Abstract

Polymeric light-emitting materials have been developed recently as an attractive solution-processable alternative to conventional vacuum-deposited small molecules in organic/polymeric light-emitting diodes, but they are still limited in terms of their performance, especially with low luminance and efficiency. We report on some noteworthy characteristics of a new type of single emitting layer (EML), composed of a blend of a host blue-emitting polyspirobifluorene-based copolymer and a guest yellow-emitting poly(p-phenylene vinylene) derivative copolymer. These host and guest polymers have nearly identical highest occupied molecular orbital levels of about 5.2 eV, and lowest unoccupied molecular orbital levels of about 2.4 eV and 2.9 eV, respectively, minimizing the prevailing charge-trapping properties of their blend. Even in the absence of the charge-trapping effect, it is shown that very bright green electroluminescent (EL) emission with a maximum luminance of ~142,000 cd/m2 can be realized for the blended host:guest EML at a moderate concentration (~5 wt%) of the guest polymer. Current efficiency is also observed to be up to ~14 cd/A, which is much higher than those (3.6~5.1 cd/A) of reference devices with pure host or pure guest polymeric EMLs. Moreover, there is a small change in green color emission, with CIE coordinates of (0.35, 0.60) even at high luminance, showing good color stability of the EL emission from the blended EML. These significant improvements in device performance are mainly attributed to efficient Förster resonance energy transfer between the host and guest polymers in the blended EML. Together with its simple structure and easy processability, the high brightness and efficiency of our blended polymeric EML provides a new platform for the development of solution-processable light-emitting devices and/or advanced emissive display devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly efficient hybrid light-emitting device using complex of CdSe/ZnS quantum dots embedded in co-polymer as an active layer

Byoung-Ho Kang, Jun-Seon Seo, Sohee Jeong, Jihye Lee, Chang-Soo Han, Do-Eok Kim, Kyu-Jin Kim, Se-Hyuk Yeom, Dae-Hyuk Kwon, Hak-Rin Kim, and Shin-Won Kang
Opt. Express 18(17) 18303-18311 (2010)

High-performance quantum dot light-emitting diodes with hybrid hole transport layer via doping engineering

Qianqian Huang, Jiangyong Pan, Yuning Zhang, Jing Chen, Zhi Tao, Chao He, Kaifeng Zhou, Yan Tu, and Wei Lei
Opt. Express 24(23) 25955-25963 (2016)

White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates

Tzung-Fang Guo, Ten-Chin Wen, Yi-Shun Huang, Ming-Wei Lin, Chuan-Cheng Tsou, and Chia-Tin Chung
Opt. Express 17(23) 21205-21215 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
    [Crossref]
  2. A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
    [Crossref]
  3. N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
    [Crossref] [PubMed]
  4. C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
    [Crossref]
  5. C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).
  6. H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
    [Crossref]
  7. A. Facchetti, “Semiconductors for organic transistors,” Mater. Today 10(3), 28–37 (2007).
    [Crossref]
  8. J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
    [Crossref]
  9. E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
    [Crossref] [PubMed]
  10. S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
    [Crossref] [PubMed]
  11. Y. L. Loo and I. McCulloch, “Progress and challenges in commercialization of organic electronics,” MRS Bull. 33(7), 653–662 (2008).
    [Crossref]
  12. L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
    [Crossref] [PubMed]
  13. C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
    [Crossref]
  14. M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
    [Crossref]
  15. F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
    [Crossref]
  16. S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
    [Crossref]
  17. L. P. Lu, C. E. Finlayson, and R. H. Friend, “Thick polymer light-emitting diodes with very high power efficiency using ohmic charge-injection layers,” Semicond. Sci. Technol. 29(2), 025005 (2014).
    [Crossref]
  18. M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
    [Crossref] [PubMed]
  19. S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
    [Crossref]
  20. A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
    [Crossref] [PubMed]
  21. T. Főrster, “10th spiers memorial lecture transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
    [Crossref]
  22. A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
    [Crossref]
  23. B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
    [Crossref] [PubMed]
  24. Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
    [Crossref]
  25. D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
    [Crossref]
  26. M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
    [Crossref]
  27. M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
    [Crossref]
  28. M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
    [Crossref]
  29. D. F. Perepichka, I. F. Perepichka, and H. Meng, Light-emitting polymers (CRC Press, 2006), Chap. 8.
  30. E. W. Snedden, L. A. Cury, K. N. Bourdakos, and A. P. Monkman, “High photoluminescence quantum yield due to intramolecular energy transfer in the super yellow conjugated copolymer,” Chem. Phys. Lett. 490(1–3), 76–79 (2010).
    [Crossref]
  31. S. Gambino, A. K. Bansal, and I. D. W. Samuel, “Photophysical and charge-transporting properties of the copolymer superyellow,” Org. Electron. 14(8), 1980–1987 (2013).
    [Crossref]
  32. J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
    [Crossref]
  33. Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
    [Crossref]
  34. H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
    [Crossref]
  35. B. Park, J. N. Huh, W. S. Lee, and I.-G. Bae, “Simple and rapid cleaning of graphenes with a ‘bubble-free’ electrochemical treatment,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(9), 2234–2244 (2018).
    [Crossref]
  36. T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, “Driving duty ratio dependence of lifetime of tris(8-hydroxy-quinolinate)aluminum-based organic light-emitting diodes,” Jpn. J. Appl. Phys. 40(4A), 2523–2526 (2001).
    [Crossref]
  37. C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
    [Crossref]
  38. R. I. Frank and J. G. Simmons, “Space-charge effects on emission-limited current flow in insulators,” J. Appl. Phys. 38(2), 832–840 (1967).
    [Crossref]
  39. P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” J. Phys. D Appl. Phys. 3(2), 151–156 (1970).
    [Crossref]
  40. D. Poplavskyy, W. Su, and F. So, “Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer,” J. Appl. Phys. 98(1), 014501 (2005).
    [Crossref]
  41. H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
    [Crossref] [PubMed]
  42. I. Majoul, Y. Jia, and R. Duden, Handbook of Biological Confocal Microscopy (Springer, 2006), Chap 45.
  43. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), Chap 4.

2018 (1)

B. Park, J. N. Huh, W. S. Lee, and I.-G. Bae, “Simple and rapid cleaning of graphenes with a ‘bubble-free’ electrochemical treatment,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(9), 2234–2244 (2018).
[Crossref]

2017 (2)

D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
[Crossref]

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

2016 (4)

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

2015 (3)

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
[Crossref]

2014 (5)

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
[Crossref] [PubMed]

L. P. Lu, C. E. Finlayson, and R. H. Friend, “Thick polymer light-emitting diodes with very high power efficiency using ohmic charge-injection layers,” Semicond. Sci. Technol. 29(2), 025005 (2014).
[Crossref]

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

2013 (2)

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

S. Gambino, A. K. Bansal, and I. D. W. Samuel, “Photophysical and charge-transporting properties of the copolymer superyellow,” Org. Electron. 14(8), 1980–1987 (2013).
[Crossref]

2010 (2)

E. W. Snedden, L. A. Cury, K. N. Bourdakos, and A. P. Monkman, “High photoluminescence quantum yield due to intramolecular energy transfer in the super yellow conjugated copolymer,” Chem. Phys. Lett. 490(1–3), 76–79 (2010).
[Crossref]

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

2008 (2)

Y. L. Loo and I. McCulloch, “Progress and challenges in commercialization of organic electronics,” MRS Bull. 33(7), 653–662 (2008).
[Crossref]

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

2007 (1)

A. Facchetti, “Semiconductors for organic transistors,” Mater. Today 10(3), 28–37 (2007).
[Crossref]

2006 (1)

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

2005 (2)

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

D. Poplavskyy, W. Su, and F. So, “Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer,” J. Appl. Phys. 98(1), 014501 (2005).
[Crossref]

2004 (2)

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref] [PubMed]

2001 (3)

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, “Driving duty ratio dependence of lifetime of tris(8-hydroxy-quinolinate)aluminum-based organic light-emitting diodes,” Jpn. J. Appl. Phys. 40(4A), 2523–2526 (2001).
[Crossref]

1999 (1)

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

1997 (1)

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

1996 (1)

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

1994 (1)

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

1992 (2)

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

1990 (1)

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

1970 (1)

P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” J. Phys. D Appl. Phys. 3(2), 151–156 (1970).
[Crossref]

1967 (1)

R. I. Frank and J. G. Simmons, “Space-charge effects on emission-limited current flow in insulators,” J. Appl. Phys. 38(2), 832–840 (1967).
[Crossref]

1959 (1)

T. Főrster, “10th spiers memorial lecture transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
[Crossref]

Andersson, M. R.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Atvars, T. D. Z.

D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
[Crossref]

Bach, I.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Bae, I.-G.

B. Park, J. N. Huh, W. S. Lee, and I.-G. Bae, “Simple and rapid cleaning of graphenes with a ‘bubble-free’ electrochemical treatment,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(9), 2234–2244 (2018).
[Crossref]

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Bansal, A. K.

S. Gambino, A. K. Bansal, and I. D. W. Samuel, “Photophysical and charge-transporting properties of the copolymer superyellow,” Org. Electron. 14(8), 1980–1987 (2013).
[Crossref]

Bastiaansen, J. J.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Bechgaard, K.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Belcher, W. J.

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

Berggren, M.

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Blom, P. W. M.

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

Bourdakos, K. N.

E. W. Snedden, L. A. Cury, K. N. Bourdakos, and A. P. Monkman, “High photoluminescence quantum yield due to intramolecular energy transfer in the super yellow conjugated copolymer,” Chem. Phys. Lett. 490(1–3), 76–79 (2010).
[Crossref]

Brabec, C. J.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Bradley, D. D. C.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Brown, A. R.

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Brown, P. J.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Brunner, K.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Bryant, G.

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

Buckley, A. R.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

Burn, P. L.

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

Burns, P. L.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Burroughes, J. H.

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Butt, H.

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

Cabanillas-Gonzalez, J.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

Cao, Y.

L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
[Crossref] [PubMed]

Chang, J.-F.

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

Chen, W.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Chi, Z.

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Cho, J.

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Cho, S. H.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Choi, J.

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Chu, C. W.

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

Chu, H. Y.

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

Craciun, N. I.

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

Cravino, A.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Cury, L. A.

E. W. Snedden, L. A. Cury, K. N. Bourdakos, and A. P. Monkman, “High photoluminescence quantum yield due to intramolecular energy transfer in the super yellow conjugated copolymer,” Chem. Phys. Lett. 490(1–3), 76–79 (2010).
[Crossref]

Dastoor, P. C.

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

de Azevedo, D.

D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
[Crossref]

De Leeuw, D. M.

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Díaz-García, M. A.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Do, L. M.

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

Domingues, R. A.

D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
[Crossref]

Dong, W.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Ekström, O.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Facchetti, A.

A. Facchetti, “Semiconductors for organic transistors,” Mater. Today 10(3), 28–37 (2007).
[Crossref]

Faleiros, M. M.

D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
[Crossref]

Finlayson, C. E.

L. P. Lu, C. E. Finlayson, and R. H. Friend, “Thick polymer light-emitting diodes with very high power efficiency using ohmic charge-injection layers,” Semicond. Sci. Technol. 29(2), 025005 (2014).
[Crossref]

Forrest, S. R.

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref] [PubMed]

Forster, T.

T. Főrster, “10th spiers memorial lecture transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
[Crossref]

Fox, A. M.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

Frank, R. I.

R. I. Frank and J. G. Simmons, “Space-charge effects on emission-limited current flow in insulators,” J. Appl. Phys. 38(2), 832–840 (1967).
[Crossref]

Freitas, J. N.

D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
[Crossref]

Friend, R. H.

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

L. P. Lu, C. E. Finlayson, and R. H. Friend, “Thick polymer light-emitting diodes with very high power efficiency using ohmic charge-injection layers,” Semicond. Sci. Technol. 29(2), 025005 (2014).
[Crossref]

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Fromherz, T.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Fujii, H.

T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, “Driving duty ratio dependence of lifetime of tris(8-hydroxy-quinolinate)aluminum-based organic light-emitting diodes,” Jpn. J. Appl. Phys. 40(4A), 2523–2526 (2001).
[Crossref]

Gambino, S.

S. Gambino, A. K. Bansal, and I. D. W. Samuel, “Photophysical and charge-transporting properties of the copolymer superyellow,” Org. Electron. 14(8), 1980–1987 (2013).
[Crossref]

Geerts, Y.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Graupner, W.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Greenham, N. C.

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

Gustafsson, G.

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Hamada, Y.

T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, “Driving duty ratio dependence of lifetime of tris(8-hydroxy-quinolinate)aluminum-based organic light-emitting diodes,” Jpn. J. Appl. Phys. 40(4A), 2523–2526 (2001).
[Crossref]

Hasan, K. U.

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

Hassan, M. U.

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

Heeger, A. J.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Herwig, P.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Hide, F.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Hill, J.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

Hjertberg, T.

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Ho, C. L.

L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
[Crossref] [PubMed]

Holmes, A. B.

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Horng, S.-F.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

Hsu, C.-S.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

Huang, J. H.

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

Huh, J. N.

B. Park, J. N. Huh, W. S. Lee, and I.-G. Bae, “Simple and rapid cleaning of graphenes with a ‘bubble-free’ electrochemical treatment,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(9), 2234–2244 (2018).
[Crossref]

Hummelen, J. C.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Hyun, W. J.

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

Inganäs, O.

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Jang, J.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Janssen, R. A. J.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Jeon, H. G.

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Jeong, B.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Kekuda, D.

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

Kiggen, N. M.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Kim, E. H.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Kim, H. M.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Kim, H. P.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Kim, J. Y.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Kim, J.-S.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Kim, R. H.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Kim, Y.

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Kim, Y. Y.

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

Kong, X.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Kraft, A.

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

Kuik, M.

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

Kwon, O. E.

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Lai, H.-C.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), Chap 4.

Langeveld, B. M.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Langeveld-Voss, B. M. W.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Lee, B. R.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Lee, H.

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

Lee, H. J.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Lee, J.

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

Lee, J. H.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Lee, J. I.

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

Lee, S. J.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Lee, T. W.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Lee, W.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Lee, W. S.

B. Park, J. N. Huh, W. S. Lee, and I.-G. Bae, “Simple and rapid cleaning of graphenes with a ‘bubble-free’ electrochemical treatment,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(9), 2234–2244 (2018).
[Crossref]

Lee, Y. G.

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

Leising, G.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Li, M.

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Li, Q.

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Li, Z.

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Liao, H.-H.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

Lin, H. C.

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

Lin, S.-C.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

List, E. J. W.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Liu, C.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Liu, Y.-C.

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

Loo, Y. L.

Y. L. Loo and I. McCulloch, “Progress and challenges in commercialization of organic electronics,” MRS Bull. 33(7), 653–662 (2008).
[Crossref]

Lu, L. P.

L. P. Lu, C. E. Finlayson, and R. H. Friend, “Thick polymer light-emitting diodes with very high power efficiency using ohmic charge-injection layers,” Semicond. Sci. Technol. 29(2), 025005 (2014).
[Crossref]

Mackay, K.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

Marks, R. N.

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

McCulloch, I.

Y. L. Loo and I. McCulloch, “Progress and challenges in commercialization of organic electronics,” MRS Bull. 33(7), 653–662 (2008).
[Crossref]

Meijer, E. W.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Meissner, D.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Meng, H.

D. F. Perepichka, I. F. Perepichka, and H. Meng, Light-emitting polymers (CRC Press, 2006), Chap. 8.

Meng, H.-F.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

Monkman, A.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Monkman, A. P.

E. W. Snedden, L. A. Cury, K. N. Bourdakos, and A. P. Monkman, “High photoluminescence quantum yield due to intramolecular energy transfer in the super yellow conjugated copolymer,” Chem. Phys. Lett. 490(1–3), 76–79 (2010).
[Crossref]

Müllen, K.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Mulligan, C. J.

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

Murgatroyd, P. N.

P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” J. Phys. D Appl. Phys. 3(2), 151–156 (1970).
[Crossref]

Nguyen, T. L.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Nicolai, H. T.

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

Nielsen, M. M.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Nishide, H.

Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
[Crossref]

Nishikitani, Y.

Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
[Crossref]

Nishimura, S.

Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
[Crossref]

Oh, J.

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

Olawoyin, A. A.

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

Padhy, H.

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

Park, B.

B. Park, J. N. Huh, W. S. Lee, and I.-G. Bae, “Simple and rapid cleaning of graphenes with a ‘bubble-free’ electrochemical treatment,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(9), 2234–2244 (2018).
[Crossref]

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

Park, C.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Park, J. S.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Park, K. H.

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

Park, O. O.

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

Patra, D.

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

Pei, Q.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Perepichka, D. F.

D. F. Perepichka, I. F. Perepichka, and H. Meng, Light-emitting polymers (CRC Press, 2006), Chap. 8.

Perepichka, I. F.

D. F. Perepichka, I. F. Perepichka, and H. Meng, Light-emitting polymers (CRC Press, 2006), Chap. 8.

Poplavskyy, D.

D. Poplavskyy, W. Su, and F. So, “Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer,” J. Appl. Phys. 98(1), 014501 (2005).
[Crossref]

Rahn, M. D.

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

Rasmusson, J.

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Rispens, M. T.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Rohr, U.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Rothe, C.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Ruan, S.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Sahu, D.

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

Samuel, I. D. W.

S. Gambino, A. K. Bansal, and I. D. W. Samuel, “Photophysical and charge-transporting properties of the copolymer superyellow,” Org. Electron. 14(8), 1980–1987 (2013).
[Crossref]

Sanchez, L.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Sariciftci, N. S.

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Scherf, U.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Schlichting, P.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Schwartz, B. J.

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

Seo, G. J.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Shen, L.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Shim, H. K.

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

Shim, W.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Simmons, J. G.

R. I. Frank and J. G. Simmons, “Space-charge effects on emission-limited current flow in insulators,” J. Appl. Phys. 38(2), 832–840 (1967).
[Crossref]

Sirringhaus, H.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Smilowitz, L.

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Snedden, E. W.

E. W. Snedden, L. A. Cury, K. N. Bourdakos, and A. P. Monkman, “High photoluminescence quantum yield due to intramolecular energy transfer in the super yellow conjugated copolymer,” Chem. Phys. Lett. 490(1–3), 76–79 (2010).
[Crossref]

So, F.

D. Poplavskyy, W. Su, and F. So, “Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer,” J. Appl. Phys. 98(1), 014501 (2005).
[Crossref]

Song, M. H.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Spiering, A. J. H.

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

Stössel, P.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Su, W.

D. Poplavskyy, W. Su, and F. So, “Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer,” J. Appl. Phys. 98(1), 014501 (2005).
[Crossref]

Takahashi, H.

T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, “Driving duty ratio dependence of lifetime of tris(8-hydroxy-quinolinate)aluminum-based organic light-emitting diodes,” Jpn. J. Appl. Phys. 40(4A), 2523–2526 (2001).
[Crossref]

Takizawa, D.

Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
[Crossref]

Tao, C.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Tasch, S.

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

Tseng, S.-R.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

Tsujioka, T.

T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, “Driving duty ratio dependence of lifetime of tris(8-hydroxy-quinolinate)aluminum-based organic light-emitting diodes,” Jpn. J. Appl. Phys. 40(4A), 2523–2526 (2001).
[Crossref]

Uchida, S.

Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
[Crossref]

van Dijken, A.

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

Vaughan, B.

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

Wang, C.

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Wennerström, O.

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Wetzelaer, G.-J. A. H.

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

Wilson, M.

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

Wong, W. Y.

L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
[Crossref] [PubMed]

Woo, H. Y.

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Wu, H.

L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
[Crossref] [PubMed]

Wudl, F.

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Xie, G.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Xie, Y.

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Xu, B.

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Yeh, C.-H.

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

Ying, L.

L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
[Crossref] [PubMed]

Youn, J. H.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Yu, S.

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Yusoff, A. R.

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Zhang, X.

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Zhou, X.

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

Zyung, T.

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

ACS Appl. Mater. Interfaces (1)

B. R. Lee, W. Lee, T. L. Nguyen, J. S. Park, J.-S. Kim, J. Y. Kim, H. Y. Woo, and M. H. Song, “Highly efficient red-emitting hybrid polymer light-emitting diodes via Förster resonance energy transfer based on homogeneous polymer blends with the same polyfluorene backbone,” ACS Appl. Mater. Interfaces 5(12), 5690–5695 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, “Origin of the open circuit voltage of plastic solar cells,” Adv. Funct. Mater. 11(5), 374–380 (2001).
[Crossref]

Adv. Mater. (2)

L. Ying, C. L. Ho, H. Wu, Y. Cao, and W. Y. Wong, “White polymer light-emitting devices for solid-state lighting: materials, devices, and recent progress,” Adv. Mater. 26(16), 2459–2473 (2014).
[Crossref] [PubMed]

M. Kuik, G.-J. A. H. Wetzelaer, H. T. Nicolai, N. I. Craciun, D. M. De Leeuw, and P. W. M. Blom, “25th anniversary article: charge transport and recombination in polymer light-emitting diodes,” Adv. Mater. 26(4), 512–531 (2014).
[Crossref] [PubMed]

Appl. Mater. Today (1)

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Highly efficient PLEDs based on poly(9,9-dioctylfluorene) and super yellow blend with Cs2CO3 modified cathode,” Appl. Mater. Today 1(1), 45–51 (2015).
[Crossref]

Appl. Phys. Lett. (4)

S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, “Efficient white light-emitting diodes realized with new processable blends of conjugated polymers,” Appl. Phys. Lett. 71(20), 2883–2885 (1997).
[Crossref]

S.-R. Tseng, S.-C. Lin, H.-F. Meng, H.-H. Liao, C.-H. Yeh, H.-C. Lai, S.-F. Horng, and C.-S. Hsu, “General method to solution-process multilayer polymer light-emitting diodes,” Appl. Phys. Lett. 88(16), 163501 (2006).
[Crossref]

A. R. Brown, D. D. C. Bradley, J. H. Burroughes, R. H. Friend, N. C. Greenham, P. L. Burn, A. B. Holmes, and A. Kraft, “Poly(p-phenylenevinylene) light-emitting diodes: enhanced electroluminescent efficiency through charge carrier confinement,” Appl. Phys. Lett. 61(23), 2793–2795 (1992).
[Crossref]

C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, “Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer,” Appl. Phys. Lett. 93(19), 193307 (2008).
[Crossref]

Chem. Phys. Lett. (2)

A. R. Buckley, M. D. Rahn, J. Hill, J. Cabanillas-Gonzalez, A. M. Fox, and D. D. C. Bradley, “Energy transfer dynamics in polyfluorene-based polymer blends,” Chem. Phys. Lett. 339(5–6), 331–336 (2001).
[Crossref]

E. W. Snedden, L. A. Cury, K. N. Bourdakos, and A. P. Monkman, “High photoluminescence quantum yield due to intramolecular energy transfer in the super yellow conjugated copolymer,” Chem. Phys. Lett. 490(1–3), 76–79 (2010).
[Crossref]

Discuss. Faraday Soc. (1)

T. Főrster, “10th spiers memorial lecture transfer mechanisms of electronic excitation,” Discuss. Faraday Soc. 27(0), 7–17 (1959).
[Crossref]

ETRI J. (1)

J. I. Lee, H. Y. Chu, H. Lee, J. Oh, L. M. Do, T. Zyung, J. Lee, and H. K. Shim, “Solution-processible blue-light-emitting polymers based on alkoxy-substituted poly(spirobifluorene),” ETRI J. 27(2), 181–187 (2005).
[Crossref]

J. Am. Chem. Soc. (1)

A. van Dijken, J. J. Bastiaansen, N. M. Kiggen, B. M. Langeveld, C. Rothe, A. Monkman, I. Bach, P. Stössel, and K. Brunner, “Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: polymer hosts for high-efficiency light-emitting diodes,” J. Am. Chem. Soc. 126(24), 7718–7727 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (2)

R. I. Frank and J. G. Simmons, “Space-charge effects on emission-limited current flow in insulators,” J. Appl. Phys. 38(2), 832–840 (1967).
[Crossref]

D. Poplavskyy, W. Su, and F. So, “Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer,” J. Appl. Phys. 98(1), 014501 (2005).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (3)

Y. Y. Kim, W. J. Hyun, K. H. Park, Y. G. Lee, J. Lee, and O. O. Park, “Enhanced performance of blue polymer light-emitting diodes by incorporation of Ag nanoparticles through the ligand-exchange process,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(44), 10445–10452 (2016).
[Crossref]

B. Park, J. N. Huh, W. S. Lee, and I.-G. Bae, “Simple and rapid cleaning of graphenes with a ‘bubble-free’ electrochemical treatment,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(9), 2234–2244 (2018).
[Crossref]

J. Choi, H. G. Jeon, O. E. Kwon, I.-G. Bae, J. Cho, Y. Kim, and B. Park, “Improved output characteristics of organic thin film transistors by using an insulator/protein overlayer and their applications,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(11), 2603–2613 (2015).
[Crossref]

J. Phys. Chem. C (1)

Y. Nishikitani, D. Takizawa, H. Nishide, S. Uchida, and S. Nishimura, “White polymer light-emitting electrochemical cells fabricated using energy donor and acceptor fluorescent π-conjugated polymers based on concepts of band-structure engineering,” J. Phys. Chem. C 119(52), 28701–28710 (2015).
[Crossref]

J. Phys. D Appl. Phys. (1)

P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” J. Phys. D Appl. Phys. 3(2), 151–156 (1970).
[Crossref]

J. Polym. Sci. A Polym. Chem. (1)

H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, “Synthesis and applications of low-bandgap conjugated polymers containing phenothiazine donor and various benzodiazole acceptors for polymer solar cells,” J. Polym. Sci. A Polym. Chem. 48(21), 4823–4834 (2010).
[Crossref]

J. Polym. Sci., B, Polym. Phys. (1)

M. U. Hassan, Y.-C. Liu, H. Butt, K. U. Hasan, J.-F. Chang, A. A. Olawoyin, and R. H. Friend, “Low thresholds for a nonconventional polymer blend-amplified spontaneous emission and lasing in F81- x:SYx system,” J. Polym. Sci., B, Polym. Phys. 54(1), 15–21 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

T. Tsujioka, H. Fujii, Y. Hamada, and H. Takahashi, “Driving duty ratio dependence of lifetime of tris(8-hydroxy-quinolinate)aluminum-based organic light-emitting diodes,” Jpn. J. Appl. Phys. 40(4A), 2523–2526 (2001).
[Crossref]

Mater. Horiz. (1)

C. Wang, B. Xu, M. Li, Z. Chi, Y. Xie, Q. Li, and Z. Li, “A stable tetraphenylethene derivative: aggregation-induced emission, different crystalline polymorphs, and totally different mechanoluminescence properties,” Mater. Horiz. 3(3), 220–225 (2016).
[Crossref]

Mater. Today (1)

A. Facchetti, “Semiconductors for organic transistors,” Mater. Today 10(3), 28–37 (2007).
[Crossref]

MRS Bull. (1)

Y. L. Loo and I. McCulloch, “Progress and challenges in commercialization of organic electronics,” MRS Bull. 33(7), 653–662 (2008).
[Crossref]

Nano Energy (1)

M. U. Hassan, Y.-C. Liu, K. U. Hasan, H. Butt, J.-F. Chang, and R. H. Friend, “Charge trap assisted high efficiency in new polymer-blend based light emitting diodes,” Nano Energy 21, 62–70 (2016).
[Crossref]

Nanoscale Res. Lett. (1)

H. P. Kim, A. R. Yusoff, H. J. Lee, S. J. Lee, H. M. Kim, G. J. Seo, J. H. Youn, and J. Jang, “Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics,” Nanoscale Res. Lett. 9(1), 323 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

E. H. Kim, S. H. Cho, J. H. Lee, B. Jeong, R. H. Kim, S. Yu, T. W. Lee, W. Shim, and C. Park, “Organic light emitting board for dynamic interactive display,” Nat. Commun. 8, 14964 (2017).
[Crossref] [PubMed]

Nature (4)

S. R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic,” Nature 428(6986), 911–918 (2004).
[Crossref] [PubMed]

J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347(6293), 539–541 (1990).
[Crossref]

H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers,” Nature 401(6754), 685–688 (1999).
[Crossref]

M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, and O. Wennerström, “Light-emitting diodes with variable colours from polymer blends,” Nature 372(6505), 444–446 (1994).
[Crossref]

Org. Electron. (1)

S. Gambino, A. K. Bansal, and I. D. W. Samuel, “Photophysical and charge-transporting properties of the copolymer superyellow,” Org. Electron. 14(8), 1980–1987 (2013).
[Crossref]

Science (2)

F. Hide, M. A. Díaz-García, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, “Semiconducting polymers: a new class of solid-state laser materials,” Science 273(5283), 1833–1836 (1996).
[Crossref]

N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene,” Science 258(5087), 1474–1476 (1992).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

L. P. Lu, C. E. Finlayson, and R. H. Friend, “Thick polymer light-emitting diodes with very high power efficiency using ohmic charge-injection layers,” Semicond. Sci. Technol. 29(2), 025005 (2014).
[Crossref]

Sol. Energ. Mat. Sol. C. (1)

C. J. Mulligan, M. Wilson, G. Bryant, B. Vaughan, X. Zhou, W. J. Belcher, and P. C. Dastoor, “A projection of commercial-scale organic photovoltaic module costs,” Sol. Energ. Mat. Sol. C. 120(Part A), 9–17 (2014).

Synth. Met. (1)

D. de Azevedo, J. N. Freitas, R. A. Domingues, M. M. Faleiros, and T. D. Z. Atvars, “Correlation between the PL and EL emissions of polyfluorene-based diodes using bilayers or polymer blends,” Synth. Met. 233, 28–34 (2017).
[Crossref]

Other (3)

D. F. Perepichka, I. F. Perepichka, and H. Meng, Light-emitting polymers (CRC Press, 2006), Chap. 8.

I. Majoul, Y. Jia, and R. Duden, Handbook of Biological Confocal Microscopy (Springer, 2006), Chap 45.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006), Chap 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Left: schematic illustration of the device architecture with an ITO anode, a PEDOT:PSS HIL, a blended polymeric emitting layer (EML), a CsF EIL, and an Al cathode. Right: molecular structures of the host blue-emitting copolymer of SPB-02T (SPB) and guest yellow-emitting copolymer of PDY-132 (SY) used in the blended polymeric EML.
Fig. 2
Fig. 2 (a) The UV-Vis absorption spectra of the spin-coated films of the pure SPB polymer (blue curve), the pure SY polymer (dark yellow curve), and the blended polymers of SPB:SY (95:5 wt%, green curve). (b) Cyclic voltammograms of SPB (upper) and SY (lower) for a scan rate of 0.05 V/s with a sweeping voltage range of −1.0 to + 1.0 V/VAg/AgCl. For comparison, the cyclic voltammogram of 1.0 mM ferrocene (Fc) is also shown in the upper figure (gray curve) (E1/2(Fc/Fc+) = + 0.45 V, glassy carbon working electrode, scan rate = 0.05 V/s). The insets in (b) show the respective energy level diagrams of SPB and SY.
Fig. 3
Fig. 3 AFM topographic images (left) and their corresponding KPFM surface potential maps (right) observed for the spin-coated SPB (a), SY (b), and SPB:SY (c) layers.
Fig. 4
Fig. 4 Current density-voltage (J-V) (a), luminance-voltage (L-V) (b), luminance efficiency-voltage (ηC-V) (c), and luminance efficiency-luminance (ηC-L) (d) characteristics of the PLEDs using the SPB, SY, and blended SPB:SY EMLs.
Fig. 5
Fig. 5 J-V curves of hole-only devices (a) and electron-only devices (b) using the SPB, SY, and blended SPB:SY layers. The fitting results are shown using dotted curves for the Jh-V curves in (a) (see Table 3). The insets show the energy band diagrams of the hole-only and electron-only devices.
Fig. 6
Fig. 6 (a) Normalized EL (solid curves) and PL (excitation wavelength: 350 nm) (dotted curves) spectra of the SPB, SY, and blended SPB:SY EMLs. (b) Normalized PL spectra of the blended SPB:SY (5 wt%) EML for various excitation wavelengths, together with the UV-Vis absorption of SY (dotted red curve) and emission spectra of SPB (blue dotted curve). (c) Left: time-resolved PL spectra of the PLEDs with the SPB, SY, and SPB:SY EMLs. Right: relevant energy-level diagrams of the blended SPB:SY EML.
Fig. 7
Fig. 7 (a) Photographs of three PLEDs (18 × 20 mm2) with SPB, SY, and blended SPB:SY EMLs in operation at 5.0 V (upper) and 12.0 V (lower), showing the bright green EL emission from the blended SPB:SY EMLs (SPB:SY = 95:5 wt%). The active area of each PLED is 2 × 3 mm2. (b) The CIE chromaticity diagram of the EL emissions of the PLEDs studied for various applied voltages. The arrow shows the direction assigned to the high voltage applied.

Tables (4)

Tables Icon

Table 1 Summary of the energy levels of the SPB and SY polymers

Tables Icon

Table 2 Summary of the Device Performance Outcomes of PLEDs with the SPB, SY, and SPB:SY EMLs

Tables Icon

Table 3 Summary of the hole transport parameters extracted by fitting hole-only currents injected from the ITO/PEDOT:PSS electrode

Tables Icon

Table 4 PL decay times (τis) and relative amplitudes (Ais) for the SPB, SY, and SPB:SY EMLs

Metrics