Abstract

The growth and laser amplifier performance of a large-aperture Nd:LuAG ceramic are reported. Using the vacuum sintering and high-temperature insostatic pressing (HIP) methods, three pieces of a 50 mm-aperture Nd:LuAG ceramic are fabricated and used as the gain medium in a diode-pumped nanosecond distributed active mirror amplifier chain (DAMAC). The energy storage capacity of large-aperture Nd:LuAG is investigated and compared with that of Nd:YAG. Energy amplification up to 10.3 J at 10 Hz is achieved, which, to the best of our knowledge, produces the highest peak power (1 GW) using Nd:LuAG. The excellent energy storage and extraction performance confirm the great potential of Nd:LuAG in high-energy scaling.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression

Tinghao Liu, Zhan Sui, Lin Chen, Zhupeng Li, Qiang Liu, Mali Gong, and Xing Fu
Opt. Express 25(18) 21981-21992 (2017)

DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser

Saumyabrata Banerjee, Klaus Ertel, Paul D. Mason, P. Jonathan Phillips, Mariastefania De Vido, Jodie M. Smith, Thomas J. Butcher, Cristina Hernandez-Gomez, R. Justin S. Greenhalgh, and John L. Collier
Opt. Express 23(15) 19542-19551 (2015)

High-energy, ceramic-disk Yb:LuAG laser amplifier

M. Siebold, M. Loeser, F. Roeser, M. Seltmann, G. Harzendorf, I. Tsybin, S. Linke, S. Banerjee, P. D. Mason, P. J. Phillips, K. Ertel, J. C. Collier, and U. Schramm
Opt. Express 20(20) 21992-22000 (2012)

References

  • View by:
  • |
  • |
  • |

  1. R. Yasuhara, T. Kawashima, T. Sekine, T. Kurita, T. Ikegawa, O. Matsumoto, M. Miyamoto, H. Kan, H. Yoshida, J. Kawanaka, M. Nakatsuka, N. Miyanaga, Y. Izawa, and T. Kanabe, “213 W average power of 2.4 GW pulsed thermally controlled Nd:glass zigzag slab laser with a stimulated Brillouin scattering mirror,” Opt. Lett. 33(15), 1711–1713 (2008).
    [Crossref] [PubMed]
  2. X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active mirror MOPA system,” Appl. Phys. Express 8, 092702 (2015).
    [Crossref]
  3. Q. Liu, M. Gong, T. Liu, Z. Sui, and X. Fu, “Efficient sub-joule energy extraction from a diode-pumped Nd:LuAG amplifier seeded by a Nd:YAG laser,” Opt. Lett. 41(22), 5322–5325 (2016).
    [Crossref] [PubMed]
  4. T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
    [Crossref] [PubMed]
  5. X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
    [Crossref]
  6. X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
    [Crossref]
  7. Y. Ye, H. Zhu, Y. Duan, Z. Shao, D. Luo, J. Zhang, D. Tang, and A. Kaminskii, “Continuous-wave laser operation of Nd:LuAG ceramic with 4F3⁄2→4I11⁄2 transition,” Opt. Mater. Express 5(3), 611–616 (2015).
    [Crossref]
  8. D. Yan, P. Liu, X. Xu, J. Zhang, D. Tang, and J. Xu, “Eye-safe Nd:LuAG ceramic lasers,” Opt. Mater. Express 7(4), 1374–1380 (2017).
    [Crossref]
  9. X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
    [Crossref]
  10. T. Feng, K. Yang, G. Li, S. Zhao, D. Li, T. Li, W. Qiao, C. Liu, X. Chen, X. Xu, L. Zheng, J. Xu, and R. Lan, “Passively mode-locked Nd:LuAG laser at 1338 nm,” Opt. Mater. Express 6(1), 1–7 (2016).
    [Crossref]
  11. S. Qiao, Y. Zhang, X. Shi, B. Jiang, L. Zhang, X. Cheng, L. Li, J. Wang, and L. Gui, “Spectral properties and laser performance of Nd:Lu3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051602 (2015).
    [Crossref]
  12. J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
    [Crossref]
  13. J. Ma, T. Lu, X. Zhu, B. Jiang, P. Zhang, and W. Chen, “1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser,” Chin. Opt. Lett. 15(12), 121402 (2017).
    [Crossref]
  14. C. Liu, S. Zhao, G. Li, K. Yao, D. Li, T. Li, W. Qiao, T. Feng, X. Chen, X. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
    [Crossref]
  15. C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
    [Crossref]
  16. Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
    [Crossref]
  17. J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
    [Crossref]
  18. C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
    [Crossref]
  19. G. Zhang, X. Fu, Y. Shen, and M. Gong, “High power self-Q-switching in Nd:LuAG laser,” IEEE Photonics J. 10(6), 1505009 (2018).
    [Crossref]

2018 (2)

C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
[Crossref]

G. Zhang, X. Fu, Y. Shen, and M. Gong, “High power self-Q-switching in Nd:LuAG laser,” IEEE Photonics J. 10(6), 1505009 (2018).
[Crossref]

2017 (6)

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

J. Ma, T. Lu, X. Zhu, B. Jiang, P. Zhang, and W. Chen, “1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser,” Chin. Opt. Lett. 15(12), 121402 (2017).
[Crossref]

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

D. Yan, P. Liu, X. Xu, J. Zhang, D. Tang, and J. Xu, “Eye-safe Nd:LuAG ceramic lasers,” Opt. Mater. Express 7(4), 1374–1380 (2017).
[Crossref]

2016 (2)

2015 (5)

2012 (1)

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

2010 (1)

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

2009 (1)

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

2008 (1)

Bai, F.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Cai, Z.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Chen, L.

Chen, W.

J. Ma, T. Lu, X. Zhu, B. Jiang, P. Zhang, and W. Chen, “1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser,” Chin. Opt. Lett. 15(12), 121402 (2017).
[Crossref]

J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
[Crossref]

Chen, X.

Cheng, S.

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Cheng, X.

Cheng, Y.

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Cong, Z.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Cui, Q.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Di, J.

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

Duan, Y.

Feng, T.

Fu, X.

G. Zhang, X. Fu, Y. Shen, and M. Gong, “High power self-Q-switching in Nd:LuAG laser,” IEEE Photonics J. 10(6), 1505009 (2018).
[Crossref]

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

Q. Liu, M. Gong, T. Liu, Z. Sui, and X. Fu, “Efficient sub-joule energy extraction from a diode-pumped Nd:LuAG amplifier seeded by a Nd:YAG laser,” Opt. Lett. 41(22), 5322–5325 (2016).
[Crossref] [PubMed]

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active mirror MOPA system,” Appl. Phys. Express 8, 092702 (2015).
[Crossref]

Gong, M.

G. Zhang, X. Fu, Y. Shen, and M. Gong, “High power self-Q-switching in Nd:LuAG laser,” IEEE Photonics J. 10(6), 1505009 (2018).
[Crossref]

T. Liu, Z. Sui, L. Chen, Z. Li, Q. Liu, M. Gong, and X. Fu, “12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression,” Opt. Express 25(18), 21981–21992 (2017).
[Crossref] [PubMed]

Q. Liu, M. Gong, T. Liu, Z. Sui, and X. Fu, “Efficient sub-joule energy extraction from a diode-pumped Nd:LuAG amplifier seeded by a Nd:YAG laser,” Opt. Lett. 41(22), 5322–5325 (2016).
[Crossref] [PubMed]

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active mirror MOPA system,” Appl. Phys. Express 8, 092702 (2015).
[Crossref]

Guan, C.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Guan, X.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Gui, L.

Hang, Y.

J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
[Crossref]

Huang, Q.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Ikegawa, T.

Izawa, Y.

Jiang, B.

Kaminskii, A.

Kan, H.

Kanabe, T.

Kawanaka, J.

Kawashima, T.

Kurita, T.

Lan, R.

Li, D.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

T. Feng, K. Yang, G. Li, S. Zhao, D. Li, T. Li, W. Qiao, C. Liu, X. Chen, X. Xu, L. Zheng, J. Xu, and R. Lan, “Passively mode-locked Nd:LuAG laser at 1338 nm,” Opt. Mater. Express 6(1), 1–7 (2016).
[Crossref]

C. Liu, S. Zhao, G. Li, K. Yao, D. Li, T. Li, W. Qiao, T. Feng, X. Chen, X. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Li, G.

Li, L.

Li, P.

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active mirror MOPA system,” Appl. Phys. Express 8, 092702 (2015).
[Crossref]

Li, T.

Li, Z.

Lin, Z.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Liu, C.

Liu, P.

D. Yan, P. Liu, X. Xu, J. Zhang, D. Tang, and J. Xu, “Eye-safe Nd:LuAG ceramic lasers,” Opt. Mater. Express 7(4), 1374–1380 (2017).
[Crossref]

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

Liu, Q.

Liu, T.

Liu, Y.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Liu, Z.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Lu, T.

J. Ma, T. Lu, X. Zhu, B. Jiang, P. Zhang, and W. Chen, “1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser,” Chin. Opt. Lett. 15(12), 121402 (2017).
[Crossref]

J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
[Crossref]

Luan, C.

C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
[Crossref]

Luo, D.

Ma, C.

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

Ma, J.

J. Ma, T. Lu, X. Zhu, B. Jiang, P. Zhang, and W. Chen, “1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser,” Chin. Opt. Lett. 15(12), 121402 (2017).
[Crossref]

J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
[Crossref]

Matsumoto, O.

Meng, J.

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Miyamoto, M.

Miyanaga, N.

Nakatsuka, M.

Qiao, S.

Qiao, W.

Rao, H.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Sekine, T.

Shao, Z.

Shen, Y.

G. Zhang, X. Fu, Y. Shen, and M. Gong, “High power self-Q-switching in Nd:LuAG laser,” IEEE Photonics J. 10(6), 1505009 (2018).
[Crossref]

Shi, X.

Sui, Z.

Tan, W.

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

Tang, D.

Wang, C.

C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
[Crossref]

Wang, J.

Wang, X.

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Wu, F.

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Wu, Q.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Xu, B.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Xu, H.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Xu, J.

C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
[Crossref]

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

D. Yan, P. Liu, X. Xu, J. Zhang, D. Tang, and J. Xu, “Eye-safe Nd:LuAG ceramic lasers,” Opt. Mater. Express 7(4), 1374–1380 (2017).
[Crossref]

T. Feng, K. Yang, G. Li, S. Zhao, D. Li, T. Li, W. Qiao, C. Liu, X. Chen, X. Xu, L. Zheng, J. Xu, and R. Lan, “Passively mode-locked Nd:LuAG laser at 1338 nm,” Opt. Mater. Express 6(1), 1–7 (2016).
[Crossref]

C. Liu, S. Zhao, G. Li, K. Yao, D. Li, T. Li, W. Qiao, T. Feng, X. Chen, X. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Xu, X.

C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
[Crossref]

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

D. Yan, P. Liu, X. Xu, J. Zhang, D. Tang, and J. Xu, “Eye-safe Nd:LuAG ceramic lasers,” Opt. Mater. Express 7(4), 1374–1380 (2017).
[Crossref]

T. Feng, K. Yang, G. Li, S. Zhao, D. Li, T. Li, W. Qiao, C. Liu, X. Chen, X. Xu, L. Zheng, J. Xu, and R. Lan, “Passively mode-locked Nd:LuAG laser at 1338 nm,” Opt. Mater. Express 6(1), 1–7 (2016).
[Crossref]

C. Liu, S. Zhao, G. Li, K. Yao, D. Li, T. Li, W. Qiao, T. Feng, X. Chen, X. Xu, L. Zheng, and J. Xu, “Experimental and theoretical study of a passively Q-switched Nd:LuAG laser at 1.3 μm with a V3+:YAG saturable absorber,” J. Opt. Soc. Am. B 32(5), 1001–1006 (2015).
[Crossref]

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Yan, D.

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

D. Yan, P. Liu, X. Xu, J. Zhang, D. Tang, and J. Xu, “Eye-safe Nd:LuAG ceramic lasers,” Opt. Mater. Express 7(4), 1374–1380 (2017).
[Crossref]

Yang, K.

C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
[Crossref]

T. Feng, K. Yang, G. Li, S. Zhao, D. Li, T. Li, W. Qiao, C. Liu, X. Chen, X. Xu, L. Zheng, J. Xu, and R. Lan, “Passively mode-locked Nd:LuAG laser at 1338 nm,” Opt. Mater. Express 6(1), 1–7 (2016).
[Crossref]

Yao, K.

Yasuhara, R.

Ye, Y.

Yoshida, H.

Zang, T.

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

Zhang, G.

G. Zhang, X. Fu, Y. Shen, and M. Gong, “High power self-Q-switching in Nd:LuAG laser,” IEEE Photonics J. 10(6), 1505009 (2018).
[Crossref]

Zhang, J.

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

D. Yan, P. Liu, X. Xu, J. Zhang, D. Tang, and J. Xu, “Eye-safe Nd:LuAG ceramic lasers,” Opt. Mater. Express 7(4), 1374–1380 (2017).
[Crossref]

Y. Ye, H. Zhu, Y. Duan, Z. Shao, D. Luo, J. Zhang, D. Tang, and A. Kaminskii, “Continuous-wave laser operation of Nd:LuAG ceramic with 4F3⁄2→4I11⁄2 transition,” Opt. Mater. Express 5(3), 611–616 (2015).
[Crossref]

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

Zhang, L.

Zhang, P.

J. Ma, T. Lu, X. Zhu, B. Jiang, P. Zhang, and W. Chen, “1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser,” Chin. Opt. Lett. 15(12), 121402 (2017).
[Crossref]

J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
[Crossref]

Zhang, S.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

Zhang, Y.

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

S. Qiao, Y. Zhang, X. Shi, B. Jiang, L. Zhang, X. Cheng, L. Li, J. Wang, and L. Gui, “Spectral properties and laser performance of Nd:Lu3Al5O12 ceramic,” Chin. Opt. Lett. 13(5), 051602 (2015).
[Crossref]

Zhao, S.

Zhao, Z.

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

Zheng, L.

Zhou, D.

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

Zhou, Z.

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Zhu, H.

Zhu, X.

J. Ma, T. Lu, X. Zhu, B. Jiang, P. Zhang, and W. Chen, “1.57 MW peak power pulses generated by a diode-pumped Q-switched Nd:LuAG ceramic laser,” Chin. Opt. Lett. 15(12), 121402 (2017).
[Crossref]

J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
[Crossref]

Appl. Phys. Express (1)

X. Fu, Q. Liu, P. Li, Z. Sui, T. Liu, and M. Gong, “High-efficiency 2 J, 20 Hz diode-pumped Nd:YAG active mirror MOPA system,” Appl. Phys. Express 8, 092702 (2015).
[Crossref]

Chin. Opt. Lett. (2)

IEEE Photonics J. (1)

G. Zhang, X. Fu, Y. Shen, and M. Gong, “High power self-Q-switching in Nd:LuAG laser,” IEEE Photonics J. 10(6), 1505009 (2018).
[Crossref]

J. Inorg. Mater. (1)

X. Wang, X. Xu, T. Zang, C. Ma, Z. Zhao, and J. Xu, “Growth and spectral properties of Nd:Lu3Al5O12 crystal,” J. Inorg. Mater. 25(4), 435–440 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (3)

C. Guan, Z. Liu, Z. Cong, Y. Liu, X. Xu, J. Xu, Q. Huang, H. Rao, X. Chen, Y. Zhang, Q. Wu, F. Bai, and S. Zhang, “Diode pumped passively Q-switched Nd:LuAG laser at 1442.6 nm,” Laser Phys. Lett. 14(2), 025003 (2017).
[Crossref]

X. Xu, X. Wang, J. Meng, Y. Cheng, D. Li, S. Cheng, F. Wu, Z. Zhao, and J. Xu, “Crystal growth, spectral and laser properties of Nd:LuAG single crystal,” Laser Phys. Lett. 6(9), 678–681 (2009).
[Crossref]

X. Xu, J. Di, W. Tan, J. Zhang, D. Tang, D. Li, D. Zhou, and J. Xu, “High efficient diode-pumped passively mode-locked Nd:LuAG laser,” Laser Phys. Lett. 9(6), 406–409 (2012).
[Crossref]

Opt. Commun. (1)

C. Wang, S. Zhao, T. Li, K. Yang, C. Luan, X. Xu, and J. Xu, “Passively Q-switched Nd:LuAG laser using few-layered MoS2 as saturable absorber,” Opt. Commun. 406, 249–253 (2018).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

Q. Cui, Z. Zhou, X. Guan, B. Xu, Z. Lin, H. Xu, Z. Cai, X. Xu, D. Li, and J. Xu, “Diode-pumped continuous-wave and passively Q-switched Nd:LuAG crystal lasers at 1.1 μm,” Opt. Laser Technol. 96, 190–195 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (1)

J. Zhang, P. Liu, X. Xu, D. Yan, D. Li, and J. Xu, “Investigations on continuous-wave and passively Q-switched Nd:LuAG ceramic lasers at eye-safe wavelengths,” Opt. Mater. 73, 675–679 (2017).
[Crossref]

Opt. Mater. Express (3)

Opt. Quantum Electron. (1)

J. Ma, T. Lu, P. Zhang, X. Zhu, Y. Hang, and W. Chen, “Actively Q-switched laser performance of Nd:LuAG crystal with birefringence compensator,” Opt. Quantum Electron. 47(10), 3213–3220 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 FESEM micrograph of the Nd (0.8 at.%):LuAG ceramics.
Fig. 2
Fig. 2 Transmission spectrum of 0.8 at.% Nd:LuAG ceramics ranging between 200 and 1200 nm. (Sample thickness of 5.5 mm with optical polished surfaces).
Fig. 3
Fig. 3 Laser experimental configuration. FI, Faraday isolator; HR, high-reflection mirror; PBS, polarization beam splitter; QWP, quarter-wave plate; HWP, half-wave; BE, beam expander; DM: deformable mirror; SA, serrated aperture.
Fig. 4
Fig. 4 Stored energy of Nd:LuAG and Nd:YAG modules based on measured small-signal gain.
Fig. 5
Fig. 5 Output energy curve of saturated scaling in the Nd:LuAG stage.
Fig. 6
Fig. 6 Far-field profile of the Nd:LuAG main amplifier output.
Fig. 7
Fig. 7 Maximum allowed stored energy of Nd:LuAG and Nd:YAG versus transverse size.
Fig. 8
Fig. 8 Pump intensity needed and maximum allowed repetition rate at respective energy storage limit: (a) Nd:LuAG; (b) Nd:YAG.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E s t o r e = g 0 L E s a t S p cos θ 2 ,
L = 2 d / cos θ ,
E s t o r e = g 0 E s a t S p d = g 0 E s a t V .
Δ T = d q 4 K t ,
q = η t P p u m p F τ p / S p ,

Metrics