Abstract

We report a room-temperature eight-element phase-locked quantum cascade laser array emitting at 8 µm with a high continuous-wave power of 8.2 W and wall plug efficiency of 9.5%. The laser array operates primarily via the in-phase supermode and has single-mode emission with a side-mode suppression ratio of ~20 dB. The quantum cascade laser active region is based on a high differential gain (8.7 cm/kA) and low voltage defect (90 meV) design. A record high wall plug efficiency of 20.4% is achieved from a low loss buried ridge type single-element Fabry-Perot laser operating in pulsed mode at 20 °C.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Continuous wave operation of buried heterostructure 4.6µm quantum cascade laser Y-junctions and tree arrays

Arkadiy Lyakh, Richard Maulini, Alexei Tsekoun, Rowel Go, and C. Kumar N. Patel
Opt. Express 22(1) 1203-1208 (2014)

λ~7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature

Richard Maulini, Arkadiy Lyakh, Alexei Tsekoun, and C. Kumar N. Patel
Opt. Express 19(18) 17203-17211 (2011)

Low voltage-defect quantum cascade lasers based on excited-states injection at λ ∼ 8.5  μm

Yue Zhao, Jin-Chuan Zhang, Ning Zhuo, Feng-Min Cheng, Dong-Bo Wang, Shen-Qiang Zhai, Li-Jun Wang, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhan-Guo Wang
Appl. Opt. 57(26) 7579-7583 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
    [Crossref]
  3. C. K. N. Patel, “Quantum cascade lasers: a game changer for defense and homeland security IR photonics,” Proc. SPIE 8031, 803126 (2011).
  4. M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
    [Crossref] [PubMed]
  5. M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices [Invited],” Appl. Opt. 56(31), H30–H44 (2017).
    [Crossref] [PubMed]
  6. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
    [Crossref]
  7. Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
    [Crossref] [PubMed]
  8. M. Troccoli, A. Lyakh, J. Y. Fan, X. J. Wang, R. Maulini, A. G. Tsekoun, R. Go, and C. K. N. Patel, “Long-Wave IR Quantum Cascade Lasers for emission in the λ=8-12 µm spectral region,” Opt. Mater. Express 3(9), 1546–1560 (2013).
    [Crossref]
  9. F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
    [Crossref]
  10. B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
    [Crossref] [PubMed]
  11. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
    [Crossref] [PubMed]
  12. A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
    [Crossref]
  13. D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
    [Crossref]
  14. B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
    [Crossref]
  15. M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6(1), 93–107 (2017).
    [Crossref]
  16. J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
    [Crossref]
  17. Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
    [Crossref]
  18. L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24(26), 30275–30281 (2016).
    [Crossref] [PubMed]
  19. B. Meng, B. Qiang, E. Rodriguez, X. N. Hu, G. Liang, and Q. J. Wang, “Coherent emission from integrated Talbot-cavity quantum cascade lasers,” Opt. Express 25(4), 3077–3082 (2017).
    [Crossref] [PubMed]
  20. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Continuous wave operation of buried heterostructure 4.6 µm quantum cascade laser Y-junctions and tree arrays,” Opt. Express 22(1), 1203–1208 (2014).
    [Crossref] [PubMed]
  21. W. Zhou, S. Slivken, and M. Razeghi, “Phase-locked, high power, mid-infrared quantum cascade laser arrays,” Appl. Phys. Lett. 112(18), 181106 (2018).
    [Crossref]
  22. W. Zhou, D. Wu, Q. Y. Lu, S. Slivken, and M. Razeghi, “Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays,” Sci. Rep. 8(1), 14866 (2018).
    [Crossref] [PubMed]
  23. L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).
  24. H. Lee, K. Chung, and J. Yu, “Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation,” Appl. Phys. B 93(4), 779–786 (2008).
    [Crossref]
  25. W. Zhou, N. Bandyopadhyay, D. Wu, R. McClintock, and M. Razeghi, “Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design,” Sci. Rep. 6(1), 25213 (2016).
    [Crossref] [PubMed]
  26. W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228–1231 (2017).
    [Crossref]
  27. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]

2018 (2)

W. Zhou, S. Slivken, and M. Razeghi, “Phase-locked, high power, mid-infrared quantum cascade laser arrays,” Appl. Phys. Lett. 112(18), 181106 (2018).
[Crossref]

W. Zhou, D. Wu, Q. Y. Lu, S. Slivken, and M. Razeghi, “Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays,” Sci. Rep. 8(1), 14866 (2018).
[Crossref] [PubMed]

2017 (5)

2016 (4)

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
[Crossref] [PubMed]

L. Wang, J. Zhang, Z. Jia, Y. Zhao, C. Liu, Y. Liu, S. Zhai, Z. Ning, X. Xu, and F. Liu, “Phase-locked array of quantum cascade lasers with an integrated Talbot cavity,” Opt. Express 24(26), 30275–30281 (2016).
[Crossref] [PubMed]

W. Zhou, N. Bandyopadhyay, D. Wu, R. McClintock, and M. Razeghi, “Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design,” Sci. Rep. 6(1), 25213 (2016).
[Crossref] [PubMed]

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

2015 (4)

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
[Crossref]

2014 (1)

2013 (3)

M. Troccoli, A. Lyakh, J. Y. Fan, X. J. Wang, R. Maulini, A. G. Tsekoun, R. Go, and C. K. N. Patel, “Long-Wave IR Quantum Cascade Lasers for emission in the λ=8-12 µm spectral region,” Opt. Mater. Express 3(9), 1546–1560 (2013).
[Crossref]

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

2012 (3)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20(22), 24272–24279 (2012).
[Crossref] [PubMed]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

2011 (2)

C. K. N. Patel, “Quantum cascade lasers: a game changer for defense and homeland security IR photonics,” Proc. SPIE 8031, 803126 (2011).

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

2010 (2)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[Crossref]

2008 (1)

H. Lee, K. Chung, and J. Yu, “Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation,” Appl. Phys. B 93(4), 779–786 (2008).
[Crossref]

Bai, Y.

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[Crossref]

Bandyopadhyay, N.

W. Zhou, N. Bandyopadhyay, D. Wu, R. McClintock, and M. Razeghi, “Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design,” Sci. Rep. 6(1), 25213 (2016).
[Crossref] [PubMed]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[Crossref]

Beck, M.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

Bismuto, A.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

Botez, D.

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Boyle, C.

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Caffey, D. P.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Caneau, C.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Capasso, F.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Cederberg, J.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Chang, C. C.

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Chevalier, P.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Chung, K.

H. Lee, K. Chung, and J. Yu, “Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation,” Appl. Phys. B 93(4), 779–786 (2008).
[Crossref]

Connors, M.

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Connors, M. K.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Creedon, K.

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Day, T.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Earles, T.

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Faist, J.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

Fan, J. Y.

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Go, R.

Gökden, B.

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[Crossref]

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6(1), 93–107 (2017).
[Crossref]

Herzog, W.

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Heydari, D.

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
[Crossref]

Hinkov, B.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Hu, X. N.

Hughes, L. C.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Jia, Z.

Kirch, J. D.

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Leblanc, H. P.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Lee, H.

H. Lee, K. Chung, and J. Yu, “Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation,” Appl. Phys. B 93(4), 779–786 (2008).
[Crossref]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Liang, G.

Lindberg, D.

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Liu, C.

Liu, F.

Liu, F. Q.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Liu, J. Q.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Liu, Y.

Liu, Y. H.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Lu, Q.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
[Crossref] [PubMed]

Lu, Q. Y.

Lyakh, A.

Mansuripur, T. S.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Maulini, R.

Mawst, L. J.

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

McClintock, R.

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

McNulty, D.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Meng, B.

Missaggia, L.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Ning, Z.

Patel, C. K. N.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Qiang, B.

Razeghi, M.

W. Zhou, D. Wu, Q. Y. Lu, S. Slivken, and M. Razeghi, “Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays,” Sci. Rep. 8(1), 14866 (2018).
[Crossref] [PubMed]

W. Zhou, S. Slivken, and M. Razeghi, “Phase-locked, high power, mid-infrared quantum cascade laser arrays,” Appl. Phys. Lett. 112(18), 181106 (2018).
[Crossref]

M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices [Invited],” Appl. Opt. 56(31), H30–H44 (2017).
[Crossref] [PubMed]

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228–1231 (2017).
[Crossref]

W. Zhou, N. Bandyopadhyay, D. Wu, R. McClintock, and M. Razeghi, “Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design,” Sci. Rep. 6(1), 25213 (2016).
[Crossref] [PubMed]

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
[Crossref] [PubMed]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[Crossref]

Rodriguez, E.

Saar, B.

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Sanchez-Rubio, A.

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schwarz, B.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Sengupta, S.

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
[Crossref] [PubMed]

Slivken, S.

W. Zhou, S. Slivken, and M. Razeghi, “Phase-locked, high power, mid-infrared quantum cascade laser arrays,” Appl. Phys. Lett. 112(18), 181106 (2018).
[Crossref]

W. Zhou, D. Wu, Q. Y. Lu, S. Slivken, and M. Razeghi, “Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays,” Sci. Rep. 8(1), 14866 (2018).
[Crossref] [PubMed]

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228–1231 (2017).
[Crossref]

M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices [Invited],” Appl. Opt. 56(31), H30–H44 (2017).
[Crossref] [PubMed]

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
[Crossref] [PubMed]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
[Crossref]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[Crossref]

Strasser, G.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Sun, J.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Terazzi, R.

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Troccoli, M.

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

Tsekoun, A.

Tsekoun, A. G.

Turner, G.

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Wang, C.

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

Wang, C. A.

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Wang, L.

Wang, L. J.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Wang, Q. J.

Wang, X. J.

Wang, Z. G.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Watts, M. R.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Wu, D.

W. Zhou, D. Wu, Q. Y. Lu, S. Slivken, and M. Razeghi, “Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays,” Sci. Rep. 8(1), 14866 (2018).
[Crossref] [PubMed]

M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices [Invited],” Appl. Opt. 56(31), H30–H44 (2017).
[Crossref] [PubMed]

W. Zhou, N. Bandyopadhyay, D. Wu, R. McClintock, and M. Razeghi, “Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design,” Sci. Rep. 6(1), 25213 (2016).
[Crossref] [PubMed]

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
[Crossref] [PubMed]

Wu, D. H.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Xie, F.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Xu, X.

Yaacobi, A.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Yan, F. L.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Yu, J.

H. Lee, K. Chung, and J. Yu, “Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation,” Appl. Phys. B 93(4), 779–786 (2008).
[Crossref]

Zah, C. E.

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Zhai, S.

Zhang, J.

Zhang, J. C.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Zhao, Y.

Zhou, W.

W. Zhou, D. Wu, Q. Y. Lu, S. Slivken, and M. Razeghi, “Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays,” Sci. Rep. 8(1), 14866 (2018).
[Crossref] [PubMed]

W. Zhou, S. Slivken, and M. Razeghi, “Phase-locked, high power, mid-infrared quantum cascade laser arrays,” Appl. Phys. Lett. 112(18), 181106 (2018).
[Crossref]

M. Razeghi, W. Zhou, S. Slivken, Q. Y. Lu, D. Wu, and R. McClintock, “Recent progress of quantum cascade laser research from 3 to 12 μm at the Center for Quantum Devices [Invited],” Appl. Opt. 56(31), H30–H44 (2017).
[Crossref] [PubMed]

W. Zhou, D. H. Wu, R. McClintock, S. Slivken, and M. Razeghi, “High performance monolithic, broadly tunable mid-infrared quantum cascade lasers,” Optica 4(10), 1228–1231 (2017).
[Crossref]

W. Zhou, N. Bandyopadhyay, D. Wu, R. McClintock, and M. Razeghi, “Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design,” Sci. Rep. 6(1), 25213 (2016).
[Crossref] [PubMed]

M. Razeghi, Q. Y. Lu, N. Bandyopadhyay, W. Zhou, D. Heydari, Y. Bai, and S. Slivken, “Quantum cascade lasers: from tool to product,” Opt. Express 23(7), 8462–8475 (2015).
[Crossref] [PubMed]

Zhuo, N.

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

ACS Photonics (1)

B. Schwarz, C. A. Wang, L. Missaggia, T. S. Mansuripur, P. Chevalier, M. K. Connors, D. McNulty, J. Cederberg, G. Strasser, and F. Capasso, “Watt-Level Continuous-Wave Emission from a Bifunctional Quantum Cascade Laser/Detector,” ACS Photonics 4(5), 1225–1231 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

H. Lee, K. Chung, and J. Yu, “Thermal analysis of InP-based quantum cascade lasers for efficient heat dissipation,” Appl. Phys. B 93(4), 779–786 (2008).
[Crossref]

Appl. Phys. Lett. (7)

W. Zhou, S. Slivken, and M. Razeghi, “Phase-locked, high power, mid-infrared quantum cascade laser arrays,” Appl. Phys. Lett. 112(18), 181106 (2018).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98(18), 181102 (2011).
[Crossref]

A. Bismuto, R. Terazzi, B. Hinkov, M. Beck, and J. Faist, “Fully automatized quantum cascade laser design by genetic optimization,” Appl. Phys. Lett. 101(2), 021103 (2012).
[Crossref]

D. Heydari, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “High brightness angled cavity quantum cascade lasers,” Appl. Phys. Lett. 106(9), 091105 (2015).
[Crossref]

B. Gökden, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “Broad area photonic crystal distributed feedback quantum cascade lasers emitting 34 W at λ ~4.36 µm,” Appl. Phys. Lett. 97(13), 131112 (2010).
[Crossref]

J. D. Kirch, C. C. Chang, C. Boyle, L. J. Mawst, D. Lindberg, T. Earles, and D. Botez, “5.5W near-diffraction-limited power from resonant leaky-wave coupled phase-locked arrays of quantum cascade lasers,” Appl. Phys. Lett. 106(6), 061113 (2015).
[Crossref]

Y. H. Liu, J. C. Zhang, F. L. Yan, F. Q. Liu, N. Zhuo, L. J. Wang, J. Q. Liu, and Z. G. Wang, “Coupled ridge waveguide distributed feedback quantum cascade laser arrays,” Appl. Phys. Lett. 106(14), 142104 (2015).
[Crossref]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. Xie, C. Caneau, H. P. Leblanc, D. P. Caffey, L. C. Hughes, T. Day, and C. E. Zah, “Watt-Level Room Temperature Continuous-Wave Operation of Quantum Cascade Lasers With λ > 10 µm,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1200407 (2013).
[Crossref]

Nanophotonics (1)

M. J. R. Heck, “Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering,” Nanophotonics 6(1), 93–107 (2017).
[Crossref]

Nat. Photonics (1)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Mater. Express (1)

Optica (1)

Proc. SPIE (2)

L. Missaggia, C. Wang, M. Connors, B. Saar, A. Sanchez-Rubio, K. Creedon, G. Turner, and W. Herzog, “Thermal management of quantum cascade lasers in an individually addressable monolithic array architecture,” Proc. SPIE 9730, 973008 (2016).

C. K. N. Patel, “Quantum cascade lasers: a game changer for defense and homeland security IR photonics,” Proc. SPIE 8031, 803126 (2011).

Sci. Rep. (3)

Q. Lu, D. Wu, S. Sengupta, S. Slivken, and M. Razeghi, “Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers,” Sci. Rep. 6(1), 23595 (2016).
[Crossref] [PubMed]

W. Zhou, N. Bandyopadhyay, D. Wu, R. McClintock, and M. Razeghi, “Monolithically, widely tunable quantum cascade lasers based on a heterogeneous active region design,” Sci. Rep. 6(1), 25213 (2016).
[Crossref] [PubMed]

W. Zhou, D. Wu, Q. Y. Lu, S. Slivken, and M. Razeghi, “Single-mode, high-power, mid-infrared, quantum cascade laser phased arrays,” Sci. Rep. 8(1), 14866 (2018).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Band structure and wave functions of relevant energy levels of a high-differential-gain and low voltage defect strain-balanced Al0.64In0.36As/In0.59Ga0.41As long-wave infrared (LWIR) QCL active region design for targeting λ ~8 µm. Photons are emitted during electron transitions from upper laser level 2 (red thick line) to lower laser level 1 (violet thick line). The layer sequence in nm, starting from the injection barrier, is 3.1/ 2.5/ 1.2/ 5.8/ 0.7/ 5.0/ 1.0/ 4.5/ 1.3/ 3.8/ 1.3/ 3.2/ 1.6/ 2.9/ 1.9/ 3.0. The barriers are in bold font, and the wells are in normal font, and the underlined layers are doped to n = 1.3 × 1017 cm−3.
Fig. 2
Fig. 2 (a) P-I-V and WPE testing result of 8-μm wide, epi-layer up bonded uncoated buried ridge type lasers of different length fabricated using the LWIR wafer. (b) Threshold current density and slope efficiency analysis as a function of mirror loss and inverse mirror loss respectively. (c) P-I-V and WPE testing result of a 5-mm long, 8-μm wide, epi-layer down bonded HR-AR coated laser in pulsed mode and CW operation at 20 °C. The inset shows emission spectrum of the laser operating in CW mode. (d) Characteristics temperature analysis of the HR-AR coated device
Fig. 3
Fig. 3 (a) Schematic structure of an eight-element buried ridge type QCL array combined by a tree-array multimode interferometer (MMI). The two sides of the MMI are tapered in a similar way to [22], to suppress total reflection of out-of-phase mode. (b) Simulated QCL core temperature increase as a function of array element separation (pitch) at estimated rollover current of 4 kA/cm2, assuming a 10% WPE. The inset shows simulated temperature map of an array element from an array structure with 200 µm pitch.
Fig. 4
Fig. 4 SEM cross section view of the (a) shallow etched buried ridge structure and (b) region close to the two-output side of a MMI.
Fig. 5
Fig. 5 P-I-V and WPE measurement result of a 6mm long eight-element QCL array operating in pulsed and CW mode.
Fig. 6
Fig. 6 Emission spectrum of the eight-element array at various current levels in CW operation.
Fig. 7
Fig. 7 Comparison of measured (high and low current conditions) and simulated far field distribution of the eight-element phase-locked QCL array operating in CW mode.

Metrics