Abstract

We demonstrate Brillouin amplification of sub-phonon lifetime Stokes pulses based on an active frequency matching method. The main purpose is to extend Brillouin amplification to further applications requiring shorter pulse widths and break the phonon lifetime limit. A combination of theoretical simulations and experiments is used to achieve this goal. As a result, the Brillouin transient gain is identified as the key parameter to achieve sub-phonon lifetime Brillouin amplification. The experimental results agree well with the theoretical simulation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime

Zhaohong Liu, Yulei Wang, Yirui Wang, Sensen Li, Zhenxu Bai, Dianyang Lin, Weiming He, and Zhiwei Lu
Opt. Express 26(5) 5701-5710 (2018)

High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids

Chengyong Feng, Xiaozhen Xu, and Jean-Claude Diels
Opt. Express 25(11) 12421-12434 (2017)

Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering

Zhaohong Liu, Yulei Wang, Zhenxu Bai, Yirui Wang, Duo Jin, Hongli Wang, Hang Yuan, Dianyang Lin, and Zhiwei Lu
Opt. Express 26(18) 23051-23060 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear optics (Springer, 2003).
  2. M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin scattering: fundamentals and applications (Taylor and Francis, 2003).
  3. D. T. Hon, “Pulse compression by stimulated Brillouin scattering,” Opt. Lett. 5(12), 516–518 (1980).
    [Crossref] [PubMed]
  4. C. Feng, X. Xu, and J.-C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39(12), 3367–3370 (2014).
    [Crossref] [PubMed]
  5. A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
    [Crossref]
  6. X. Zhu, Y. Wang, Z. Lu, and H. Zhang, “Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme,” Opt. Express 23(18), 23318–23328 (2015).
    [Crossref] [PubMed]
  7. H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
    [Crossref] [PubMed]
  8. M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19(1), 7–14 (1983).
    [Crossref]
  9. C. Feng, X. Xu, and J. C. Diels, “High-energy sub-phonon lifetime pulse compression by stimulated Brillouin scattering in liquids,” Opt. Express 25(11), 12421–12434 (2017).
    [Crossref] [PubMed]
  10. Z. Liu, Y. Wang, Y. Wang, S. Li, Z. Bai, D. Lin, W. He, and Z. Lu, “Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime,” Opt. Express 26(5), 5701–5710 (2018).
    [Crossref] [PubMed]
  11. I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
    [Crossref]
  12. I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” EEE J. Quantum Electron. 35(12), 1812–1816 (1999).
    [Crossref]
  13. S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” EEE J. Quantum Electron. 33(3), 358–366 (1997).
    [Crossref]
  14. H. Yuan, Y. Wang, Z. Lu, Y. Wang, Z. Liu, Z. Bai, C. Cui, R. Liu, H. Zhang, and W. Hasi, “Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression,” Opt. Express 25(13), 14378–14388 (2017).
    [Crossref] [PubMed]
  15. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [Crossref] [PubMed]
  16. S. Afshaarvahid, V. Devrelis, and J. Munch, “Nature of intensity and phase modulations in stimulated Brillouin scattering,” Phys. Rev. A 57(5), 3961–3971 (1998).
    [Crossref]
  17. M. S. Mangir, J. J. Ottusch, D. C. Jones, and D. A. Rockwell, “Time-resolved measurements of stimulated-Brillouin-scattering phase jumps,” Phys. Rev. Lett. 68(11), 1702–1705 (1992).
    [Crossref] [PubMed]
  18. J. Munch, R. F. Wuerker, and M. J. Lefebvre, “Interaction length for optical phase conjugation by stimulated Brillouin scattering: an experimental investigation,” Appl. Opt. 28(15), 3099–3105 (1989).
    [Crossref] [PubMed]
  19. H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
    [Crossref] [PubMed]
  20. S. Li, Y. Wang, Z. Lu, L. Ding, P. Du, Y. Chen, Z. Zheng, D. Ba, Y. Dong, H. Yuan, Z. Bai, Z. Liu, and C. Cui, “High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system,” Opt. Express 23(2), 681–689 (2015).
    [Crossref] [PubMed]
  21. M. J. Damzen, M. H. R. Hutchinson, and W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” EEE J. Quantum Electron. 23(3), 328–334 (1987).
    [Crossref]
  22. A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
    [Crossref]
  23. Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
    [Crossref]
  24. W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
    [Crossref]

2018 (2)

2017 (2)

2015 (2)

2014 (2)

C. Feng, X. Xu, and J.-C. Diels, “Generation of 300 ps laser pulse with 1.2 J energy by stimulated Brillouin scattering in water at 532 nm,” Opt. Lett. 39(12), 3367–3370 (2014).
[Crossref] [PubMed]

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

2013 (1)

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

2009 (1)

2006 (1)

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

2005 (1)

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

1999 (1)

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” EEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

1998 (1)

S. Afshaarvahid, V. Devrelis, and J. Munch, “Nature of intensity and phase modulations in stimulated Brillouin scattering,” Phys. Rev. A 57(5), 3961–3971 (1998).
[Crossref]

1997 (1)

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” EEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

1992 (1)

M. S. Mangir, J. J. Ottusch, D. C. Jones, and D. A. Rockwell, “Time-resolved measurements of stimulated-Brillouin-scattering phase jumps,” Phys. Rev. Lett. 68(11), 1702–1705 (1992).
[Crossref] [PubMed]

1990 (1)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

1989 (1)

1987 (1)

M. J. Damzen, M. H. R. Hutchinson, and W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” EEE J. Quantum Electron. 23(3), 328–334 (1987).
[Crossref]

1983 (1)

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19(1), 7–14 (1983).
[Crossref]

1980 (1)

Afshaarvahid, S.

S. Afshaarvahid, V. Devrelis, and J. Munch, “Nature of intensity and phase modulations in stimulated Brillouin scattering,” Phys. Rev. A 57(5), 3961–3971 (1998).
[Crossref]

Ba, D.

Bai, Z.

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Buyko, S. A.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Chen, Y.

Cheng, S. X.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Cui, C.

Damzen, M.

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19(1), 7–14 (1983).
[Crossref]

Damzen, M. J.

M. J. Damzen, M. H. R. Hutchinson, and W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” EEE J. Quantum Electron. 23(3), 328–334 (1987).
[Crossref]

Devrelis, V.

S. Afshaarvahid, V. Devrelis, and J. Munch, “Nature of intensity and phase modulations in stimulated Brillouin scattering,” Phys. Rev. A 57(5), 3961–3971 (1998).
[Crossref]

Diels, J. C.

Diels, J.-C.

Ding, L.

Dolgopolov, Y. V.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Dong, Y.

Du, P.

Dudov, A. M.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Eroshenko, V. A.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Feng, C.

Fujita, H.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

Hasi, W.

Hasi, W. L. J.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Hatae, T.

He, W.

He, W. M.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Hogervorst, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” EEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” EEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

Hon, D. T.

Hutchinson, H.

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19(1), 7–14 (1983).
[Crossref]

Hutchinson, M. H. R.

M. J. Damzen, M. H. R. Hutchinson, and W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” EEE J. Quantum Electron. 23(3), 328–334 (1987).
[Crossref]

Jones, D. C.

M. S. Mangir, J. J. Ottusch, D. C. Jones, and D. A. Rockwell, “Time-resolved measurements of stimulated-Brillouin-scattering phase jumps,” Phys. Rev. Lett. 68(11), 1702–1705 (1992).
[Crossref] [PubMed]

Kitamura, S.

Kochemasov, G. G.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Kulikov, S. M.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Lefebvre, M. J.

Li, S.

Lin, D.

Lin, D. Y.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Liu, R.

Liu, Z.

Lu, Z.

Lu, Z. W.

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Lü, Z. W.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

Mangir, M. S.

M. S. Mangir, J. J. Ottusch, D. C. Jones, and D. A. Rockwell, “Time-resolved measurements of stimulated-Brillouin-scattering phase jumps,” Phys. Rev. Lett. 68(11), 1702–1705 (1992).
[Crossref] [PubMed]

Mitra, A.

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

Munch, J.

S. Afshaarvahid, V. Devrelis, and J. Munch, “Nature of intensity and phase modulations in stimulated Brillouin scattering,” Phys. Rev. A 57(5), 3961–3971 (1998).
[Crossref]

J. Munch, R. F. Wuerker, and M. J. Lefebvre, “Interaction length for optical phase conjugation by stimulated Brillouin scattering: an experimental investigation,” Appl. Opt. 28(15), 3099–3105 (1989).
[Crossref] [PubMed]

Nakatsuka, M.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Neshev, D.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” EEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

Novikov, V. N.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Ottusch, J. J.

M. S. Mangir, J. J. Ottusch, D. C. Jones, and D. A. Rockwell, “Time-resolved measurements of stimulated-Brillouin-scattering phase jumps,” Phys. Rev. Lett. 68(11), 1702–1705 (1992).
[Crossref] [PubMed]

Qiao, Z.

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Rockwell, D. A.

M. S. Mangir, J. J. Ottusch, D. C. Jones, and D. A. Rockwell, “Time-resolved measurements of stimulated-Brillouin-scattering phase jumps,” Phys. Rev. Lett. 68(11), 1702–1705 (1992).
[Crossref] [PubMed]

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

Schiemann, S.

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” EEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

Schroeder, W. A.

M. J. Damzen, M. H. R. Hutchinson, and W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” EEE J. Quantum Electron. 23(3), 328–334 (1987).
[Crossref]

Scott, A. M.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Shkapa, A. F.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Sukharev, S. A.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Ubachs, W.

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” EEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” EEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

Velchev, I.

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” EEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

Wang, X. Y.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Wang, Y.

Z. Liu, Y. Wang, Y. Wang, S. Li, Z. Bai, D. Lin, W. He, and Z. Lu, “Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime,” Opt. Express 26(5), 5701–5710 (2018).
[Crossref] [PubMed]

Z. Liu, Y. Wang, Y. Wang, S. Li, Z. Bai, D. Lin, W. He, and Z. Lu, “Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime,” Opt. Express 26(5), 5701–5710 (2018).
[Crossref] [PubMed]

H. Yuan, Y. Wang, Z. Lu, and Z. Zheng, “Active frequency matching in stimulated Brillouin amplification for production of a 2.4 J, 200 ps laser pulse,” Opt. Lett. 43(3), 511–514 (2018).
[Crossref] [PubMed]

H. Yuan, Y. Wang, Z. Lu, Y. Wang, Z. Liu, Z. Bai, C. Cui, R. Liu, H. Zhang, and W. Hasi, “Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression,” Opt. Express 25(13), 14378–14388 (2017).
[Crossref] [PubMed]

H. Yuan, Y. Wang, Z. Lu, Y. Wang, Z. Liu, Z. Bai, C. Cui, R. Liu, H. Zhang, and W. Hasi, “Fluctuation initiation of Stokes signal and its effect on stimulated Brillouin scattering pulse compression,” Opt. Express 25(13), 14378–14388 (2017).
[Crossref] [PubMed]

X. Zhu, Y. Wang, Z. Lu, and H. Zhang, “Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme,” Opt. Express 23(18), 23318–23328 (2015).
[Crossref] [PubMed]

S. Li, Y. Wang, Z. Lu, L. Ding, P. Du, Y. Chen, Z. Zheng, D. Ba, Y. Dong, H. Yuan, Z. Bai, Z. Liu, and C. Cui, “High-quality near-field beam achieved in a high-power laser based on SLM adaptive beam-shaping system,” Opt. Express 23(2), 681–689 (2015).
[Crossref] [PubMed]

Wuerker, R. F.

Xu, X.

Yoshida, H.

H. Yoshida, T. Hatae, H. Fujita, M. Nakatsuka, and S. Kitamura, “A high-energy 160-ps pulse generation by stimulated Brillouin scattering from heavy fluorocarbon liquid at 1064 nm wavelength,” Opt. Express 17(16), 13654–13662 (2009).
[Crossref] [PubMed]

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

Yuan, H.

Zhang, H.

Zhao, H.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

Zheng, Z.

Zheng, Z. X.

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Zhong, Z. M.

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Zhu, X.

Zykov, L. I.

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Z. X. Zheng, W. L. J. Hasi, H. Zhao, S. X. Cheng, X. Y. Wang, D. Y. Lin, W. M. He, and Z. W. Lü, “Compression characteristics of two new SBS mediums to generate 100-ps pulse for shock ignition,” Appl. Phys. B 116(3), 659–663 (2014).
[Crossref]

EEE J. Quantum Electron. (3)

M. J. Damzen, M. H. R. Hutchinson, and W. A. Schroeder, “Direct measurement of the acoustic decay times of hypersonic waves generated by SBS,” EEE J. Quantum Electron. 23(3), 328–334 (1987).
[Crossref]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” EEE J. Quantum Electron. 35(12), 1812–1816 (1999).
[Crossref]

S. Schiemann, W. Ubachs, and W. Hogervorst, “Efficient temporal compression of coherent nanosecond pulses in a compact SBS generator-amplifier setup,” EEE J. Quantum Electron. 33(3), 358–366 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Damzen and H. Hutchinson, “Laser pulse compression by stimulated Brillouin scattering in tapered waveguides,” IEEE J. Quantum Electron. 19(1), 7–14 (1983).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Mitra, H. Yoshida, H. Fujita, and M. Nakatsuka, “Sub nanosecond pulse generation by stimulated Brillouin scattering using FC-75 in an integrated setup with laser energy up to 1.5J,” Jpn. J. Appl. Phys. 45(3A), 1607–1611 (2006).
[Crossref]

Laser Part. Beams (1)

W. L. J. Hasi, X. Y. Wang, S. X. Cheng, Z. M. Zhong, Z. Qiao, Z. X. Zheng, D. Y. Lin, W. M. He, and Z. W. Lu, “Research on the compression properties of FC-3283 and FC-770 for generating pulse of hundreds picoseconds,” Laser Part. Beams 31(2), 301–305 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. A (3)

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[Crossref] [PubMed]

S. Afshaarvahid, V. Devrelis, and J. Munch, “Nature of intensity and phase modulations in stimulated Brillouin scattering,” Phys. Rev. A 57(5), 3961–3971 (1998).
[Crossref]

I. Velchev and W. Ubachs, “Statistical properties of the Stokes signal in stimulated Brillouin scattering pulse compressors,” Phys. Rev. A 71(4), 043810 (2005).
[Crossref]

Phys. Rev. Lett. (1)

M. S. Mangir, J. J. Ottusch, D. C. Jones, and D. A. Rockwell, “Time-resolved measurements of stimulated-Brillouin-scattering phase jumps,” Phys. Rev. Lett. 68(11), 1702–1705 (1992).
[Crossref] [PubMed]

Other (3)

R. W. Boyd, Nonlinear optics (Springer, 2003).

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin scattering: fundamentals and applications (Taylor and Francis, 2003).

A. M. Dudov, S. A. Buyko, Y. V. Dolgopolov, V. A. Eroshenko, G. G. Kochemasov, S. M. Kulikov, V. N. Novikov, A. F. Shkapa, S. A. Sukharev, L. I. Zykov, and A. M. Scott, “SBS properties of high-pressure xenon,” International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference, (1997).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Theoretical simulation of the amplified Stokes pulse width varies with the phonon lifetime.
Fig. 2
Fig. 2 Theoretical analysis of SBS amplification at different phonon lifetimes (a) 0.2 ns, (b) 0.6 ns, and (c) 1.3 ns.
Fig. 3
Fig. 3 The Brillouin transient gain varies with the phonon lifetime.
Fig. 4
Fig. 4 The scheme of experimental setup.
Fig. 5
Fig. 5 Experimental setup for SBS amplification; BS: Beam splitter, M: Mirror.
Fig. 6
Fig. 6 SBS amplification with different Brillouin media (a) FC-43 at pump 210 MW/cm2, (b) FC-3283 at pump 90 MW/cm2, and (c) 6 atm Xe at pump 650 MW/cm2.
Fig. 7
Fig. 7 The amplified Stokes pulse width varies with the pump intensity in FC-3283.
Fig. 8
Fig. 8 Brillouin amplification with FC-3283 at pump intensity of 150 MW/cm2.

Tables (1)

Tables Icon

Table 1 Brillouin media parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E p z + α 2 E p +( n c ) E p t = i ω p γ 2nc ρ 0 ρ E S ,
E S z + α 2 E S +( n c ) E S t = i ω S γ 2nc ρ 0 ρ * E p ,
2 ρ t 2 ( 2iω Γ B ) ρ t ( iω Γ B )ρ= γ 4π q B 2 E p E S * ,

Metrics