Abstract

Source and mask optimization (SMO) technology based on vectorial image model is indispensable in immersion lithography process at advanced technology node. Many kinds of algorithms have achieved successes in aspect of fast and robust SMO without accounting polarization aberration (PA). However, because the PA arising from immersion projection optics unevenly impacts on imaging performance, the conventional SMO would not be applicable in real lithography system. In this paper, we first investigate the serious impact of PA on SMO in details. The SMO accounting the assigned PA of one field point is not applicable to other field points, where the pattern fidelity is fiercely worse and the pattern error (PAE) is nearly doubled. Then, we innovate a MOSMO method to reduce the uneven impact of PA on lithography imaging at full exposure field. Compared to the assigned PA aware SMO, the proposed MOSMO reduces the standard deviation of PAE distribution by 53.3% and enlarges the maximum exposure latitude from 4% to 6.7%, which demonstrates the MOSMO is very significant to balance imaging quality and improve process robustness at full exposure field.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiple-field-point pupil wavefront optimization in computational lithography

Tie Li, Yang Liu, Yiyu Sun, Enze Li, Pengzhi Wei, and Yanqiu Li
Appl. Opt. 58(30) 8331-8338 (2019)

Pixelated source and mask optimization for immersion lithography

Xu Ma, Chunying Han, Yanqiu Li, Lisong Dong, and Gonzalo R. Arce
J. Opt. Soc. Am. A 30(1) 112-123 (2013)

Robust hybrid source and mask optimization to lithography source blur and flare

Chunying Han, Yanqiu Li, Xu Ma, and Lihui Liu
Appl. Opt. 54(17) 5291-5302 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Poonawala, W. Stanton, and C. Sawh, “Source mask optimization for advanced lithography nodes,” Proc. SPIE 7640, 76401M (2010).
    [Crossref]
  2. L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).
  3. A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
    [Crossref]
  4. J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
    [Crossref]
  5. C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).
  6. J. Li and E. Y. Lam, “Robust source and mask optimization compensating for mask topography effects in computational lithography,” Opt. Express 22(8), 9471–9485 (2014).
    [Crossref] [PubMed]
  7. C. Han, Y. Li, X. Ma, and L. Liu, “Robust hybrid source and mask optimization to lithography source blur and flare,” Appl. Opt. 54(17), 5291–5302 (2015).
    [Crossref] [PubMed]
  8. T. Li and Y. Li, “Lithographic source and mask optimization with low aberration sensitivity,” IEEE Trans. Nano. 16(6), 1099–1105 (2017).
    [Crossref]
  9. X. Wu, S. Liu, W. Lv, and E. Y. Lam, “Sparse nonlinear inverse imaging for shot count reduction in inverse lithography,” Opt. Express 23(21), 26919–26931 (2015).
    [Crossref] [PubMed]
  10. X. Ma, Z. Song, Y. Li, and G. R. Arce, “Block-based mask optimization for optical lithography,” Appl. Opt. 52(14), 3351–3363 (2013).
    [Crossref] [PubMed]
  11. Y. Shen, “Lithographic source and mask optimization with narrow-band level-set method,” Opt. Express 26(8), 10065–10078 (2018).
    [Crossref] [PubMed]
  12. J. Li, S. Liu, and E. Y. Lam, “Efficient source and mask optimization with augmented Lagrangian methods in optical lithography,” Opt. Express 21(7), 8076–8090 (2013).
    [Crossref] [PubMed]
  13. J. P. McGuire and R. A. Chipman, “Diffraction image formation in optical systems with polarization aberrations. I - Formulation and example,” J. Opt. Soc. Am. A 7(9), 1614–1626 (1990).
    [Crossref]
  14. J. P. McGuire and R. A. Chipman, “Polarization aberrations. 1. Rotationally symmetric optical systems,” Appl. Opt. 33(22), 5080–5100 (1994).
    [Crossref] [PubMed]
  15. X. Xu, W. Huang, and M. Xu, “Orthogonal polynomials describing polarization aberration for rotationally symmetric optical systems,” Opt. Express 23(21), 27911–27919 (2015).
    [Crossref] [PubMed]
  16. X. Xu, W. Huang, and M. Xu, “Orthonormal polynomials describing polarization aberration for M-fold optical systems,” Opt. Express 24(5), 4906–4912 (2016).
    [Crossref] [PubMed]
  17. J. Kye, G. McIntyre, Y. Norihiro, and H. J. Levinson, “Polarization aberration analysis in optical lithography systems,” Proc. SPIE 6154, 61540E (2006).
    [Crossref]
  18. B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
    [Crossref]
  19. Y. Tu, X. Wang, S. Li, and Y. Cao, “Analytical approach to the impact of polarization aberration on lithographic imaging,” Opt. Lett. 37(11), 2061–2063 (2012).
    [Crossref] [PubMed]
  20. E. Li, Y. Li, N. Sheng, T. Li, Y. Sun, and P. Wei, “A nonlinear measurement method of polarization aberration in immersion projection optics by spectrum analysis of aerial image,” Opt. Express 26(25), 32743–32756 (2018).
    [Crossref] [PubMed]
  21. X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11(4), 043008 (2012).
    [Crossref]
  22. X. Liu, Y. Li, and K. Liu, “Polarization aberration control for hyper-NA lithographic projection optics at design stage,” Proc. SPIE 9618, 96180H (2015).
  23. W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
    [Crossref]
  24. X. Ma, C. Han, Y. Li, L. Dong, and G. R. Arce, “Pixelated source and mask optimization for immersion lithography,” J. Opt. Soc. Am. A 30(1), 112–123 (2013).
    [Crossref] [PubMed]
  25. C. Han, Y. Li, L. Dong, X. Ma, and X. Guo, “Inverse pupil wavefront optimization for immersion lithography,” Appl. Opt. 53(29), 6861–6871 (2014).
    [Crossref] [PubMed]
  26. R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscipl. Optim. 41(6), 853–862 (2010).
    [Crossref]
  27. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 6(2), 853–862 (2002).
    [Crossref]
  28. L. Wang, S. Li, X. Wang, G. Yan, and C. Yang, “Source optimization using particle swarm optimization algorithm in photolithography,” Proc. SPIE 9426, 94261L (2015).
    [Crossref]
  29. H.-F. Kuo and F. Li, “Ant Colony Optimization–Based Freeform Sources for Enhancing Nanolithographic Imaging Performance,” IEEE Trans. Nano. 15(4), 599–606 (2016).
    [Crossref]
  30. I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation,” Struct. Multidiscipl. Optim. 31(2), 105–116 (2006).
    [Crossref]

2018 (2)

2017 (1)

T. Li and Y. Li, “Lithographic source and mask optimization with low aberration sensitivity,” IEEE Trans. Nano. 16(6), 1099–1105 (2017).
[Crossref]

2016 (2)

X. Xu, W. Huang, and M. Xu, “Orthonormal polynomials describing polarization aberration for M-fold optical systems,” Opt. Express 24(5), 4906–4912 (2016).
[Crossref] [PubMed]

H.-F. Kuo and F. Li, “Ant Colony Optimization–Based Freeform Sources for Enhancing Nanolithographic Imaging Performance,” IEEE Trans. Nano. 15(4), 599–606 (2016).
[Crossref]

2015 (5)

2014 (2)

2013 (3)

2012 (2)

Y. Tu, X. Wang, S. Li, and Y. Cao, “Analytical approach to the impact of polarization aberration on lithographic imaging,” Opt. Lett. 37(11), 2061–2063 (2012).
[Crossref] [PubMed]

X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11(4), 043008 (2012).
[Crossref]

2011 (1)

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

2010 (3)

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

A. Poonawala, W. Stanton, and C. Sawh, “Source mask optimization for advanced lithography nodes,” Proc. SPIE 7640, 76401M (2010).
[Crossref]

R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscipl. Optim. 41(6), 853–862 (2010).
[Crossref]

2009 (1)

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

2007 (1)

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

2006 (2)

J. Kye, G. McIntyre, Y. Norihiro, and H. J. Levinson, “Polarization aberration analysis in optical lithography systems,” Proc. SPIE 6154, 61540E (2006).
[Crossref]

I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation,” Struct. Multidiscipl. Optim. 31(2), 105–116 (2006).
[Crossref]

2004 (1)

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

2002 (1)

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 6(2), 853–862 (2002).
[Crossref]

2001 (1)

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

1994 (1)

1990 (1)

Agarwal, S.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 6(2), 853–862 (2002).
[Crossref]

Arce, G. R.

Arora, J. S.

R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscipl. Optim. 41(6), 853–862 (2010).
[Crossref]

Baik, K.-H.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

Baron, S.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Bekaert, J.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Bouma, A.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Bukofsky, S. J.

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

Cao, Y.

Cecil, T.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

Chen, J.-H.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Chipman, R. A.

Dam, T.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

de Weck, O. L.

I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation,” Struct. Multidiscipl. Optim. 31(2), 105–116 (2006).
[Crossref]

Deb, K.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 6(2), 853–862 (2002).
[Crossref]

Domnenko, V.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Dong, L.

Dusa, M.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Finders, J.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Geh, B.

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Gleason, B.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

Gräupner, P.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Guo, X.

C. Han, Y. Li, L. Dong, X. Ma, and X. Guo, “Inverse pupil wavefront optimization for immersion lithography,” Appl. Opt. 53(29), 6861–6871 (2014).
[Crossref] [PubMed]

X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11(4), 043008 (2012).
[Crossref]

Han, C.

Hempelmann, U.

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Hennerkes, C.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Hibbs, M. S.

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

Hsu, S.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Hu, P.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

Huang, C. C.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Huang, W.

Huang, W.-C.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Kaiser, D.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Kim, I. Y.

I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation,” Struct. Multidiscipl. Optim. 31(2), 105–116 (2006).
[Crossref]

Klostermann, U.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Ku, Y. C.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Kuo, C.-C.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Kuo, H.-F.

H.-F. Kuo and F. Li, “Ant Colony Optimization–Based Freeform Sources for Enhancing Nanolithographic Imaging Performance,” IEEE Trans. Nano. 15(4), 599–606 (2016).
[Crossref]

Kye, J.

J. Kye, G. McIntyre, Y. Norihiro, and H. J. Levinson, “Polarization aberration analysis in optical lithography systems,” Proc. SPIE 6154, 61540E (2006).
[Crossref]

Laenens, B.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Lai, K.

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

Lam, E. Y.

Lazzarino, F.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Levinson, H. J.

J. Kye, G. McIntyre, Y. Norihiro, and H. J. Levinson, “Polarization aberration analysis in optical lithography systems,” Proc. SPIE 6154, 61540E (2006).
[Crossref]

Li, E.

Li, F.

H.-F. Kuo and F. Li, “Ant Colony Optimization–Based Freeform Sources for Enhancing Nanolithographic Imaging Performance,” IEEE Trans. Nano. 15(4), 599–606 (2016).
[Crossref]

Li, J.

Li, S.

L. Wang, S. Li, X. Wang, G. Yan, and C. Yang, “Source optimization using particle swarm optimization algorithm in photolithography,” Proc. SPIE 9426, 94261L (2015).
[Crossref]

Y. Tu, X. Wang, S. Li, and Y. Cao, “Analytical approach to the impact of polarization aberration on lithographic imaging,” Opt. Lett. 37(11), 2061–2063 (2012).
[Crossref] [PubMed]

Li, T.

Li, Y.

Lim, C. T.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Lin, B.-J.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Lin, C.-H.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Lin, J. F.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Liu, H. Y.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Liu, K.

X. Liu, Y. Li, and K. Liu, “Polarization aberration control for hyper-NA lithographic projection optics at design stage,” Proc. SPIE 9618, 96180H (2015).

Liu, L.

Liu, R.-G.

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

Liu, S.

Liu, X.

X. Liu, Y. Li, and K. Liu, “Polarization aberration control for hyper-NA lithographic projection optics at design stage,” Proc. SPIE 9618, 96180H (2015).

Lv, W.

Ma, X.

Marler, R. T.

R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscipl. Optim. 41(6), 853–862 (2010).
[Crossref]

McGuire, J. P.

McIntyre, G.

J. Kye, G. McIntyre, Y. Norihiro, and H. J. Levinson, “Polarization aberration analysis in optical lithography systems,” Proc. SPIE 6154, 61540E (2006).
[Crossref]

Mengel, M.

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Meusel, I.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Meyarivan, T.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 6(2), 853–862 (2002).
[Crossref]

Molless, A. F.

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

Mouraille, O.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Mulder, M.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Neumann, J. T.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Ning, K.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Norihiro, Y.

J. Kye, G. McIntyre, Y. Norihiro, and H. J. Levinson, “Polarization aberration analysis in optical lithography systems,” Proc. SPIE 6154, 61540E (2006).
[Crossref]

Pang, L.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

Ploss, R.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Poonawala, A.

A. Poonawala, W. Stanton, and C. Sawh, “Source mask optimization for advanced lithography nodes,” Proc. SPIE 7640, 76401M (2010).
[Crossref]

Pratap, A.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 6(2), 853–862 (2002).
[Crossref]

Rosenbluth, A. E.

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

Ruoff, J.

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Sarlette, D.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Sawh, C.

A. Poonawala, W. Stanton, and C. Sawh, “Source mask optimization for advanced lithography nodes,” Proc. SPIE 7640, 76401M (2010).
[Crossref]

Schmitt-Weaver, E.

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Schneider, J.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Schreel, K.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Shen, Y.

Sheng, N.

Singh, R. N.

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

Socha, R.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Song, Z.

Stanton, W.

A. Poonawala, W. Stanton, and C. Sawh, “Source mask optimization for advanced lithography nodes,” Proc. SPIE 7640, 76401M (2010).
[Crossref]

Sun, Y.

Temchenko, V.

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

Tolani, V.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

Totzeck, M.

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Trivkovic, D.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Tsai, M. C.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Tu, Y.

van Adrichem, P.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

van der Heijden, E.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Van Look, L.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Vandenberghe, G.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Verhaegen, S.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

Wang, L.

L. Wang, S. Li, X. Wang, G. Yan, and C. Yang, “Source optimization using particle swarm optimization algorithm in photolithography,” Proc. SPIE 9426, 94261L (2015).
[Crossref]

Wang, X.

L. Wang, S. Li, X. Wang, G. Yan, and C. Yang, “Source optimization using particle swarm optimization algorithm in photolithography,” Proc. SPIE 9426, 94261L (2015).
[Crossref]

Y. Tu, X. Wang, S. Li, and Y. Cao, “Analytical approach to the impact of polarization aberration on lithographic imaging,” Opt. Lett. 37(11), 2061–2063 (2012).
[Crossref] [PubMed]

Wei, P.

Wong, A. K. K.

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

Wu, X.

Xiao, G.

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

Xu, M.

Xu, X.

Yan, G.

L. Wang, S. Li, X. Wang, G. Yan, and C. Yang, “Source optimization using particle swarm optimization algorithm in photolithography,” Proc. SPIE 9426, 94261L (2015).
[Crossref]

Yang, C.

L. Wang, S. Li, X. Wang, G. Yan, and C. Yang, “Source optimization using particle swarm optimization algorithm in photolithography,” Proc. SPIE 9426, 94261L (2015).
[Crossref]

Zimmermann, J.

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

Appl. Opt. (4)

ECS Trans. (1)

L. Pang, G. Xiao, V. Tolani, P. Hu, T. Cecil, T. Dam, K.-H. Baik, and B. Gleason, “Inverse Lithography Technology (ILT) Enabled Source Mask Optimization (SMO),” ECS Trans. 18(1), 299–314 (2009).

IEEE Trans. Nano. (2)

T. Li and Y. Li, “Lithographic source and mask optimization with low aberration sensitivity,” IEEE Trans. Nano. 16(6), 1099–1105 (2017).
[Crossref]

H.-F. Kuo and F. Li, “Ant Colony Optimization–Based Freeform Sources for Enhancing Nanolithographic Imaging Performance,” IEEE Trans. Nano. 15(4), 599–606 (2016).
[Crossref]

IEEE Transactions on Evolutionary (1)

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary 6(2), 853–862 (2002).
[Crossref]

J. Micro/Nanolith. MEMS MOEMS (1)

X. Ma, Y. Li, X. Guo, L. Dong, and G. R. Arce, “Vectorial mask optimization methods for robust optical lithography,” J. Micro/Nanolith. MEMS MOEMS 11(4), 043008 (2012).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (9)

J. Kye, G. McIntyre, Y. Norihiro, and H. J. Levinson, “Polarization aberration analysis in optical lithography systems,” Proc. SPIE 6154, 61540E (2006).
[Crossref]

B. Geh, J. Ruoff, J. Zimmermann, P. Gräupner, M. Totzeck, M. Mengel, U. Hempelmann, and E. Schmitt-Weaver, “The impact of projection lens polarization properties on lithographic process at hyper-NA,” Proc. SPIE 6520, 65200F (2007).
[Crossref]

A. Poonawala, W. Stanton, and C. Sawh, “Source mask optimization for advanced lithography nodes,” Proc. SPIE 7640, 76401M (2010).
[Crossref]

A. E. Rosenbluth, S. J. Bukofsky, M. S. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, “Optimum mask and source patterns to print a given shape,” Proc. SPIE 4346, 486–502 (2001).
[Crossref]

J. Bekaert, B. Laenens, S. Verhaegen, L. Van Look, D. Trivkovic, F. Lazzarino, G. Vandenberghe, P. van Adrichem, R. Socha, S. Baron, M. C. Tsai, K. Ning, S. Hsu, H. Y. Liu, M. Mulder, A. Bouma, E. van der Heijden, O. Mouraille, K. Schreel, J. Finders, M. Dusa, J. Zimmermann, P. Gräupner, J. T. Neumann, and C. Hennerkes, “Freeform illumination sources: an experimental study of source-mask optimization for 22-nm SRAM cells,” Proc. SPIE 7640, 764008 (2010).
[Crossref]

C. T. Lim, V. Temchenko, U. Klostermann, V. Domnenko, J. Schneider, D. Sarlette, I. Meusel, D. Kaiser, and R. Ploss, “Source and Mask Optimization Applications in Manufacturing,” Proc. SPIE 7973, 797322 (2011).

X. Liu, Y. Li, and K. Liu, “Polarization aberration control for hyper-NA lithographic projection optics at design stage,” Proc. SPIE 9618, 96180H (2015).

W.-C. Huang, C.-H. Lin, C.-C. Kuo, C. C. Huang, J. F. Lin, J.-H. Chen, R.-G. Liu, Y. C. Ku, and B.-J. Lin, “Two threshold resist models for optical proximity correction,” Proc. SPIE 5377, 1536–1543 (2004).
[Crossref]

L. Wang, S. Li, X. Wang, G. Yan, and C. Yang, “Source optimization using particle swarm optimization algorithm in photolithography,” Proc. SPIE 9426, 94261L (2015).
[Crossref]

Struct. Multidiscipl. Optim. (2)

R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective optimization: new insights,” Struct. Multidiscipl. Optim. 41(6), 853–862 (2010).
[Crossref]

I. Y. Kim and O. L. de Weck, “Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation,” Struct. Multidiscipl. Optim. 31(2), 105–116 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The off-axis rectangle exposure field and field point position in image plane.
Fig. 2
Fig. 2 Two target patterns used in the simulation. The red lines mark the locations for PW calculation.
Fig. 3
Fig. 3 Optimization results and evaluations of the F3-SMO and F11-SMO for pattern #1. Left to right: optimized source pattern, optimized mask pattern, printed image at center FOV F3 and marginal FOV F11.
Fig. 4
Fig. 4 Optimization results and evaluations of the F11-SMO, mean-MOSMO, and adaptive-MOSMO for pattern #1. Left to right: optimized source pattern, optimized mask pattern, printed image at center FOV F3 and marginal FOV F11.
Fig. 5
Fig. 5 The PAE with different methods at each field point for pattern #1.
Fig. 6
Fig. 6 The overlap of PW in full field with different SMO methods. (a) F11-SMO method; (b) mean-MOSMO method; (c) adaptive-MOSMO method.
Fig. 7
Fig. 7 The comparison of EL-DOF curve with F11-SMO method (blue curve), mean-MOSMO method (red curve), and adaptive MOSMO method (green curve) for pattern #1.
Fig. 8
Fig. 8 Optimization results and evaluations of the F11-SMO, mean-MOSMO, and adaptive MOSMO for pattern #2. Left to right: optimized source pattern, optimized mask pattern, printed image at center FOV F3 and marginal FOV F11.
Fig. 9
Fig. 9 The PAE with different methods at each field point for pattern #2.
Fig. 10
Fig. 10 The comparison of EL-DOF curve with F11-SMO method (blue curve), and mean-MOSMO method (red curve), and adaptive-MOSMO (green curve) for pattern #2.

Tables (5)

Tables Icon

Table 1 Pseudo-code of the assigned PA aware SMO algorithm.

Tables Icon

Table 2 Pseudo-code of the mean-MOSMO algorithm.

Tables Icon

Table 3 Pseudo-code of the adaptive-MOSMO algorithm.

Tables Icon

Table 4 The statistics of PAE distribution with different SMO methods for pattern #1

Tables Icon

Table 5 The statistics of PAE distribution with different SMO methods for pattern #2

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I = 1 J s u m x s y s ( J ( x s , y s ) p = x , y , z | H p x s y s ( B x s y s     M ) | 2 2 ) ,
H p x s y s = F - 1 { 2 π n w × C × V x s y s U P A E i x s y s } ,
D i = d ( Z i ( P A i ) , Z ˜ ) = Z i ( P A i ) Z ˜ 2 2 .
( J ^ , M ^ ) = arg     min J , M D i ( J , M ) .
Z = s i g ( I ) = 1 1 + exp [ a ( I t r ) ] ,
P A E = Z ˜ Ξ { I t r } 2 2 ,
D = i = 1 n ω i D i = i = 1 n ω i Z i ( P A i ) Z ˜ 2 2 ,
D = ω 1 D 1 + ω 2 D 2 + ω 3 D 3 + ω 6 D 6 + ω 7 D 7 + ω 8 D 8 + ω 11 D 11 + ω 12 D 12 + ω 13 D 13 .
( J ^ , M ^ ) = arg     min J , M D ( J , M ) .
D = i ω i D i .
I i ( P A i ) = 1 J s u m x s y s ( J ( x s , y s ) p = x , y , z | H p x s , y s ( P A i ) ( B M ) | 2 ) .
J D i     =     a sin Ω J J s u m 1 N × 1 T [ p = x , y , z | E p w a f e r | 2     ( Z ˜ Z )     Z     ( 1 Z ) ] 1 N × 1 ;
M D i     =     2 a sin Ω M J s u m x s y s [ J x s y s p = x , y , z Re { B x s y s * [ H p x s y s * ο Λ p ]   } ]   .
J D     =   i ω i J D i ( P A i ) ;
M D     =   i ω i M D i ( P A i ) .

Metrics