Abstract

We introduce a high-performance hyperspectral camera based on the Fourier-transform approach, where the two delayed images are generated by the Translating-Wedge-Based Identical Pulses eNcoding System (TWINS) [Opt. Lett. 37, 3027 (2012) [CrossRef]  ], a common-path birefringent interferometer that combines compactness, intrinsic interferometric delay precision, long-term stability and insensitivity to vibrations. In our imaging system, TWINS is employed as a time-scanning interferometer and generates high-contrast interferograms at the single-pixel level. The camera exhibits high throughput and provides hyperspectral images with spectral background level of −30dB and resolution of 3 THz in the visible spectral range. We show high-quality spectral measurements of absolute reflectance, fluorescence and transmission of artistic objects with various lateral sizes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hyperspectral imaging with a liquid crystal polarization interferometer

Alex Hegyi and Joerg Martini
Opt. Express 23(22) 28742-28754 (2015)

Compact birefringent interferometer for Fourier transform hyperspectral imaging

Caixun Bai, Jianxin Li, Yixuan Xu, Heng Yuan, and Jie Liu
Opt. Express 26(2) 1703-1725 (2018)

Infrared hyperspectral imaging polarimeter using birefringent prisms

Julia Craven-Jones, Michael W. Kudenov, Maryn G. Stapelbroek, and Eustace L. Dereniak
Appl. Opt. 50(8) 1170-1185 (2011)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE, 1997).
  2. M. T. Eismann, Hyperspectral Remote Sensing (SPIE, 2012).
  3. H. F. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (John Wiley & Sons, 2007).
  4. J. M. Amigo, H. Babamoradi, and S. Elcoroaristizabal, “Hyperspectral image analysis. A tutorial,” Anal. Chim. Acta 896, 34–51 (2015).
    [Crossref] [PubMed]
  5. E. Ben-Dor, T. Malthus, A. Plaza, and D. Schlapfer, Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), Chap 8.
  6. R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
    [Crossref]
  7. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
    [Crossref] [PubMed]
  8. L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
    [Crossref]
  9. M. Huang, C. He, Q. Zhu, and J. Qin, “Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging,” Appl. Sci. (Basel) 6(6), 183 (2016).
    [Crossref]
  10. P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
    [Crossref] [PubMed]
  11. R. D. P. M. Scafutto, C. R. de Souza Filho, and B. Rivard, “Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging,” Remote Sens. Environ. 179, 116–130 (2016).
    [Crossref]
  12. M. Liu, T. Wang, A. K. Skidmore, and X. Liu, “Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images,” Sci. Total Environ. 637-638, 18–29 (2018).
    [Crossref] [PubMed]
  13. H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
    [Crossref]
  14. C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51, 3–16 (2006).
    [Crossref]
  15. C. Cucci, J. K. Delaney, and M. Picollo, “Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts,” Acc. Chem. Res. 49(10), 2070–2079 (2016).
    [Crossref] [PubMed]
  16. N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  17. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [Crossref]
  18. S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Elsevier, 2001).
  19. P. B. Fellgett, “On the ultimate sensitivity and practical performance of radiation detectors,” J. Opt. Soc. Am. 39(11), 970–976 (1949).
    [Crossref] [PubMed]
  20. P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
    [Crossref]
  21. A. P. Fossi, Y. Ferrec, N. Roux, O. D’almeida, N. Guerineau, and H. Sauer, “Miniature and cooled hyperspectral camera for outdoor surveillance applications in the mid-infrared,” Opt. Lett. 41(9), 1901–1904 (2016).
    [Crossref] [PubMed]
  22. M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
    [Crossref]
  23. A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
    [Crossref] [PubMed]
  24. I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
    [Crossref] [PubMed]
  25. A. Jullien, R. Pascal, U. Bortolozzo, N. Forget, and S. Residori, “High-resolution hyperspectral imaging with cascaded liquid crystal cells,” Optica 4(4), 400–405 (2017).
    [Crossref]
  26. M. Françon and S. Mallick, Polarization Interferometers Applications in Microscopy and Macroscopy (Wiley-Interscience, 1972).
  27. A. Harvey and D. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
    [Crossref] [PubMed]
  28. C. Bai, J. Li, Y. Xu, H. Yuan, and J. Liu, “Compact birefringent interferometer for Fourier transform hyperspectral imaging,” Opt. Express 26(2), 1703–1725 (2018).
    [Crossref] [PubMed]
  29. T. Mu, C. Zhang, Q. Li, L. Zhang, Y. Wei, and Q. Chen, “Achromatic Savart polariscope: choice of materials,” Opt. Express 22(5), 5043–5051 (2014).
    [Crossref] [PubMed]
  30. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  31. C. A. Manzoni, D. Brida, and G. N. F. Cerullo, US Patent: 9182284 (2015).
  32. A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
    [Crossref] [PubMed]
  33. A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), A483–A490 (2017).
    [Crossref] [PubMed]
  34. J. Réhault, R. Borrego-Varillas, A. Oriana, C. Manzoni, C. P. Hauri, J. Helbing, and G. Cerullo, “Fourier transform spectroscopy in the vibrational fingerprint region with a birefringent interferometer,” Opt. Express 25(4), 4403–4413 (2017).
    [Crossref] [PubMed]
  35. J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
    [Crossref] [PubMed]
  36. V. Saptari, Fourier Transform Spectroscopy Instrumentation Engineering (SPIE, 2004).
  37. D. Comelli, V. Capogrosso, C. Orsenigo, and A. Nevin, “Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects,” Herit. Sci. 4(1), 21 (2016).
    [Crossref]
  38. G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
    [Crossref] [PubMed]
  39. W. Meulebroeck, H. Wouters, K. Nys, and H. Thienpont, “Authenticity screening of stained glass windows using optical spectroscopy,” Sci. Rep. 6(1), 37726 (2016).
    [Crossref] [PubMed]
  40. A. K. Jain and R. C. Dubes, Algorithms for Clustering Data (Prentice-Hall, 1988).

2018 (2)

M. Liu, T. Wang, A. K. Skidmore, and X. Liu, “Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images,” Sci. Total Environ. 637-638, 18–29 (2018).
[Crossref] [PubMed]

C. Bai, J. Li, Y. Xu, H. Yuan, and J. Liu, “Compact birefringent interferometer for Fourier transform hyperspectral imaging,” Opt. Express 26(2), 1703–1725 (2018).
[Crossref] [PubMed]

2017 (3)

2016 (8)

I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
[Crossref] [PubMed]

D. Comelli, V. Capogrosso, C. Orsenigo, and A. Nevin, “Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects,” Herit. Sci. 4(1), 21 (2016).
[Crossref]

A. Oriana, J. Réhault, F. Preda, D. Polli, and G. Cerullo, “Scanning Fourier transform spectrometer in the visible range based on birefringent wedges,” J. Opt. Soc. Am. A 33(7), 1415–1420 (2016).
[Crossref] [PubMed]

W. Meulebroeck, H. Wouters, K. Nys, and H. Thienpont, “Authenticity screening of stained glass windows using optical spectroscopy,” Sci. Rep. 6(1), 37726 (2016).
[Crossref] [PubMed]

M. Huang, C. He, Q. Zhu, and J. Qin, “Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging,” Appl. Sci. (Basel) 6(6), 183 (2016).
[Crossref]

C. Cucci, J. K. Delaney, and M. Picollo, “Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts,” Acc. Chem. Res. 49(10), 2070–2079 (2016).
[Crossref] [PubMed]

R. D. P. M. Scafutto, C. R. de Souza Filho, and B. Rivard, “Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging,” Remote Sens. Environ. 179, 116–130 (2016).
[Crossref]

A. P. Fossi, Y. Ferrec, N. Roux, O. D’almeida, N. Guerineau, and H. Sauer, “Miniature and cooled hyperspectral camera for outdoor surveillance applications in the mid-infrared,” Opt. Lett. 41(9), 1901–1904 (2016).
[Crossref] [PubMed]

2015 (2)

J. M. Amigo, H. Babamoradi, and S. Elcoroaristizabal, “Hyperspectral image analysis. A tutorial,” Anal. Chim. Acta 896, 34–51 (2015).
[Crossref] [PubMed]

A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (2)

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

2012 (2)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

2009 (1)

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

2008 (1)

2006 (1)

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51, 3–16 (2006).
[Crossref]

2005 (1)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

2004 (1)

2000 (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

1995 (1)

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
[Crossref]

1960 (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

1949 (1)

Abdulhalim, I.

I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
[Crossref] [PubMed]

AbuLeil, M.

I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
[Crossref] [PubMed]

Accorsi, G.

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

Amigo, J. M.

J. M. Amigo, H. Babamoradi, and S. Elcoroaristizabal, “Hyperspectral image analysis. A tutorial,” Anal. Chim. Acta 896, 34–51 (2015).
[Crossref] [PubMed]

Armaroli, N.

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

August, I.

I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
[Crossref] [PubMed]

Babamoradi, H.

J. M. Amigo, H. Babamoradi, and S. Elcoroaristizabal, “Hyperspectral image analysis. A tutorial,” Anal. Chim. Acta 896, 34–51 (2015).
[Crossref] [PubMed]

Baeten, V.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

Bai, C.

Bolognesi, M.

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

Boreman, G. D.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

Borrego-Varillas, R.

Bortolozzo, U.

Boudry, C.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

Brida, D.

Capogrosso, V.

D. Comelli, V. Capogrosso, C. Orsenigo, and A. Nevin, “Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects,” Herit. Sci. 4(1), 21 (2016).
[Crossref]

Cerullo, G.

Chen, Q.

Clementi, C.

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

Comelli, D.

D. Comelli, V. Capogrosso, C. Orsenigo, and A. Nevin, “Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects,” Herit. Sci. 4(1), 21 (2016).
[Crossref]

Cucci, C.

C. Cucci, J. K. Delaney, and M. Picollo, “Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts,” Acc. Chem. Res. 49(10), 2070–2079 (2016).
[Crossref] [PubMed]

D’almeida, O.

D’Andrea, C.

Dale, L. M.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

Dardenne, P.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

de Souza Filho, C. R.

R. D. P. M. Scafutto, C. R. de Souza Filho, and B. Rivard, “Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging,” Remote Sens. Environ. 179, 116–130 (2016).
[Crossref]

Delaney, J. K.

C. Cucci, J. K. Delaney, and M. Picollo, “Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts,” Acc. Chem. Res. 49(10), 2070–2079 (2016).
[Crossref] [PubMed]

Elcoroaristizabal, S.

J. M. Amigo, H. Babamoradi, and S. Elcoroaristizabal, “Hyperspectral image analysis. A tutorial,” Anal. Chim. Acta 896, 34–51 (2015).
[Crossref] [PubMed]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Fellgett, P. B.

Ferrec, Y.

Fischer, C.

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51, 3–16 (2006).
[Crossref]

Fletcher-Holmes, D.

Forget, N.

Fossi, A. P.

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Green, R. O.

Guerineau, N.

Hagen, N. A.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Harvey, A.

Hauer, J.

Hauri, C. P.

He, C.

M. Huang, C. He, Q. Zhu, and J. Qin, “Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging,” Appl. Sci. (Basel) 6(6), 183 (2016).
[Crossref]

Hegyi, A.

Helbing, J.

Huang, M.

M. Huang, C. He, Q. Zhu, and J. Qin, “Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging,” Appl. Sci. (Basel) 6(6), 183 (2016).
[Crossref]

Jacquinot, P.

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

Jullien, A.

Kakoulli, I.

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51, 3–16 (2006).
[Crossref]

Kudenov, M. W.

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Li, J.

Li, Q.

Liang, H.

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

Liu, J.

Liu, M.

M. Liu, T. Wang, A. K. Skidmore, and X. Liu, “Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images,” Sci. Total Environ. 637-638, 18–29 (2018).
[Crossref] [PubMed]

Liu, X.

M. Liu, T. Wang, A. K. Skidmore, and X. Liu, “Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images,” Sci. Total Environ. 637-638, 18–29 (2018).
[Crossref] [PubMed]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

Maiuri, M.

Manzoni, C.

Martini, J.

Meulebroeck, W.

W. Meulebroeck, H. Wouters, K. Nys, and H. Thienpont, “Authenticity screening of stained glass windows using optical spectroscopy,” Sci. Rep. 6(1), 37726 (2016).
[Crossref] [PubMed]

Miliani, C.

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

Mouroulis, P.

Mu, T.

Nevin, A.

D. Comelli, V. Capogrosso, C. Orsenigo, and A. Nevin, “Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects,” Herit. Sci. 4(1), 21 (2016).
[Crossref]

Nys, K.

W. Meulebroeck, H. Wouters, K. Nys, and H. Thienpont, “Authenticity screening of stained glass windows using optical spectroscopy,” Sci. Rep. 6(1), 37726 (2016).
[Crossref] [PubMed]

Oiknine, Y.

I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
[Crossref] [PubMed]

Oriana, A.

Orsenigo, C.

D. Comelli, V. Capogrosso, C. Orsenigo, and A. Nevin, “Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects,” Herit. Sci. 4(1), 21 (2016).
[Crossref]

Pascal, R.

Perri, A.

Persky, M. J.

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
[Crossref]

Picollo, M.

C. Cucci, J. K. Delaney, and M. Picollo, “Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts,” Acc. Chem. Res. 49(10), 2070–2079 (2016).
[Crossref] [PubMed]

Pierna, J. A. F.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

Polli, D.

Preda, F.

Qin, J.

M. Huang, C. He, Q. Zhu, and J. Qin, “Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging,” Appl. Sci. (Basel) 6(6), 183 (2016).
[Crossref]

Réhault, J.

Residori, S.

Rivard, B.

R. D. P. M. Scafutto, C. R. de Souza Filho, and B. Rivard, “Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging,” Remote Sens. Environ. 179, 116–130 (2016).
[Crossref]

Romani, A.

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

Rotar, I.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

Roux, N.

Sauer, H.

Scafutto, R. D. P. M.

R. D. P. M. Scafutto, C. R. de Souza Filho, and B. Rivard, “Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging,” Remote Sens. Environ. 179, 116–130 (2016).
[Crossref]

Sellar, R. G.

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

Skidmore, A. K.

M. Liu, T. Wang, A. K. Skidmore, and X. Liu, “Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images,” Sci. Total Environ. 637-638, 18–29 (2018).
[Crossref] [PubMed]

Stern, A.

I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
[Crossref] [PubMed]

Thewis, A.

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

Thienpont, H.

W. Meulebroeck, H. Wouters, K. Nys, and H. Thienpont, “Authenticity screening of stained glass windows using optical spectroscopy,” Sci. Rep. 6(1), 37726 (2016).
[Crossref] [PubMed]

Thyrhaug, E.

Verri, G.

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

Wang, T.

M. Liu, T. Wang, A. K. Skidmore, and X. Liu, “Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images,” Sci. Total Environ. 637-638, 18–29 (2018).
[Crossref] [PubMed]

Wei, Y.

Wilson, D. W.

Wouters, H.

W. Meulebroeck, H. Wouters, K. Nys, and H. Thienpont, “Authenticity screening of stained glass windows using optical spectroscopy,” Sci. Rep. 6(1), 37726 (2016).
[Crossref] [PubMed]

Xu, Y.

Yuan, H.

Zhang, C.

Zhang, L.

Zhu, Q.

M. Huang, C. He, Q. Zhu, and J. Qin, “Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging,” Appl. Sci. (Basel) 6(6), 183 (2016).
[Crossref]

Acc. Chem. Res. (1)

C. Cucci, J. K. Delaney, and M. Picollo, “Reflectance Hyperspectral Imaging for Investigation of Works of Art: Old Master Paintings and Illuminated Manuscripts,” Acc. Chem. Res. 49(10), 2070–2079 (2016).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

J. M. Amigo, H. Babamoradi, and S. Elcoroaristizabal, “Hyperspectral image analysis. A tutorial,” Anal. Chim. Acta 896, 34–51 (2015).
[Crossref] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

H. Liang, “Advances in multispectral and hyperspectral imaging for archaeology and art conservation,” Appl. Phys., A Mater. Sci. Process. 106(2), 309–323 (2012).
[Crossref]

Appl. Sci. (Basel) (1)

M. Huang, C. He, Q. Zhu, and J. Qin, “Maize seed variety classification using the integration of spectral and image features combined with feature transformation based on hyperspectral imaging,” Appl. Sci. (Basel) 6(6), 183 (2016).
[Crossref]

Appl. Spectrosc. Rev. (1)

L. M. Dale, A. Thewis, C. Boudry, I. Rotar, P. Dardenne, V. Baeten, and J. A. F. Pierna, “Hyperspectral Imaging Applications in Agriculture and Agro-Food Product Quality and Safety Control: A Review,” Appl. Spectrosc. Rev. 48(2), 142–159 (2013).
[Crossref]

Chem. Commun. (Camb.) (1)

G. Accorsi, G. Verri, M. Bolognesi, N. Armaroli, C. Clementi, C. Miliani, and A. Romani, “The exceptional near-infrared luminescence properties of cuprorivaite (Egyptian blue),” Chem. Commun. (Camb.) 23(23), 3392–3394 (2009).
[Crossref] [PubMed]

Herit. Sci. (1)

D. Comelli, V. Capogrosso, C. Orsenigo, and A. Nevin, “Dual wavelength excitation for the time-resolved photoluminescence imaging of painted ancient Egyptian objects,” Herit. Sci. 4(1), 21 (2016).
[Crossref]

J. Biomed. Opt. (1)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 010901 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

R. G. Sellar and G. D. Boreman, “Classification of imaging spectrometers for remote sensing applications,” Opt. Eng. 44(1), 013602 (2005).
[Crossref]

N. A. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Opt. Express (8)

P. Mouroulis, R. O. Green, and D. W. Wilson, “Optical design of a coastal ocean imaging spectrometer,” Opt. Express 16(12), 9087–9096 (2008).
[Crossref] [PubMed]

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), A483–A490 (2017).
[Crossref] [PubMed]

J. Réhault, R. Borrego-Varillas, A. Oriana, C. Manzoni, C. P. Hauri, J. Helbing, and G. Cerullo, “Fourier transform spectroscopy in the vibrational fingerprint region with a birefringent interferometer,” Opt. Express 25(4), 4403–4413 (2017).
[Crossref] [PubMed]

J. Réhault, M. Maiuri, C. Manzoni, D. Brida, J. Helbing, and G. Cerullo, “2D IR spectroscopy with phase-locked pulse pairs from a birefringent delay line,” Opt. Express 22(8), 9063–9072 (2014).
[Crossref] [PubMed]

A. Harvey and D. Fletcher-Holmes, “Birefringent Fourier-transform imaging spectrometer,” Opt. Express 12(22), 5368–5374 (2004).
[Crossref] [PubMed]

C. Bai, J. Li, Y. Xu, H. Yuan, and J. Liu, “Compact birefringent interferometer for Fourier transform hyperspectral imaging,” Opt. Express 26(2), 1703–1725 (2018).
[Crossref] [PubMed]

T. Mu, C. Zhang, Q. Li, L. Zhang, Y. Wei, and Q. Chen, “Achromatic Savart polariscope: choice of materials,” Opt. Express 22(5), 5043–5051 (2014).
[Crossref] [PubMed]

A. Hegyi and J. Martini, “Hyperspectral imaging with a liquid crystal polarization interferometer,” Opt. Express 23(22), 28742–28754 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (1)

Proc. SPIE (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[Crossref]

Remote Sens. Environ. (1)

R. D. P. M. Scafutto, C. R. de Souza Filho, and B. Rivard, “Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging,” Remote Sens. Environ. 179, 116–130 (2016).
[Crossref]

Rep. Prog. Phys. (1)

P. Jacquinot, “New developments in interference spectroscopy,” Rep. Prog. Phys. 23(1), 267–312 (1960).
[Crossref]

Rev. Sci. Instrum. (1)

M. J. Persky, “A review of spaceborne infrared Fourier transform spectrometers for remote sensing,” Rev. Sci. Instrum. 66(10), 4763–4797 (1995).
[Crossref]

Sci. Rep. (2)

I. August, Y. Oiknine, M. AbuLeil, I. Abdulhalim, and A. Stern, “Miniature Compressive Ultra-spectral Imaging System Utilizing a Single Liquid Crystal Phase Retarder,” Sci. Rep. 6(1), 23524 (2016).
[Crossref] [PubMed]

W. Meulebroeck, H. Wouters, K. Nys, and H. Thienpont, “Authenticity screening of stained glass windows using optical spectroscopy,” Sci. Rep. 6(1), 37726 (2016).
[Crossref] [PubMed]

Sci. Total Environ. (1)

M. Liu, T. Wang, A. K. Skidmore, and X. Liu, “Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images,” Sci. Total Environ. 637-638, 18–29 (2018).
[Crossref] [PubMed]

Stud. Conserv. (1)

C. Fischer and I. Kakoulli, “Multispectral and hyperspectral imaging technologies in conservation: current research and potential applications,” Stud. Conserv. 51, 3–16 (2006).
[Crossref]

Other (9)

S. P. Davis, M. C. Abrams, and J. W. Brault, Fourier Transform Spectrometry (Elsevier, 2001).

E. Ben-Dor, T. Malthus, A. Plaza, and D. Schlapfer, Airborne Measurements for Environmental Research: Methods and Instruments (Wiley, 2013), Chap 8.

W. L. Wolfe, Introduction to Imaging Spectrometers (SPIE, 1997).

M. T. Eismann, Hyperspectral Remote Sensing (SPIE, 2012).

H. F. Grahn and P. Geladi, Techniques and Applications of Hyperspectral Image Analysis (John Wiley & Sons, 2007).

M. Françon and S. Mallick, Polarization Interferometers Applications in Microscopy and Macroscopy (Wiley-Interscience, 1972).

C. A. Manzoni, D. Brida, and G. N. F. Cerullo, US Patent: 9182284 (2015).

V. Saptari, Fourier Transform Spectroscopy Instrumentation Engineering (SPIE, 2004).

A. K. Jain and R. C. Dubes, Algorithms for Clustering Data (Prentice-Hall, 1988).

Supplementary Material (4)

NameDescription
» Visualization 1       Sequence of single-exposure images as a function of the interferometer position. Position of 0 mm corresponds to the nominal delay 0 of the interferometer.
» Visualization 2       Reflectivity image of Ancient Egyptian cartonnage. RGB image is synthesized from HSI data-cube after balancing with the white Spectralon. The image is at full camera resolution.
» Visualization 3       Artistic glass window at Santo Spirito Church (Milan, Italy): transmitted light at selected wavelengths, from the HSI data-cube.
» Visualization 4       Transmitted light from an artistic glass window at Santo Spirito Church (Milan, Italy). RGB image is synthesized from HSI data-cube, at full camera resolution, and applying Gamma=1/1.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic setup of the hyperspectral camera. P1 and P2: wire-grid polarizers; A block: α-BBO wedges, with optical axis parallel to the plane (green double arrow); B block: α-BBO plate, with optical axis normal to the plane (green circle). The brown double arrow indicates the wedge translation direction. O: object; I: image.
Fig. 2
Fig. 2 (a) Top view of the optical paths and refractive indexes of the vertically-polarized (V, red) and horizontally-polarized (H, blue) components of a ray traveling in the TWINS system; dashed lines: extraordinary (e) rays; solid lines: ordinary (o) rays. Air spacing between the surfaces has been removed for simplicity. (b) Relative phase accumulated by the cross-polarized components as a function of α. (c) Visibility of the interferogram of a CW wave, as a function of the phase spread Δφ. Vertical lines correspond to various distances h of an object at the edge of the field of view of our camera. Inset: definition of v. (d) Diagram of two marginal rays (1 and 2) propagating from the sources point O to the image point I; φ1, φ2: relative phase between the vertically- and horizontally-polarized components of the field replicas.
Fig. 3
Fig. 3 (a) Geometrical arrangement and (b) intensity single-exposure image of the test object, taken at delay position of 1 mm (the complete temporal data cube as an animation is shown in the associated Visualization 1). G, B, R, Y: Spectralon diffuse color standards; W: Spectralon white standard; L1/L2: beam spots of diode lasers at λ = 532 nm/635 nm. (c) Single-scan interferogram of one image point at the surface of the Y color standard and (d) at L1.
Fig. 4
Fig. 4 (a) Measured spectra of lasers L1 and L2 (position scan: ± 5 mm around the ZPD). Inset: spectrum of L1 in log scale. (b) Tabulated(dashed lines) and measured (solid lines) reflectance spectra of the color standards (position scan: ± 1 mm around the ZPD); shaded areas: wavelength-dependent standard deviations of the spectra measured over all points of each color standard surface; (c) spectral accuracy of the hyperspectral image of the color standards; (d) RGB image generated from the hyperspectral data-cube.
Fig. 5
Fig. 5 Hyperspectral imaging of the Egyptian cartonnage (size ~18cm × 16cm). (a) RGB image synthesized from the hyperspectral data. (b) False-color fluorescence image at λ = 900 nm after illumination at λ = 617 nm. (c) Solid/dashed lines: Reflectance spectra of three points of panel (a); shaded area: fluorescence spectrum (the full-resolution RGB and fluorescence images are shown in Visualization 2).
Fig. 6
Fig. 6 Hyperspectral imaging of an artistic glass window (A. M. Nardi, 1969). (a-f) Subfigures from the data-cube, at selected wavelengths (the complete spectral data cube as an animation is shown in the associated Visualization 3). (g) Color image synthesized from the spectral data (the full-resolution RGB image is shown in Visualization 4); (h) map and (i,j) corresponding transmitted spectra of the blue tiles, after automatic image segmentation; spectra in the visible range (i) are rescaled by a factor of 10.
Fig. 7
Fig. 7 Deviation of the interferometer delay from its ideal position, deduced from the interferogram of image areas at L1 (green line) and L2 (red line).
Fig. 8
Fig. 8 Spectra of the L1 (a) and L2 (b) lasers. Black lines: FT has been performed taking into account only the expected motor position. Red/green lines: FT has been performed taking into account the measured motor position, which is used to correct the interferogram. The spectra of each panel are also expanded by 20 × for clarity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E i = A i { cos [ ω t ] + cos [ ω ( t T ) φ i ] } .
Δ α = | α 1 α 2 | a r c tan D / h 1 + tan 2 α 0 < a r c tan ( D / h ) .
y n = cos ( a x n ) .
y n = 1 2 e i ( a x n ) + 1 2 e i ( a x n ) .
y ¯ n = 1 2 e i ( a x n ) .

Metrics