Abstract

Due to the interference of excitation lights and the perturbation of spattered particles, it is very difficult to detect the real-time evolution of ceramics damaged by pulsed laser. In this paper, a metrology “on-line detection of damage identification via the polarization spectrum imaging” is proposed to realize the real-time observation for damage evolution of ceramic composite irradiated by the laser. In this metrology, the detection principle is based on a mathematical model of polarization bidirectional reflectance distribution function. According to the Stokes vector analysis method, the damage law of the material surface under the continuous activating illuminations of multiple laser pulses and the increase of pulse energy is theoretically deduced and analyzed first, then the measured polarization spectra are compared with the microscopic imaging method to extract the edge texture information, and further the damage details are characterized with this metrology under the typical polarization parameters: I, Q, U, V, DOP and AOP. As a result, the damaging degree of ceramic composite irradiated by the 1064nm nanosecond pulsed laser, which is changed from the pulse power of 155.54 mJ and 14 pulses to 217.94 mJ and 1 pulse, can be identified with a series of polarization parameters in the different polarization spectrum images. These polarization parameters and their derived results reflect the physical and chemical evolutive properties including of texture orientation of the target surface that is different from other methods of damage detection. Finally, it can be concluded that this paper provides a new method for real-time detection of laser damage and lays a foundation for detection and identification under other strong light interference.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Research on laser induced damage in PLZT electro-optical transparent ceramic

Xuejiao Zhang, Qing Ye, Ronghui Qu, Haiwen Cai, and Fang Wei
Opt. Mater. Express 6(3) 952-960 (2016)

Quantitative phase imaging applied to laser damage detection and analysis

Dam-Bé L. Douti, Mhamad Chrayteh, Sherazade Aknoun, Thomas Doualle, Christophe Hecquet, Serge Monneret, and Laurent Gallais
Appl. Opt. 54(28) 8375-8382 (2015)

Time-resolved imaging of processes associated with exit-surface damage growth in fused silica following exposure to nanosecond laser pulses

Stavros G. Demos, Rajesh N. Raman, and Raluca A. Negres
Opt. Express 21(4) 4875-4888 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
    [Crossref]
  2. A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
    [Crossref]
  3. J. Tracy, S. Daly, and K. Sevener, “Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation,” J. Mater. Sci. 50(15), 5286–5299 (2015).
    [Crossref]
  4. J. Mirapeix, P. B. García-Allende, A. Cobo, O. M. Conde, and J. M. López-Higuera, “Feasibility study of imaging spectroscopy to monitor the quality of online welding,” Appl. Opt. 48(24), 4735–4742 (2009).
    [Crossref] [PubMed]
  5. S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology,” Opt. Express 25(13), 15161–15178 (2017).
    [Crossref] [PubMed]
  6. D. B. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, and L. Gallais, “Quantitative phase imaging applied to laser damage detection and analysis,” Appl. Opt. 54(28), 8375–8382 (2015).
    [Crossref] [PubMed]
  7. T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012).
    [Crossref]
  8. V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
    [Crossref]
  9. X. Liu, D. Li, Y. Zhao, X. Li, X. Ling, and J. Shao, “Automated damage diagnostic system for laser damage threshold tests,” Chin. Opt. Lett. 8(4), 407–410 (2010).
    [Crossref]
  10. K. Y. Yamamoto, D. A. Cremers, L. E. Foster, M. P. Davies, and R. D. Harris, “Laser-Induced Breakdown Spectroscopy Analysis of Solids Using A Long-Pulse (150 ns) Q-Switched Nd:YAG Laser,” Appl. Spectrosc. 59(9), 1082–1097 (2005).
    [Crossref] [PubMed]
  11. A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
    [Crossref]
  12. A. During, M. Commandre, C. Fossati, B. Bertussi, J. Y. Natoli, J. L. Rullier, H. Bercegol, and P. Bouchut, “Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage,” Opt. Express 11(20), 2497–2501 (2003).
    [Crossref] [PubMed]
  13. K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
    [Crossref]
  14. W. J. Choi, S. Y. Ryu, J. K. Kim, J. Y. Kim, D. U. Kim, and K. S. Chang, “Fast mapping of absorbing defects in optical materials by full-field photothermal reflectance microscopy,” Opt. Lett. 38(22), 4907–4910 (2013).
    [Crossref] [PubMed]
  15. T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
    [Crossref]
  16. S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
    [Crossref]
  17. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [Crossref]
  18. S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [Crossref] [PubMed]
  19. T. Mu, C. Zhang, C. Jia, and W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20(16), 18194–18201 (2012).
    [Crossref] [PubMed]
  20. T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
    [Crossref] [PubMed]
  21. D. H. Goldstein, “Polarimetric characterization of federal standard paints,” Proc. SPIE 4133, 112–123 (2000).
    [Crossref]
  22. R. Nothdurft and G. Yao, “Applying the polarization memory effect in polarization-gated subsurface imaging,” Opt. Express 14(11), 4656–4661 (2006).
    [Crossref] [PubMed]
  23. H. Kohzo, S. Hirokimi, Y. Hiromichi, and K. Hirohisa, “Application of an imaging spectropolarimeter to agro-environmental science,” Proc. SPIE 5234, 639–647 (2004).
  24. T. Prosch, D. Hennings, and E. Raschke, “Video polarimetry: a new imaging technique in atmospheric science,” Appl. Opt. 22(9), 1360–1363 (1983).
    [Crossref] [PubMed]
  25. L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
    [Crossref] [PubMed]
  26. M. Vedel, S. Breugnota, and N. Lechocinski, “Full Stokes polarization imaging camera,” Proc. SPIE 8160, 81600X (2011).
    [Crossref]
  27. J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
    [Crossref]
  28. J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
    [Crossref]
  29. J. R. Maxwell, J. Beard, S. Weiner, D. Ladd, and S. Ladd, “Bidirectional reflectance model validation and utilization,” Technical Report AFAL-TR-73–303, Environmental Research Institute of Michigan (ERIM), (1973).
  30. V. Thilak, D. G. Voelz, and C. D. Creusere, “Polarization-based index of refraction and reflection angle estimation for remote sensing applications,” Appl. Opt. 46(30), 7527–7536 (2007).
    [Crossref] [PubMed]
  31. J. A. Conant and F. J. Iannarilli, “Development of a combined bidirectional reflectance and directional emittance model for polarization modeling,” Proc. SPIE 4481, 206 (2002).
    [Crossref]
  32. H. Zhan and D. G. Voelz, “Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation,” Opt. Eng. 55(12), 123103 (2016).
    [Crossref]
  33. D. S. Flynn and C. Alexander, “Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix,” Opt. Eng. 34(6), 1646–1650 (1995).
    [Crossref]
  34. M. W. Hyde, J. D. Schmidt, and M. J. Havrilla, “A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces,” Opt. Express 17(24), 22138–22153 (2009).
    [Crossref] [PubMed]
  35. V. T. Prokopenko, S. A. Alekseev, N. V. Matveev, and I. V. Popov, “Simulation of the polarimetric bidirectional reflectance distribution function,” Opt. Spectrosc. 114(6), 961–964 (2013).
    [Crossref]
  36. W. L. Chen, S. H. Wang, W. Q. Jin, and J. W. Li, “Research of infrared polarization characteristics based on polarization Micro-surface theory,” J. Infrared Millim. W. 33(5), 507–514 (2014).
  37. R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
    [Crossref]

2017 (3)

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
[Crossref]

S. Ly, N. Shen, R. A. Negres, C. W. Carr, D. A. Alessi, J. D. Bude, A. Rigatti, and T. A. Laurence, “The role of defects in laser-induced modifications of silica coatings and fused silica using picosecond pulses at 1053 nm: I. Damage morphology,” Opt. Express 25(13), 15161–15178 (2017).
[Crossref] [PubMed]

2016 (1)

H. Zhan and D. G. Voelz, “Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation,” Opt. Eng. 55(12), 123103 (2016).
[Crossref]

2015 (3)

J. Tracy, S. Daly, and K. Sevener, “Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation,” J. Mater. Sci. 50(15), 5286–5299 (2015).
[Crossref]

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

D. B. Douti, M. Chrayteh, S. Aknoun, T. Doualle, C. Hecquet, S. Monneret, and L. Gallais, “Quantitative phase imaging applied to laser damage detection and analysis,” Appl. Opt. 54(28), 8375–8382 (2015).
[Crossref] [PubMed]

2014 (2)

K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
[Crossref]

W. L. Chen, S. H. Wang, W. Q. Jin, and J. W. Li, “Research of infrared polarization characteristics based on polarization Micro-surface theory,” J. Infrared Millim. W. 33(5), 507–514 (2014).

2013 (3)

V. T. Prokopenko, S. A. Alekseev, N. V. Matveev, and I. V. Popov, “Simulation of the polarimetric bidirectional reflectance distribution function,” Opt. Spectrosc. 114(6), 961–964 (2013).
[Crossref]

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

W. J. Choi, S. Y. Ryu, J. K. Kim, J. Y. Kim, D. U. Kim, and K. S. Chang, “Fast mapping of absorbing defects in optical materials by full-field photothermal reflectance microscopy,” Opt. Lett. 38(22), 4907–4910 (2013).
[Crossref] [PubMed]

2012 (2)

T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012).
[Crossref]

T. Mu, C. Zhang, C. Jia, and W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20(16), 18194–18201 (2012).
[Crossref] [PubMed]

2011 (1)

M. Vedel, S. Breugnota, and N. Lechocinski, “Full Stokes polarization imaging camera,” Proc. SPIE 8160, 81600X (2011).
[Crossref]

2010 (2)

X. Liu, D. Li, Y. Zhao, X. Li, X. Ling, and J. Shao, “Automated damage diagnostic system for laser damage threshold tests,” Chin. Opt. Lett. 8(4), 407–410 (2010).
[Crossref]

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

2009 (2)

2008 (2)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2005 (1)

2004 (2)

H. Kohzo, S. Hirokimi, Y. Hiromichi, and K. Hirohisa, “Application of an imaging spectropolarimeter to agro-environmental science,” Proc. SPIE 5234, 639–647 (2004).

A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
[Crossref]

2003 (1)

2002 (3)

J. A. Conant and F. J. Iannarilli, “Development of a combined bidirectional reflectance and directional emittance model for polarization modeling,” Proc. SPIE 4481, 206 (2002).
[Crossref]

S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
[Crossref] [PubMed]

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

2000 (1)

D. H. Goldstein, “Polarimetric characterization of federal standard paints,” Proc. SPIE 4133, 112–123 (2000).
[Crossref]

1999 (1)

J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
[Crossref]

1998 (1)

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

1995 (1)

D. S. Flynn and C. Alexander, “Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix,” Opt. Eng. 34(6), 1646–1650 (1995).
[Crossref]

1988 (1)

S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
[Crossref]

1983 (1)

Aknoun, S.

Alekseev, S. A.

V. T. Prokopenko, S. A. Alekseev, N. V. Matveev, and I. V. Popov, “Simulation of the polarimetric bidirectional reflectance distribution function,” Opt. Spectrosc. 114(6), 961–964 (2013).
[Crossref]

Alessi, D. A.

Alexander, C.

D. S. Flynn and C. Alexander, “Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix,” Opt. Eng. 34(6), 1646–1650 (1995).
[Crossref]

Aung, Y. L.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Bercegol, H.

Berthe, L.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Bertussi, B.

Blasband, C.

J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
[Crossref]

Bockenheimer, C.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Bouchut, P.

Boustie, M.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Bozoki, Z.

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

Breugnota, S.

M. Vedel, S. Breugnota, and N. Lechocinski, “Full Stokes polarization imaging camera,” Proc. SPIE 8160, 81600X (2011).
[Crossref]

Bude, J. D.

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Carr, C. W.

Casalegno, V.

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

Chang, K. S.

Chen, W. L.

W. L. Chen, S. H. Wang, W. Q. Jin, and J. W. Li, “Research of infrared polarization characteristics based on polarization Micro-surface theory,” J. Infrared Millim. W. 33(5), 507–514 (2014).

Chen, Z.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Chocinski-Arnault, L.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Choi, W. J.

Chrayteh, M.

Cobo, A.

Commandre, M.

Conant, J. A.

J. A. Conant and F. J. Iannarilli, “Development of a combined bidirectional reflectance and directional emittance model for polarization modeling,” Proc. SPIE 4481, 206 (2002).
[Crossref]

Conde, O. M.

Cremers, D. A.

Creusere, C. D.

Daly, S.

J. Tracy, S. Daly, and K. Sevener, “Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation,” J. Mater. Sci. 50(15), 5286–5299 (2015).
[Crossref]

Davies, M. P.

Demos, S.

Doualle, T.

Douti, D. B.

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Duparré, A.

T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012).
[Crossref]

During, A.

Ecault, R.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Ehrhart, B.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Elg, A. P.

S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
[Crossref]

Ferraris, M.

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

Flynn, D. S.

D. S. Flynn and C. Alexander, “Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix,” Opt. Eng. 34(6), 1646–1650 (1995).
[Crossref]

Fossati, C.

Foster, L. E.

Fujimoto, J.

Gallais, L.

García-Allende, P. B.

Gillenwater, A.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Goldstein, D. H.

D. H. Goldstein, “Polarimetric characterization of federal standard paints,” Proc. SPIE 4133, 112–123 (2000).
[Crossref]

Harris, R. D.

Havrilla, M. J.

Hecquet, C.

Hennings, D.

Herffurth, T.

T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012).
[Crossref]

Hilgers, J. W.

J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
[Crossref]

Hirohisa, K.

H. Kohzo, S. Hirokimi, Y. Hiromichi, and K. Hirohisa, “Application of an imaging spectropolarimeter to agro-environmental science,” Proc. SPIE 5234, 639–647 (2004).

Hirokimi, S.

H. Kohzo, S. Hirokimi, Y. Hiromichi, and K. Hirohisa, “Application of an imaging spectropolarimeter to agro-environmental science,” Proc. SPIE 5234, 639–647 (2004).

Hiromichi, Y.

H. Kohzo, S. Hirokimi, Y. Hiromichi, and K. Hirohisa, “Application of an imaging spectropolarimeter to agro-environmental science,” Proc. SPIE 5234, 639–647 (2004).

Hyde, M. W.

Iannarilli, F. J.

J. A. Conant and F. J. Iannarilli, “Development of a combined bidirectional reflectance and directional emittance model for polarization modeling,” Proc. SPIE 4481, 206 (2002).
[Crossref]

Ikesue, A.

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Jacobs, S. D.

K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
[Crossref]

Jafolla, J. C.

J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
[Crossref]

Jia, C.

Jin, W. Q.

W. L. Chen, S. H. Wang, W. Q. Jin, and J. W. Li, “Research of infrared polarization characteristics based on polarization Micro-surface theory,” J. Infrared Millim. W. 33(5), 507–514 (2014).

Jitsuno, T.

K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
[Crossref]

Ju, H. J.

J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
[Crossref]

Kan, C. W.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Kim, D. U.

Kim, J. K.

Kim, J. Y.

Kohzo, H.

H. Kohzo, S. Hirokimi, Y. Hiromichi, and K. Hirohisa, “Application of an imaging spectropolarimeter to agro-environmental science,” Proc. SPIE 5234, 639–647 (2004).

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Laurence, T. A.

Lechocinski, N.

M. Vedel, S. Breugnota, and N. Lechocinski, “Full Stokes polarization imaging camera,” Proc. SPIE 8160, 81600X (2011).
[Crossref]

Li, D.

Li, J. W.

W. L. Chen, S. H. Wang, W. Q. Jin, and J. W. Li, “Research of infrared polarization characteristics based on polarization Micro-surface theory,” J. Infrared Millim. W. 33(5), 507–514 (2014).

Li, X.

Liang, J.

J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
[Crossref]

Liang, R.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Ling, X.

Liu, X.

López-Higuera, J. M.

Ly, S.

Markey, M. K.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Matthias, E.

S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
[Crossref]

Matveev, N. V.

V. T. Prokopenko, S. A. Alekseev, N. V. Matveev, and I. V. Popov, “Simulation of the polarimetric bidirectional reflectance distribution function,” Opt. Spectrosc. 114(6), 961–964 (2013).
[Crossref]

Meier, S. R.

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

Mero, M.

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

Mikami, K.

K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
[Crossref]

Mingesz, R.

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

Minoshima, K.

Mirapeix, J.

Monneret, S.

Motokoshi, S.

K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
[Crossref]

Mu, T.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

T. Mu, C. Zhang, C. Jia, and W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20(16), 18194–18201 (2012).
[Crossref] [PubMed]

Natoli, J. Y.

Negres, R. A.

Nichols, M. A.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Nieman, L. T.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Nothdurft, R.

Osvay, K.

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

Pacheco, S.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Papernov, S.

K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
[Crossref]

Petzoldt, S.

S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
[Crossref]

Pintsuk, G.

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

Pons, F.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Popov, I. V.

V. T. Prokopenko, S. A. Alekseev, N. V. Matveev, and I. V. Popov, “Simulation of the polarimetric bidirectional reflectance distribution function,” Opt. Spectrosc. 114(6), 961–964 (2013).
[Crossref]

Priest, R. G.

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

Prokopenko, V. T.

V. T. Prokopenko, S. A. Alekseev, N. V. Matveev, and I. V. Popov, “Simulation of the polarimetric bidirectional reflectance distribution function,” Opt. Spectrosc. 114(6), 961–964 (2013).
[Crossref]

Prosch, T.

Qu, E. S.

J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
[Crossref]

Raether, R. G.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Raschke, E.

Reichling, M.

S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
[Crossref]

Reif, J.

S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
[Crossref]

Ren, L. Y.

J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
[Crossref]

Ren, W.

Reynolds, W. R.

J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
[Crossref]

Rigatti, A.

Rullier, J. L.

Ryu, S. Y.

Salvo, M.

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

Schmidt, J. D.

Schröder, S.

T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012).
[Crossref]

Sevener, K.

J. Tracy, S. Daly, and K. Sevener, “Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation,” J. Mater. Sci. 50(15), 5286–5299 (2015).
[Crossref]

Shao, J.

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Shen, N.

Sokolov, K.

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

Somoskoi, T.

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

Staggs, M.

Thilak, V.

Thomas, D. J.

J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
[Crossref]

Thomas, I. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

Touchard, F.

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

Tracy, J.

J. Tracy, S. Daly, and K. Sevener, “Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation,” J. Mater. Sci. 50(15), 5286–5299 (2015).
[Crossref]

Trost, M.

T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012).
[Crossref]

Valle, M.

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

Vass, C.

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

Vavassori, P.

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

Vedel, M.

M. Vedel, S. Breugnota, and N. Lechocinski, “Full Stokes polarization imaging camera,” Proc. SPIE 8160, 81600X (2011).
[Crossref]

Voelz, D. G.

H. Zhan and D. G. Voelz, “Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation,” Opt. Eng. 55(12), 123103 (2016).
[Crossref]

V. Thilak, D. G. Voelz, and C. D. Creusere, “Polarization-based index of refraction and reflection angle estimation for remote sensing applications,” Appl. Opt. 46(30), 7527–7536 (2007).
[Crossref] [PubMed]

Wang, S. H.

W. L. Chen, S. H. Wang, W. Q. Jin, and J. W. Li, “Research of infrared polarization characteristics based on polarization Micro-surface theory,” J. Infrared Millim. W. 33(5), 507–514 (2014).

Yamamoto, K. Y.

Yao, G.

Zhan, H.

H. Zhan and D. G. Voelz, “Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation,” Opt. Eng. 55(12), 123103 (2016).
[Crossref]

Zhang, C.

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

T. Mu, C. Zhang, C. Jia, and W. Ren, “Static hyperspectral imaging polarimeter for full linear Stokes parameters,” Opt. Express 20(16), 18194–18201 (2012).
[Crossref] [PubMed]

Zhang, W. F.

J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
[Crossref]

Zhao, Y.

Acta Opt. Sin. (1)

J. Liang, H. J. Ju, W. F. Zhang, L. Y. Ren, and E. S. Qu, “Review of Optical Polarimetric Dehazing Technique,” Acta Opt. Sin. 37(4), 0400001 (2017).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

S. Petzoldt, A. P. Elg, M. Reichling, J. Reif, and E. Matthias, “Surface laser damage thresholds determined by photoacoustic deflection,” Appl. Phys. Lett. 53(21), 2005–2007 (1988).
[Crossref]

Appl. Spectrosc. (1)

Chin. Opt. Lett. (1)

Composites Pan A: Applied Science and Manufacturing (1)

R. Ecault, M. Boustie, F. Touchard, F. Pons, L. Berthe, L. Chocinski-Arnault, B. Ehrhart, and C. Bockenheimer, “A study of composite material damage induced by laser shock waves,” Composites Pan A: Applied Science and Manufacturing 53, 54–64 (2013).
[Crossref]

J. Biomed. Opt. (1)

L. T. Nieman, C. W. Kan, A. Gillenwater, M. K. Markey, and K. Sokolov, “Probing local tissue changes in the oral cavity for early detection of cancer using oblique polarized reflectance spectroscopy: a pilot clinical trial,” J. Biomed. Opt. 13(2), 024011 (2008).
[Crossref] [PubMed]

J. Infrared Millim. W. (1)

W. L. Chen, S. H. Wang, W. Q. Jin, and J. W. Li, “Research of infrared polarization characteristics based on polarization Micro-surface theory,” J. Infrared Millim. W. 33(5), 507–514 (2014).

J. Mater. Sci. (1)

J. Tracy, S. Daly, and K. Sevener, “Multiscale damage characterization in continuous fiber ceramic matrix composites using digital image correlation,” J. Mater. Sci. 50(15), 5286–5299 (2015).
[Crossref]

J. Nucl. Mater. (1)

V. Casalegno, P. Vavassori, M. Valle, M. Ferraris, M. Salvo, and G. Pintsuk, “Measurement of thermal properties of a ceramic/metal joint by laser flash method,” J. Nucl. Mater. 407(2), 83–87 (2010).
[Crossref]

Laser Phys. (1)

T. Somoskoi, C. Vass, M. Mero, R. Mingesz, Z. Bozoki, and K. Osvay, “Comparison of simultaneous on-line optical and acoustic laser damage detection methods in the nanosecond pulse duration domain,” Laser Phys. 25(5), 056002 (2015).
[Crossref]

Nat. Photonics (1)

A. Ikesue and Y. L. Aung, “Ceramic laser materials,” Nat. Photonics 2(12), 721–727 (2008).
[Crossref]

Opt. Commun. (1)

A. During, C. Fossati, and M. Commandre, “Photothermal deflection microscopy for imaging sub-micronic defects in optical materials,” Opt. Commun. 230, 279–286 (2004).
[Crossref]

Opt. Eng. (3)

H. Zhan and D. G. Voelz, “Modified polarimetric bidirectional reflectance distribution function with diffuse scattering: surface parameter estimation,” Opt. Eng. 55(12), 123103 (2016).
[Crossref]

D. S. Flynn and C. Alexander, “Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix,” Opt. Eng. 34(6), 1646–1650 (1995).
[Crossref]

R. G. Priest and S. R. Meier, “Polarimetric microfacet scattering theory with applications to absorptive and reflective surfaces,” Opt. Eng. 41(5), 988–993 (2002).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Opt. Spectrosc. (1)

V. T. Prokopenko, S. A. Alekseev, N. V. Matveev, and I. V. Popov, “Simulation of the polarimetric bidirectional reflectance distribution function,” Opt. Spectrosc. 114(6), 961–964 (2013).
[Crossref]

Proc. SPIE (8)

J. A. Conant and F. J. Iannarilli, “Development of a combined bidirectional reflectance and directional emittance model for polarization modeling,” Proc. SPIE 4481, 206 (2002).
[Crossref]

J. C. Jafolla, D. J. Thomas, J. W. Hilgers, W. R. Reynolds, and C. Blasband, “Theory and measurement of bidirectional reflectance for signature analysis,” Proc. SPIE 3699, 2–15 (1999).
[Crossref]

H. Kohzo, S. Hirokimi, Y. Hiromichi, and K. Hirohisa, “Application of an imaging spectropolarimeter to agro-environmental science,” Proc. SPIE 5234, 639–647 (2004).

M. Vedel, S. Breugnota, and N. Lechocinski, “Full Stokes polarization imaging camera,” Proc. SPIE 8160, 81600X (2011).
[Crossref]

D. H. Goldstein, “Polarimetric characterization of federal standard paints,” Proc. SPIE 4133, 112–123 (2000).
[Crossref]

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Nichols, M. Dovik, R. G. Raether, and I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[Crossref]

K. Mikami, S. Papernov, S. Motokoshi, S. D. Jacobs, and T. Jitsuno, “Detection of the laser-damage onset in optical coatings by the photothermal deflection method,” Proc. SPIE 9237, 923721 (2014).
[Crossref]

T. Herffurth, S. Schröder, M. Trost, and A. Duparré, “Light scattering to detect imperfections relevant for laser-induced damage,” Proc. SPIE 8530, 85301B (2012).
[Crossref]

Sci. Rep. (1)

T. Mu, S. Pacheco, Z. Chen, C. Zhang, and R. Liang, “Snapshot linear-Stokes imaging spectropolarimeter using division-of-focal-plane polarimetry and integral field spectroscopy,” Sci. Rep. 7(1), 42115 (2017).
[Crossref] [PubMed]

Other (1)

J. R. Maxwell, J. Beard, S. Weiner, D. Ladd, and S. Ladd, “Bidirectional reflectance model validation and utilization,” Technical Report AFAL-TR-73–303, Environmental Research Institute of Michigan (ERIM), (1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic (left) and pBRDF physical model (right) of the laser ablating composite ceramic materials.
Fig. 2
Fig. 2 Nanosecond laser damage composite ceramic spectrum.
Fig. 3
Fig. 3 Ceramic surface topography when not damaged. (a) 580 nm spectral image of ceramic undamaged surface; (b) metallographic microscopy image.
Fig. 4
Fig. 4 Evolution of damage morphology of composite ceramics with time under circular polarization I (135°, 90°).
Fig. 5
Fig. 5 Ceramic materials with four different polarization parameters collected at a single wavelength of 580 nm with varying pulse number N damage polarization source image.
Fig. 6
Fig. 6 Uneven changes in the surface of composite ceramics as the number of pulses increases. (a) N = 14; (b) N = 20; (c) N = 40 and (d) N = 120.
Fig. 7
Fig. 7 Normalized polarization characteristic matching image N = 1, energy is 155.44 mJ.
Fig. 8
Fig. 8 Normalized polarization characteristic matching image N = 1, energy is 217.94 mJ.
Fig. 9
Fig. 9 Normalized polarization characteristic matching image N = 14, energy is 155.44 mJ.
Fig. 10
Fig. 10 Normalized polarization characteristic matching image N = 14, energy is 217.94 mJ.
Fig. 11
Fig. 11 Metallographic microscopic image of the damage morphology with the number of laser pulses N at an energy of 155.54 mJ. (a) N = 1; (b) N = 3; (c) N = 14 and (d) N = 20.
Fig. 12
Fig. 12 Schematic diagram of the area after the energy 155.54 mJ 20 pulses damage morphology is divided. Region 1 represents the shock wave action zone; region 2 represents the ablation of the outer edge of the ring; region 3 represents the ablation of the inner edge of the ring; region 4 represents the laser spot area; region 5 represents the edge of the central ablation zone and region 6 represents the central ablation zone.
Fig. 13
Fig. 13 The relationship between the mean value of polarization and the number of pulses in different damage areas of composite ceramic damage morphology after the energy 155.54 mJ damage.
Fig. 14
Fig. 14 The polarization degree visual heightening image of the damage composite ceramic morphology under the different pulse number N of 217.94mJ energy. (a) N = 1; (b) N = 3; (c) N = 20; (d) N = 60; (e) N = 100 and (f) N = 120.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

f( θ i , ϕ i , θ r , ϕ r ,λ)= 1 2π 1 4 σ 2 1 cos 4 α exp(( tan 2 α/2 σ 2 )) cos( θ i )cos( θ r ) Μ( θ i , θ r , ϕ i , ϕ r ,λ),
( 1 2 ( | S 11 | 2 + | S 12 | 2 + | S 22 | 2 + | S 21 | 2 ) 1 2 ( | S 11 | 2 | S 12 | 2 | S 22 | 2 + | S 21 | 2 ) Re( S 11 S 12 + S 21 S 22 ) Im( S 11 S 12 + S 21 S 22 ) 1 2 ( | S 11 | 2 + | S 12 | 2 | S 22 | 2 | S 21 | 2 ) 1 2 ( | S 11 | 2 | S 12 | 2 + | S 22 | 2 | S 21 | 2 ) Re( S 11 S 12 S 21 S 22 ) Im( S 11 S 12 S 21 S 22 ) Re( S 11 S 21 + S 12 S 22 ) Re( S 11 S 21 S 12 S 22 ) Re( S 11 S 22 + S 12 S 21 ) Im( S 11 S 22 S 12 S 21 ) Im( S 11 S 21 + S 12 S 22 ) Im( S 11 S 21 S 12 S 22 ) Im( S 11 S 22 + S 12 S 21 ) Re( S 11 S 22 S 12 S 21 ) ).
DHR( θ i )= f( θ i , θ r , ϕ i , ϕ r ,λ) cos θ r d Ω r ,
( S 0 r S 1 r S 2 r S 3 r )=( f 00 cos θ r d Ω r f 01 cos θ r d Ω r f 02 cos θ r d Ω r f 03 cos θ r d Ω r f 10 cos θ r d Ω r f 11 cos θ r d Ω r f 12 cos θ r d Ω r f 13 cos θ r d Ω r f 20 cos θ r d Ω r f 21 cos θ r d Ω r f 22 cos θ r d Ω r f 23 cos θ r d Ω r f 30 cos θ r d Ω r f 31 cos θ r d Ω r f 32 cos θ r d Ω r f 33 cos θ r d Ω r )( S 0 i S 1 i S 2 i S 3 i ),
S in = S r = f( θ i , ϕ i , θ r , ϕ r ,λ) cos θ r d Ω r S i ,
( m 00 m 10 m 20 m 30 m 01 m 11 m 21 m 31 )=( 1 2 ( | S 11 | 2 + | S 12 | 2 + | S 22 | 2 + | S 21 | 2 ) 1 2 ( | S 11 | 2 + | S 12 | 2 | S 22 | 2 | S 21 | 2 ) Re( S 11 S 21 + S 12 S 22 ) Im( S 11 S 21 + S 12 S 22 ) 1 2 ( | S 11 | 2 | S 12 | 2 | S 22 | 2 + | S 21 | 2 ) 1 2 ( | S 11 | 2 | S 12 | 2 + | S 22 | 2 | S 21 | 2 ) Re( S 11 S 21 S 12 S 22 ) Im( S 11 S 21 S 12 S 22 ) ),
( E s r E p r )=( cos( η r ) sin( η r ) sin( η r ) cos( η r ) )( a ss 0 0 a pp )( cos( η i ) sin( η i ) sin( η i ) cos( η i ) )( E s i E p i ) ( E s r E p r )=( S 11 S 12 S 21 S 22 )( E s i E p i ),
cos( η i )={ [ cos( θ i )+cos( θ r ) ]/ [ 2cos(γ) ]cos( θ i )cos(γ) }/sin( θ i )sin(γ),
cos( η r )={ [ cos( θ i )+cos( θ r ) ]/ [ 2cos(γ) ]cos( θ r )cos(γ) }/sin( θ r )sin(γ),
( m 00 m 10 m 20 m 30 m 01 m 11 m 21 m 31 )= 1 2 ( ( | a ss | 2 + | a pp | 2 ) cos( 2 η r )( | a ss | 2 | a pp | 2 ) sin( 2 η r )( | a ss | 2 | a pp | 2 ) 0 cos( 2 η i )( | a ss | 2 | a pp | 2 ) cos( 2 η r )cos( 2 η i )( | a ss | 2 + | a pp | 2 ) cos( 2 η r )sin( 2 η i )( a ss a pp +c.c. )sin( 2 η r )sin( 2 η i )( | a ss | 2 | a pp | 2 ) 2isin( 2 η i )( a ss a pp a ss a pp ) ),
( I Q U V )=( S 0 in S 1 in S 2 in S 3 in )=[ 1 8π σ 2 1 cos 4 α exp(( tan 2 α/2 σ 2 )) cos( θ i ) [ 2 cos 2 ( η i ) | a ss | 2 +2 sin 2 ( η i ) | a pp | 2 ]dΩ I bg 1 8π σ 2 1 cos 4 α exp(( tan 2 α/2 σ 2 )) cos( θ i ) cos(2 η r )[ 2 cos 2 ( η i ) | a ss | 2 2 sin 2 ( η i ) | a pp | 2 ]dΩ I bg 1 8π σ 2 1 cos 4 α exp(( tan 2 α/2 σ 2 )) cos( θ i ) { sin(2 η r )[ 2 sin 2 ( η i ) | a ss | 2 +2 cos 2 ( η i ) | a pp | 2 ] +cos(2 η r )sin(2 η i )( a ss a pp + a ss a pp ) }dΩ I bg 1 8π σ 2 1 cos 4 α exp(( tan 2 α/2 σ 2 )) cos( θ i ) [ 2isin(2 η i )( a ss a pp a ss a pp ) ]dΩ I bg ],
DOP= Q 2 + U 2 + V 2 I ,
AOP= 1 2 arctan( U Q ),
M β i ,δ = [ 1 0 0 0 0 cos2 β i sin2 β i 0 0 sin2 β i cos2 β i 0 0 0 0 1 ] T [ 1 0 0 0 0 1 0 0 0 0 cosδ sinδ 0 0 sinδ cosδ ][ 1 0 0 0 0 cos2 β i sin2 β i 0 0 sin2 β i cos2 β i 0 0 0 0 1 ],
M α =[ 1 cos2α 0 0 cos2α cos 2 2α cos2αsin2α 0 sin2α cos2αsin2α sin 2 2α 0 0 0 0 0 ],
S in =[ I Q U V ]= 1 2 [ 1 1 0 0 1 1 0 0 1 1 0 2 1 1 2 0 ][ I 1 I 2 I 3 I 4 ].

Metrics