Abstract

A method for the viewing angle and viewing resolution enhancement of integral imaging (InIm) based on time-multiplexed lens stitching is demonstrated using the directional time-sequential backlight (DTS-BL) and the compound lens-array. In order to increase the lens-pitch of the compound lens-array for enlarging the viewing angle of InIm, DTS-BL is used to continuously stitch the adjacent elemental lenses in the time-multiplexed way. Through the compound lens-array with two pieces of lens in each lens unit, the parallel light beams from the DTS-BL converge and form a uniformly distributed dense point light source array (PLSA). Light rays emitting from the PLSA are modulated by the liquid crystal display (LCD) panel and then integrated as volumetric pixels of the reconstructed three-dimensional (3D) image. Meanwhile, time-multiplexed generation of the point light sources (PLSs) in the array is realized by time-multiplexed lens stitching implemented with the DTS-BL. As a result, the number of the PLSs, as the pixels of the perceived 3D image, is increased and then the viewing resolution of the 3D image is obviously enhanced. Additionally, joint optical optimization for the DTS-BL and the compound lens-array is used for suppressing the aberrations, and the imaging distortion can be decreased to 0.23% from 5.80%. In the experiment, a floating full-parallax 3D light-field image can be perceived with 4 times the viewing resolution enhancement in the viewing angle of 50°, where 7056 viewpoints are presented.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Viewing-angle-enhanced integral three-dimensional imaging along all directions without mechanical movement

Sungyong Jung, Jae-Hyeung Park, Heejin Choi, and Byoungho Lee
Opt. Express 11(12) 1346-1356 (2003)

Dynamic three-dimensional light-field display with large viewing angle based on compound lenticular lens array and multi-projectors

Xunbo Yu, Xinzhu Sang, Xin Gao, Duo Chen, Boyang Liu, Li Liu, Chao Gao, and Peiren Wang
Opt. Express 27(11) 16024-16031 (2019)

Resolution-enhanced integral imaging in focal mode with a time-multiplexed electrical mask array

Yongseok Oh, Donghak Shin, Byung-Gook Lee, Shin-Il Jeong, and Hee-Jin Choi
Opt. Express 22(15) 17620-17629 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  3. Y. Kim, K. Hong, and B. Lee, “Recent Researches based on Integral Imaging Display Method,” 3D Research. 1(1), 17–27 (2010).
    [Crossref]
  4. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  5. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, and B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44(4), 546–552 (2005).
    [Crossref] [PubMed]
  6. X. Wei, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett.  12(1) 011101 (2014).
  7. J.-S. Jang and B. Javidi, “Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor,” Appl. Opt. 42(11), 1996–2002 (2003).
    [Crossref] [PubMed]
  8. X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
    [Crossref] [PubMed]
  9. X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
    [Crossref] [PubMed]
  10. B. Lee, S. Jung, and J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27(10), 818–820 (2002).
    [Crossref] [PubMed]
  11. G. Baasantseren, J.-H. Park, K. C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17(16), 14405–14417 (2009).
    [Crossref] [PubMed]
  12. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
    [Crossref] [PubMed]
  13. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11(26), 3528–3541 (2003).
    [Crossref] [PubMed]
  14. J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12(4), 557–563 (2004).
    [Crossref] [PubMed]
  15. J. H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension / two-dimension convertible display based on integral imaging,” Opt. Express 13(6), 1875–1884 (2005).
    [Crossref] [PubMed]
  16. S. W. Cho, J. H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, “Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging,” Opt. Lett. 31(19), 2852–2854 (2006).
    [Crossref] [PubMed]
  17. Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
    [Crossref]
  18. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15(26), 18253–18267 (2007).
    [Crossref] [PubMed]
  19. C. Yu, J. Yuan, F. C. Fan, C. C. Jiang, S. Choi, X. Sang, C. Lin, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
    [Crossref] [PubMed]
  20. J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
[Crossref]

2015 (1)

2014 (2)

X. Wei, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett.  12(1) 011101 (2014).

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

2013 (2)

2010 (2)

2009 (1)

2007 (1)

2006 (1)

2005 (2)

2004 (1)

2003 (2)

2002 (2)

1908 (1)

G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Baasantseren, G.

Chen, D.

Chen, Z.

Cho, S. W.

Choi, H.

Choi, S.

Choi, S. Y.

Deng, H.

X. Wei, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett.  12(1) 011101 (2014).

Duan, W.

Fan, F. C.

Gao, X.

Hong, K.

Y. Kim, K. Hong, and B. Lee, “Recent Researches based on Integral Imaging Display Method,” 3D Research. 1(1), 17–27 (2010).
[Crossref]

Hua, H.

Jang, J.-S.

Javidi, B.

Jiang, C. C.

Jung, J.-H.

Jung, S.

Kang, J.-M.

Kim, C. Y.

Kim, J.

Kim, N.

Kim, Y.

Kishk, S.

Kwon, K. C.

Lee, B.

Lee, J.-H.

Li, Y.

Lin, C.

Lippmann, G.

G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Ma, F.

Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
[Crossref]

Ma, X.

Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
[Crossref]

Martinez-Corral, M.

Min, S.-W.

Ming, H.

Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
[Crossref]

Nam, D.

Oh, Y.-S.

Park, D.-S.

Park, J.

Park, J. H.

Park, J.-H.

Sang, X.

Stern, A.

Wang, A.

Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
[Crossref]

Wang, Q.

X. Wei, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett.  12(1) 011101 (2014).

Wang, Y.

X. Wei, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett.  12(1) 011101 (2014).

Wang, Z.

Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
[Crossref]

Wei, X.

X. Wei, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett.  12(1) 011101 (2014).

Wu, Y.

Xiao, X.

Xing, S.

Xu, D.

Yan, B.

Yu, C.

Yu, X.

Yuan, J.

3D Research. (1)

Y. Kim, K. Hong, and B. Lee, “Recent Researches based on Integral Imaging Display Method,” 3D Research. 1(1), 17–27 (2010).
[Crossref]

Appl. Opt. (3)

C. R. Acad. Sci. (1)

G. Lippmann, “Épreuves réversibles: photographies intégrals,” C. R. Acad. Sci. 146, 446–451 (1908).

Chin. Opt. Lett (1)

X. Wei, Y. Wang, H. Deng, and Q. Wang, “Viewing angle-enhanced integral imaging system using three lens arrays,” Chin. Opt. Lett.  12(1) 011101 (2014).

Opt. Commun. (1)

Z. Wang, A. Wang, X. Ma, F. Ma, and H. Ming, “Resolution-enhanced integral imaging display using a dense point light source array,” Opt. Commun. 403, 110–114 (2017).
[Crossref]

Opt. Express (10)

Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15(26), 18253–18267 (2007).
[Crossref] [PubMed]

C. Yu, J. Yuan, F. C. Fan, C. C. Jiang, S. Choi, X. Sang, C. Lin, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
[Crossref] [PubMed]

J.-H. Lee, J. Park, D. Nam, S. Y. Choi, D.-S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
[Crossref] [PubMed]

G. Baasantseren, J.-H. Park, K. C. Kwon, and N. Kim, “Viewing angle enhanced integral imaging display using two elemental image masks,” Opt. Express 17(16), 14405–14417 (2009).
[Crossref] [PubMed]

S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11(26), 3528–3541 (2003).
[Crossref] [PubMed]

J.-S. Jang, Y.-S. Oh, and B. Javidi, “Spatiotemporally multiplexed integral imaging projector for large-scale high-resolution three-dimensional display,” Opt. Express 12(4), 557–563 (2004).
[Crossref] [PubMed]

J. H. Park, J. Kim, Y. Kim, and B. Lee, “Resolution-enhanced three-dimension / two-dimension convertible display based on integral imaging,” Opt. Express 13(6), 1875–1884 (2005).
[Crossref] [PubMed]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

X. Yu, X. Sang, X. Gao, Z. Chen, D. Chen, W. Duan, B. Yan, C. Yu, and D. Xu, “Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues,” Opt. Express 23(20), 25950–25958 (2015).
[Crossref] [PubMed]

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Supplementary Material (2)

NameDescription
» Visualization 1       The medical data of human skull displayed with the prototype is presented as 3D imagery in Visualization 1.
» Visualization 2       A 3D image of city terrain is captured with a camera focusing the white building in the scene and it is presented as shown in Visualization 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 The experimental configuration of the proposed InIm display.
Fig. 2
Fig. 2 The side-view schematic diagram of time-multiplexed lens stitching.
Fig. 3
Fig. 3 (a) The arrangement of the LED in the 4 × 4 LED array and (b) the time sequence diagram of the DTSC.
Fig. 4
Fig. 4 The schematic diagrams of designed structures of (a) the compound CLF and (b) the compound elemental lens.
Fig. 5
Fig. 5 Comparisons of spot diagrams for the generated PLSAs using the standard lens combination and the optimized aspheric lens combination.
Fig. 6
Fig. 6 The code mapping relationship between pixels of EIAs and PIs based on backward ray-trace.
Fig. 7
Fig. 7 (a) The schematic diagram of eliminating viewing blind areas with the HFS, and (b) comparison of perceptive effects for observed image with the HFS and not.
Fig. 8
Fig. 8 (a) Experimental setup and (b) the compound lens-array.
Fig. 9
Fig. 9 Comparison of mesh distortion maps for the illumination area centers produced by the PLSAs using the standard lenses and the optically optimized lenses respectively.
Fig. 10
Fig. 10 Comparison of display effects for (a) the conventional PLSA-based InIm method and (b) the proposed method without the HFS.
Fig. 11
Fig. 11 3D image of human skull observed from different directions (see Visualization 1).
Fig. 12
Fig. 12 3D image of city terrain (see Visualization 2).

Tables (1)

Tables Icon

Table 1 Configuration of experiments

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ=2arctan( P 2f )
P f = d F
θ'=2arctan( P f )
z= c r 2 1+ 1( 1+k ) c 2 r 2 + α 2 r 2 + α 4 r 4 ++ α 6 r 6
[ xt yt ]= g fc [ 1 0 0 1 ][ u v ] g fc [ u C i v C j ]+[ x P k y P l ]
[ u C i v C j ]=dc[ i1 j1 ]+[ u C 1 v C 1 ]
[ x P k y P l ]= P 2 [ 1 0 0 1 ][ floor( u u C i WP ) floor( v v C j WP ) ]+ P 2 [ rh2 rv2 ]+[ x P 1 y P 1 ]
[ m n ]=[ floor( xt WE ) floor( yt WE ) ]+[ m 0 n0 ]
ϕ=arctan[ 4 d H tan( θ'/2 )+P 4dH ] θ' 2

Metrics