Law, G. Rooney, T. Jacobs, and D. Wasserman, “Strong absorption and selective emission from engineered metals with dielectric coatings,” Opt. Express 21, 9113–9122 (2013).
    [Crossref] [PubMed]
  31. H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
    [Crossref] [PubMed]
  32. Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. guo Sun, T. Nagao, and K. ping Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
    [Crossref] [PubMed]
  33. Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
    [Crossref]
  34. Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
    [Crossref]
  35. Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
    [Crossref]
  36. H. Zhu, H. Luo, Q. Li, D. Zhao, L. Cai, K. Du, Z. Xu, P. Ghosh, and M. Qiu, “Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced tamm plasmon,” Opt. Lett. 43, 5230–5233 (2018).
    [Crossref] [PubMed]
  37. S. Shu, Z. Li, and Y. Y. Li, “Triple-layer fabry-perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21, 25307–25315 (2013).
    [Crossref] [PubMed]
  38. M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).
    [Crossref]
  39. D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
    [Crossref]
  40. Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
    [Crossref]
  41. S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth order fabry–perot resonance enabled strong light absorption in ultrathin silicon films on different metals and its application for color filters,” IEEE Photonics J. 8, 1–12 (2016).
    [Crossref]
  42. M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
    [Crossref]
  43. B. Pezeshki, J. Kash, and F. Agahi, “Waveguide version of an asymmetric fabry–perot modulator,” Appl. Phys. Lett. 67, 1662–1664 (1995).
    [Crossref]
  44. G. Korotcenkov, Handbook of gas sensor materials, vol. 2 (Springer, 2013).
    [Crossref]
  45. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).
  46. Synopsys, Rsoft, https://www.synopsys.com .
  47. E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).
  48. Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
    [Crossref] [PubMed]
  49. S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: A review,” J. Food Process. Eng. 40, e12308 (2017).
    [Crossref]

2018 (4)

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

H. Zhu, H. Luo, Q. Li, D. Zhao, L. Cai, K. Du, Z. Xu, P. Ghosh, and M. Qiu, “Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced tamm plasmon,” Opt. Lett. 43, 5230–5233 (2018).
[Crossref] [PubMed]

2017 (6)

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: A review,” J. Food Process. Eng. 40, e12308 (2017).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

A. Araújo, “Multi-spectral pyrometry-a review,” Meas. Sci. Technol. 28, 082002 (2017).
[Crossref]

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: a review,” J. Food Process Eng. 40, e12308 (2017).
[Crossref]

2016 (5)

T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sens. Actuator B-Chem. 231, 529–538 (2016).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth order fabry–perot resonance enabled strong light absorption in ultrathin silicon films on different metals and its application for color filters,” IEEE Photonics J. 8, 1–12 (2016).
[Crossref]

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. guo Sun, T. Nagao, and K. ping Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref] [PubMed]

2015 (4)

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2 (2015).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

2014 (6)

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref] [PubMed]

2013 (6)

2012 (3)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

N. K. Rastogi, “Recent trends and developments in infrared heating in food processing,” Crit. Rev. Food Sci. Nutr. 52, 737–760 (2012).
[Crossref] [PubMed]

2011 (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (1)

2008 (2)

T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: Application to metals,” Infrared Phys. Technol. 51, 292 – 299 (2008).
[Crossref]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

2006 (1)

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

2003 (1)

2001 (1)

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[Crossref]

1997 (1)

D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
[Crossref]

1995 (2)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[Crossref]

B. Pezeshki, J. Kash, and F. Agahi, “Waveguide version of an asymmetric fabry–perot modulator,” Appl. Phys. Lett. 67, 1662–1664 (1995).
[Crossref]

Agahi, F.

B. Pezeshki, J. Kash, and F. Agahi, “Waveguide version of an asymmetric fabry–perot modulator,” Appl. Phys. Lett. 67, 1662–1664 (1995).
[Crossref]

Ahn, S.

Ali, Z.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Andrieu, J.

D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
[Crossref]

Araújo, A.

A. Araújo, “Multi-spectral pyrometry-a review,” Meas. Sci. Technol. 28, 082002 (2017).
[Crossref]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

Biswas, R.

Blanc, D.

D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2013).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Boual, S.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Bouvry, B.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Burger, T.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

Cabarrocas, P. R. i

Cai, L.

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2013).
[Crossref]

Celanovic, I.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Chan, W. R.

Chang, Y.-T.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Chen, K.

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Chen, K. ping

Chen, K.-P.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

Chen, X.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Chen, Y.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Cheymol, G.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Choi, B.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

Choi, I.-Y.

T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sens. Actuator B-Chem. 231, 529–538 (2016).
[Crossref]

Chou, J. B.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Chuang, T.-H.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Clark, J. K.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

Daif, O. E.

Daiguji, H.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

Dao, T. D.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. guo Sun, T. Nagao, and K. ping Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

De Luca, A.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Delaunay, J.-J.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Destouches, C.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Dinh, T.-V.

T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sens. Actuator B-Chem. 231, 529–538 (2016).
[Crossref]

Dorodnyy, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

Drouard, E.

Du, K.

Duvaut, T.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: Application to metals,” Infrared Phys. Technol. 51, 292 – 299 (2008).
[Crossref]

El-Kady, I.

Fan, D.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Fan, S.

Fang, N. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Fave, A.

Fedoryshyn, Y.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

Ferry, L.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Fleming, J. G.

Forrest, S. R.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Fralick, G.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[Crossref]

Gallou, C.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Gan, Q.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2013).
[Crossref]

Gerard, J.

D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
[Crossref]

Ghosh, P.

Goericke, F.

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

Gomard, G.

Gong, H.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Gonnier, C.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Guedes, A.

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

Guo, H.

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth order fabry–perot resonance enabled strong light absorption in ultrathin silicon films on different metals and its application for color filters,” IEEE Photonics J. 8, 1–12 (2016).
[Crossref]

Guo, J.

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth order fabry–perot resonance enabled strong light absorption in ultrathin silicon films on different metals and its application for color filters,” IEEE Photonics J. 8, 1–12 (2016).
[Crossref]

Guo, L.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Hada, T.

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

Hafner, C.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

Ho, K. M.

Ho, Y.-L.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Hong, M. H.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Horny, N.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Horsley, D.

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

Hu, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Ishii, S.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. guo Sun, T. Nagao, and K. ping Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref] [PubMed]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Iwanaga, M.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

Jacobs, T.

Jaramillo, G.

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

Javaudin, B.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Jeon, H.

Ji, D.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Jiang, S.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Joannopoulos, J. D.

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Johnson, S. G.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref] [PubMed]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Jovanovic, N.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Kaminski, A.

Kasaya, T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

Kash, J.

B. Pezeshki, J. Kash, and F. Agahi, “Waveguide version of an asymmetric fabry–perot modulator,” Appl. Phys. Lett. 67, 1662–1664 (1995).
[Crossref]

Kassakian, J.

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2013).
[Crossref]

Khurgin, J. B.

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2 (2015).
[Crossref] [PubMed]

Kim, J.-C.

T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sens. Actuator B-Chem. 231, 529–538 (2016).
[Crossref]

Kim, S.

Kim, S.-G.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Kitajima, M.

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Koch, U.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

Korotcenkov, G.

G. Korotcenkov, Handbook of gas sensor materials, vol. 2 (Springer, 2013).
[Crossref]

Laurent, P.

D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
[Crossref]

Law, S.

Lee, K.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

Lee, S.-C.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Lee, Y. E.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Lemiti, M.

Lenert, A.

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Leuthold, J.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

Li, Q.

H. Zhu, H. Luo, Q. Li, D. Zhao, L. Cai, K. Du, Z. Xu, P. Ghosh, and M. Qiu, “Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced tamm plasmon,” Opt. Lett. 43, 5230–5233 (2018).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Li, Y. Y.

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

S. Shu, Z. Li, and Y. Y. Li, “Triple-layer fabry-perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21, 25307–25315 (2013).
[Crossref] [PubMed]

Li, Z. Y.

Lin, S. Y.

Liu, K.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Liu, Z.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Lochbaum, A.

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

Luo, H.

Maskrot, H.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Maslovski, S.

Meng, C.-Y.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Meng, L.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Mirshafieyan, S. S.

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth order fabry–perot resonance enabled strong light absorption in ultrathin silicon films on different metals and its application for color filters,” IEEE Photonics J. 8, 1–12 (2016).
[Crossref]

Miyazaki, H. T.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

Nabatame, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Nagao, T.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. guo Sun, T. Nagao, and K. ping Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref] [PubMed]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Nefedov, I.

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Ng, D.

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[Crossref]

Oh, S. S.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Ohi, A.

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).

Pankin, P. S.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

Pawar, S. B.

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: a review,” J. Food Process Eng. 40, e12308 (2017).
[Crossref]

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: A review,” J. Food Process. Eng. 40, e12308 (2017).
[Crossref]

Pezeshki, B.

B. Pezeshki, J. Kash, and F. Agahi, “Waveguide version of an asymmetric fabry–perot modulator,” Appl. Phys. Lett. 67, 1662–1664 (1995).
[Crossref]

Phillips, C. C.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Pisano, A. P.

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

Pratape, V.

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: a review,” J. Food Process Eng. 40, e12308 (2017).
[Crossref]

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: A review,” J. Food Process. Eng. 40, e12308 (2017).
[Crossref]

Pusch, A.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Qiu, M.

H. Zhu, H. Luo, Q. Li, D. Zhao, L. Cai, K. Du, Z. Xu, P. Ghosh, and M. Qiu, “Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced tamm plasmon,” Opt. Lett. 43, 5230–5233 (2018).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Ramiandrisoa, L.

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

Rastogi, N. K.

N. K. Rastogi, “Recent trends and developments in infrared heating in food processing,” Crit. Rev. Food Sci. Nutr. 52, 737–760 (2012).
[Crossref] [PubMed]

Rephaeli, E.

Rinnerbauer, V.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Rooney, G.

Roschuk, T.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Sakoda, K.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Sawada, T.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

Seassal, C.

Senkevich, J. J.

Shen, Y.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref] [PubMed]

Shu, S.

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Simovski, C.

Soljacic, M.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Son, Y.-S.

T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sens. Actuator B-Chem. 231, 529–538 (2016).
[Crossref]

Song, H.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Streyer, W.

Strite, S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[Crossref]

Sugavaneshwar, R. P.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

Sugimoto, Y.

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

Sun, M. guo

Sun, M.-G.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

Timofeev, I. V.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

Tretyakov, S.

Tsai, M.-W.

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Ünlü, M. S.

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[Crossref]

Vessot, S.

D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
[Crossref]

Vilquin, B.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

Wada, Y.

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

Wang, E. N.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

Wasserman, D.

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

Wuestner, S.

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Xu, Z.

Yamamoto, K.

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

Yan, M.

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).
[Crossref]

Yang, Z.

Yang, Z.-Y.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

Ye, D.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref] [PubMed]

Yeng, Y. X.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. X. Yeng, W. R. Chan, J. J. Senkevich, J. D. Joannopoulos, M. Soljačić, and I. Celanovic, “High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals,” Opt. Express 21, 11482–11491 (2013).
[Crossref] [PubMed]

Yokoyama, T.

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

Z. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M. guo Sun, T. Nagao, and K. ping Chen, “Tamm plasmon selective thermal emitters,” Opt. Lett. 41, 4453–4456 (2016).
[Crossref] [PubMed]

Zeng, X.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Zhang, N.

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

Zhao, D.

H. Zhu, H. Luo, Q. Li, D. Zhao, L. Cai, K. Du, Z. Xu, P. Ghosh, and M. Qiu, “Tunable narrowband mid-infrared thermal emitter with a bilayer cavity enhanced tamm plasmon,” Opt. Lett. 43, 5230–5233 (2018).
[Crossref] [PubMed]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Zhu, H.

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

ACS Photonics (7)

A. Lochbaum, Y. Fedoryshyn, A. Dorodnyy, U. Koch, C. Hafner, and J. Leuthold, “On-chip narrowband thermal emitter for mid-ir optical gas sensing,” ACS Photonics 4, 1371–1380 (2017).
[Crossref]

T. Burger, D. Fan, K. Lee, S. R. Forrest, and A. Lenert, “Thin-film architectures with high spectral selectivity for thermophotovoltaic cells,” ACS Photonics 5, 2748–2754 (2018).
[Crossref]

T. D. Dao, S. Ishii, T. Yokoyama, T. Sawada, R. P. Sugavaneshwar, K. Chen, Y. Wada, T. Nabatame, and T. Nagao, “Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors,” ACS Photonics 3, 1271–1278 (2016).
[Crossref]

T. D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, and T. Nagao, “Infrared perfect absorbers fabricated by colloidal mask etching of Al-Al 2O 3-Al trilayers,” ACS Photonics 2, 964–970 (2015).
[Crossref]

Z.-Y. Yang, S. Ishii, T. Yokoyama, T. D. Dao, M.-G. Sun, P. S. Pankin, I. V. Timofeev, T. Nagao, and K.-P. Chen, “Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons,” ACS Photonics 4, 2212–2219 (2017).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission realized through the coupling of cavity and tamm plasmon resonances,” ACS Photonics 5, 2446–2452 (2018).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films,” ACS Photonics 2, 183–188 (2015).
[Crossref]

Adv. Mater. (3)

H. Song, L. Guo, Z. Liu, K. Liu, X. Zeng, D. Ji, N. Zhang, H. Hu, S. Jiang, and Q. Gan, “Nanocavity enhancement for ultra-thin film optical absorber,” Adv. Mater. 26, 2737–2743 (2014).
[Crossref] [PubMed]

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24, OP98–OP120 (2012).
[PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S.-G. Kim, “Enabling ideal selective solar absorption with 2d metallic dielectric photonic crystals,” Adv. Mater. 26, 8041–8045 (2014).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

T. Yokoyama, T. D. Dao, K. Chen, S. Ishii, R. P. Sugavaneshwar, M. Kitajima, and T. Nagao, “Spectrally selective mid-infrared thermal emission from molybdenum plasmonic metamaterial operated up to 1000 ∘C,” Adv. Opt. Mater. 4, 1987–1992 (2016).
[Crossref]

Appl. Phys. Lett. (7)

I. Celanovic, N. Jovanovic, and J. Kassakian, “Two-dimensional tungsten photonic crystals as selective thermal emitters,” Appl. Phys. Lett. 92, 193101 (2008).
[Crossref]

Z. Wang, J. K. Clark, Y.-L. Ho, B. Vilquin, H. Daiguji, and J.-J. Delaunay, “Narrowband thermal emission from tamm plasmons of a modified distributed bragg reflector,” Appl. Phys. Lett. 113, 161104 (2018).
[Crossref]

M.-W. Tsai, T.-H. Chuang, C.-Y. Meng, Y.-T. Chang, and S.-C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89, 173116 (2006).
[Crossref]

H. T. Miyazaki, T. Kasaya, M. Iwanaga, B. Choi, Y. Sugimoto, and K. Sakoda, “Dual-band infrared metasurface thermal emitter for CO 2 sensing,” Appl. Phys. Lett. 105, 121107 (2014).
[Crossref]

K. Yamamoto, F. Goericke, A. Guedes, G. Jaramillo, T. Hada, A. P. Pisano, and D. Horsley, “Pyroelectric aluminum nitride micro electromechanical systems infrared sensor with wavelength-selective infrared absorber,” Appl. Phys. Lett. 104, 111111 (2014).
[Crossref]

B. Pezeshki, J. Kash, and F. Agahi, “Waveguide version of an asymmetric fabry–perot modulator,” Appl. Phys. Lett. 67, 1662–1664 (1995).
[Crossref]

D. Zhao, L. Meng, H. Gong, X. Chen, Y. Chen, M. Yan, Q. Li, and M. Qiu, “Ultra-narrow-band light dissipation by a stack of lamellar silver and alumina,” Appl. Phys. Lett. 104, 221107 (2014).
[Crossref]

Crit. Rev. Food Sci. Nutr. (1)

N. K. Rastogi, “Recent trends and developments in infrared heating in food processing,” Crit. Rev. Food Sci. Nutr. 52, 737–760 (2012).
[Crossref] [PubMed]

DRY TECHNOL (1)

D. Blanc, S. Vessot, P. Laurent, J. Gerard, and J. Andrieu, “Study and modelling of coated car painting film by infrared or convective drying,” DRY TECHNOL 15, 2303–2323 (1997).
[Crossref]

IEEE Photonics J. (1)

S. S. Mirshafieyan, H. Guo, and J. Guo, “Zeroth order fabry–perot resonance enabled strong light absorption in ultrathin silicon films on different metals and its application for color filters,” IEEE Photonics J. 8, 1–12 (2016).
[Crossref]

Infrared Phys. Technol. (2)

T. Duvaut, “Comparison between multiwavelength infrared and visible pyrometry: Application to metals,” Infrared Phys. Technol. 51, 292 – 299 (2008).
[Crossref]

B. Bouvry, G. Cheymol, L. Ramiandrisoa, B. Javaudin, C. Gallou, H. Maskrot, N. Horny, T. Duvaut, C. Destouches, L. Ferry, and C. Gonnier, “Multispectral pyrometry for surface temperature measurement of oxidized zircaloy claddings,” Infrared Phys. Technol. 83, 78 – 87 (2017).
[Crossref]

J. Appl. Phys. (1)

M. S. Ünlü and S. Strite, “Resonant cavity enhanced photonic devices,” J. Appl. Phys. 78, 607–639 (1995).
[Crossref]

J. Food Process Eng. (1)

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: a review,” J. Food Process Eng. 40, e12308 (2017).
[Crossref]

J. Food Process. Eng. (1)

S. B. Pawar and V. Pratape, “Fundamentals of infrared heating and its application in drying of food materials: A review,” J. Food Process. Eng. 40, e12308 (2017).
[Crossref]

J. Opt. (2)

M. Yan, “Metal–insulator–metal light absorber: a continuous structure,” J. Opt. 15, 025006 (2013).
[Crossref]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14, 024005 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

A. Araújo, “Multi-spectral pyrometry-a review,” Meas. Sci. Technol. 28, 082002 (2017).
[Crossref]

Nat. Mater. (1)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12, 20 (2013).
[Crossref]

Nat. Nanotechnol. (1)

J. B. Khurgin, “How to deal with the loss in plasmonics and metamaterials,” Nat. Nanotechnol. 10, 2 (2015).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107, 045901 (2011).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

D. Ng and G. Fralick, “Use of a multiwavelength pyrometer in several elevated temperature aerospace applications,” Rev. Sci. Instrum. 72, 1522–1530 (2001).
[Crossref]

Sci. Rep. (1)

A. Pusch, A. De Luca, S. S. Oh, S. Wuestner, T. Roschuk, Y. Chen, S. Boual, Z. Ali, C. C. Phillips, M. H. Hong, and et al.., “A highly efficient cmos nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices,” Sci. Rep. 5, 17451 (2015).
[Crossref] [PubMed]

Science (1)

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical broadband angular selectivity,” Science 343, 1499–1501 (2014).
[Crossref] [PubMed]

Sens. Actuator B-Chem. (1)

T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sens. Actuator B-Chem. 231, 529–538 (2016).
[Crossref]

Other (4)

G. Korotcenkov, Handbook of gas sensor materials, vol. 2 (Springer, 2013).
[Crossref]

M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013).

Synopsys, Rsoft, https://www.synopsys.com .

E. D. Palik, Handbook of optical constants of solids, vol. 3 (Academic press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Schematic illustration of a GT resonator-based perfect absorber. Three distinct configurations of the GT resonator-based perfect absorbers examined in this work: (b) lossless dielectric cavity on metal (DM), (c) metal–dielectric–metal (MDM), and (d) distributed Bragg reflector–dielectric–metal (DDM).
Fig. 2
Fig. 2 Rigorous coupled-wave analysis of the EM responses of GT resonator-based perfect absorbers. Schematic diagrams and intensity plots of the electric field, magnetic field, total absorption and reflectivity, absorptivity, transmissivity characteristics of the (a) SiC (165 nm)–Au (200 nm) resonator-based absorber, (b) Au (15 nm)–SiO2 (740 nm)–Au (200 nm) resonator-based absorber, and (c) 3[SiO2 (415 nm)–Si (175 nm)]–SiO2 (820 nm)–Au (200 nm) resonator-based absorber at the resonance wavelength, λres = 2.37 μm.
Fig. 3
Fig. 3 (a) Simulated and (b) experimental absorptivity of the MDM-type Au–SiO2–Au absorber with varying thickness of the top metallic layer (tf = 15 nm, 30 nm, and 50 nm). (c) Simulated and (d) experimental absorptivity of the DDM-type npair(SiO2–Si)–SiO2–Au absorber with varying number of DBR pairs (npair = 1–5).
Fig. 4
Fig. 4 Tuning the resonance wavelength of GT resonator-based absorbers. (a–d) Cross-sectional scanning electron microscope (SEM) images and (e–h) absorptivity. The blue and red lines are the simulated and measured spectra, respectively. (a), (e) Au(15 nm)–Si(220 nm)–Au(200 nm); (b), (f) Au(15 nm)–Si(245 nm)–Au(200 nm); (c), (g) 3[SiO2(415 nm)–Si(175 nm)]–SiO2(820 nm)–Au(150 nm); and (d), (h) 3[SiO2(570 nm)–Si(240 nm)]–SiO2(1170 nm)–Au(150 nm).
Fig. 5
Fig. 5 Ray-optics representation of the propagating light in the cavities with (a) high and (d) low refractive indices depending on the incident angles. (b), (e) Simulated and (c), (f) experimental characteristics of the angular-dependent absorptivityof the Au–Si–Au and Au–Al2O3–Au absorbers, respectively.
Fig. 6
Fig. 6 (a) Simulated and (b) experimental angular-dependent absorptivity of 3(SiO2–Si)–SiO2–Au resonator-based perfect absorbers.
Fig. 7
Fig. 7 Narrowband thermal emitters based on the MDM-type and DDM-type GT resonators. (a) measurement setup; (b) measured reflectivity and spectral emissivity characteristics of a MDM-type emitter, inset: photo of the fabricated thermal emitter; (c) measured reflectivity and spectral emissivity characteristics of a DDM-type emitter.
Fig. 8
Fig. 8 GT resonator-based narrowband pyroelectric IR detector: (a) schematic illustration, (b) actual implementation, (c) measured reflectivity and spectral responsivity, and (d) schematics of the measurement setup.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r G T = r 12 + t 12 t 21 r 23 e 2 i φ 1 r 21 r 23 e 2 i φ ,
2 φ = 4 π λ n d cos  θ + φ f + φ b ,
| r 12 ( 1 r 21 r 23 e 2 i φ ) | = | t 12 t 21 r 23 e 2 i φ | e α ,
2 φ = 2 m π ,

Metrics