Abstract

When applied inside Earth’s atmosphere, the star tracker is sensitive to sky background produced by atmospheric scattering and stray light. The shot noise induced by the strong background reduces star detection capability and even makes it completely out of operation. To improve the star detection capability, an attitude-correlated frames adding (ACFA) approach is proposed in this paper. Firstly, the attitude changes of the star tracker are measured by three gyroscope units (GUs). Then the mathematical relationship between the image coordinates at different time and the attitude changes of the star tracker is constructed (namely attitude-correlated transformation, ACT). Using the ACT, the image regions in different frames that correspond to the same star can be extracted and added to the current frame. After attitude-correlated frames adding, the intensity of the star signal increases by n times, while the shot noise increases by n~n/2 times due to its stochastic characteristic. Consequently, the signal-to-noise ratio (SNR) of the star image enhances by a factor of n~2n. Simulations and experimental results indicate that the proposed method can effectively improve the star detection ability. Hence, there are more dim stars detected and used for attitude determination. In addition, the star centroiding error induced by the background noise can also be reduced.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions

Liheng Ma, Dejun Zhan, Guangwen Jiang, Sihua Fu, Hui Jia, Xingshu Wang, Zongsheng Huang, Jiaxing Zheng, Feng Hu, Wei Wu, and Shiqiao Qin
Appl. Opt. 54(25) 7559-7566 (2015)

Novel approach to improve the attitude update rate of a star tracker

Shuo Zhang, Fei Xing, Ting Sun, Zheng You, and Minsong Wei
Opt. Express 26(5) 5164-5181 (2018)

Centroid error compensation method for a star tracker under complex dynamic conditions

Wenfeng Tan, Shiqiao Qin, R. M. Myers, T. J. Morris, Guangwen Jiang, Yingwei Zhao, Xingshu Wang, Liheng Ma, and Dongkai Dai
Opt. Express 25(26) 33559-33574 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Liebe, “Accuracy performance of star trackers - a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
    [Crossref]
  2. S. Levine, R. Dennis, and K. L. Bachman, “Strapdown astro-Inertial navigation utilizing the optical Wide-angle lens startracker,” Navigation 37(2), 347–362 (1990).
    [Crossref]
  3. A. R. Eisenman, C. C. Liebe, and J. L. Joergensen, “New generation of autonomous star trackers,” Proc. SPIE 3221, 524–535 (1997).
    [Crossref]
  4. G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
    [Crossref]
  5. C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10(6), 10–16 (1995).
    [Crossref]
  6. J. L. Jorgensen, T. Denver, M. Betto, and P. V. d. Braembussche, “The PROBA satellite star tracker performance,” Acta Astronaut. 56(1), 153–159 (2005).
    [Crossref]
  7. E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.
  8. I. S. Kruzhilov, “Evaluation of instrument stellar magnitudes without recourse to data as to star spectral classes,” Proc. SPIE 0635, 063537 (2012).
  9. W. Tan, S. Qin, R. M. Myers, T. J. Morris, G. Jiang, Y. Zhao, X. Wang, L. Ma, and D. Dai, “Centroid error compensation method for a star tracker under complex dynamic conditions,” Opt. Express 25(26), 33559–33574 (2017).
    [Crossref]
  10. W. Wang, X. Wei, J. Li, and G. Wang, “Noise suppression algorithm of short-wave infrared star image for daytime star sensor,” Infrared Phys. Technol. 85, 382–394 (2017).
    [Crossref]
  11. N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
    [Crossref]
  12. G. Wang, F. Xing, M. Wei, and Z. You, “Rapid optimization method of the strong stray light elimination for extremely weak light signal detection,” Opt. Express 25(21), 26175–26185 (2017).
    [Crossref] [PubMed]
  13. M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
    [Crossref]
  14. K. Ho and S. Nakasuka, “Novel star identification algorithm utilizing images of two star trackers,” in 2010 IEEE Aerospace Conference (IEEE, 2010), pp. 1–10.
  15. M. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
    [Crossref]
  16. J. Lu and L. Yang, “Optimal scheme of star observation of missile-borne inertial navigation system/stellar refraction integrated navigation,” Rev. Sci. Instruments 89(5), 054501(2018).
    [Crossref]
  17. W. Wang, X. Wei, J. Li, and G. Zhang, “Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor,” Rev. Sci. Instruments 89, 075003 (2018).
    [Crossref]
  18. M. Belenkii, D. G. Bruns, V. A. Rye, and T. Brinkley, “Daytime stellar imager,” US007349804B2 (Mar.252008).
  19. Trex Enterprises Corporation Products/services, “Optical GPS” (Trex Enterprises Corporation, 2016), http://www.trexenterprise-s.com/Pages/Products
  20. N. A. Truesdale, K. J. Dinkel, Z. J. B. Dischner, J. H. Diller, and E. F. Young, “DayStar: Modeling and test results of a balloon-borne daytime star tracker,” in IEEE Aerospace Conference (SPIE, 2013), pp. 1–12.
  21. M. J. O’Malley and E. O’Mongain, “Charge-coupled devices: frame adding as an alternative to long integration times and cooling,” Opt. Eng. 31(3), 522–526 (1992).
    [Crossref]
  22. J. Yan, J. Jiang, and G. Zhang, “Dynamic imaging model and parameter optimization for a star tracker,” Opt. Express 24(6), 5961–5983 (2016).
    [Crossref] [PubMed]
  23. J. Yan, J. Jiang, and G. Zhang, “Modeling of intensified high dynamic star tracker,” Opt. Express 25(2), 927–948 (2017).
    [Crossref] [PubMed]
  24. R. A. Fowell, S. I. Saeed, R. Li, and Y.-W. A. Wu, “Mitigation of angular acceleration effects on optical sensor data,” U.S. Patent 6, 863, 244 (2005).
  25. R. A. Fowell, R. Li, and Y.-W. A. Wu, “Method for compensating star motion induced error in a stellar inertial attitude determination system,” U.S. Patent 7, 487, 016 (2009).
  26. L. Ma, D. Zhan, G. Jiang, S. Fu, H. Jia, X. Wang, Z. Huang, J. Zheng, F. Hu, W. Wu, and S. Qin, “Attitude-correlated frames approach for a star sensor to improve attitude accuracy under highly dynamic conditions,” Appl. Opt. 54(25), 7559–7566 (2015).
    [Crossref] [PubMed]
  27. D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology (The Institution of Engineering and Technology, 2004), chap. 12.
    [Crossref]
  28. P. Sturm, S. Ramalingam, J. P. Tardif, S. Gasparini, and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision (Now Publishers, 2004), chap. 3.
  29. J. D. Gautier, GPS/INS Generalized Valuation Tool (GIGET) for the Design and Testing of Integrated Navigation System (Stanford University, 2003).

2018 (3)

M. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
[Crossref]

J. Lu and L. Yang, “Optimal scheme of star observation of missile-borne inertial navigation system/stellar refraction integrated navigation,” Rev. Sci. Instruments 89(5), 054501(2018).
[Crossref]

W. Wang, X. Wei, J. Li, and G. Zhang, “Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor,” Rev. Sci. Instruments 89, 075003 (2018).
[Crossref]

2017 (4)

2016 (1)

2015 (1)

2013 (1)

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

2012 (1)

I. S. Kruzhilov, “Evaluation of instrument stellar magnitudes without recourse to data as to star spectral classes,” Proc. SPIE 0635, 063537 (2012).

2006 (1)

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

2005 (1)

J. L. Jorgensen, T. Denver, M. Betto, and P. V. d. Braembussche, “The PROBA satellite star tracker performance,” Acta Astronaut. 56(1), 153–159 (2005).
[Crossref]

2002 (1)

C. C. Liebe, “Accuracy performance of star trackers - a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
[Crossref]

1997 (1)

A. R. Eisenman, C. C. Liebe, and J. L. Joergensen, “New generation of autonomous star trackers,” Proc. SPIE 3221, 524–535 (1997).
[Crossref]

1995 (1)

C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10(6), 10–16 (1995).
[Crossref]

1992 (1)

M. J. O’Malley and E. O’Mongain, “Charge-coupled devices: frame adding as an alternative to long integration times and cooling,” Opt. Eng. 31(3), 522–526 (1992).
[Crossref]

1990 (1)

S. Levine, R. Dennis, and K. L. Bachman, “Strapdown astro-Inertial navigation utilizing the optical Wide-angle lens startracker,” Navigation 37(2), 347–362 (1990).
[Crossref]

Avanesov, G. A.

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

Bachman, K. L.

S. Levine, R. Dennis, and K. L. Bachman, “Strapdown astro-Inertial navigation utilizing the optical Wide-angle lens startracker,” Navigation 37(2), 347–362 (1990).
[Crossref]

Barreto, J.

P. Sturm, S. Ramalingam, J. P. Tardif, S. Gasparini, and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision (Now Publishers, 2004), chap. 3.

Belenkii, M.

M. Belenkii, D. G. Bruns, V. A. Rye, and T. Brinkley, “Daytime stellar imager,” US007349804B2 (Mar.252008).

Bessonov, R. V.

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

Betto, M.

J. L. Jorgensen, T. Denver, M. Betto, and P. V. d. Braembussche, “The PROBA satellite star tracker performance,” Acta Astronaut. 56(1), 153–159 (2005).
[Crossref]

Bingenheimer, M.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

Braembussche, P. V. d.

J. L. Jorgensen, T. Denver, M. Betto, and P. V. d. Braembussche, “The PROBA satellite star tracker performance,” Acta Astronaut. 56(1), 153–159 (2005).
[Crossref]

Brinkley, T.

M. Belenkii, D. G. Bruns, V. A. Rye, and T. Brinkley, “Daytime stellar imager,” US007349804B2 (Mar.252008).

Bruns, D. G.

M. Belenkii, D. G. Bruns, V. A. Rye, and T. Brinkley, “Daytime stellar imager,” US007349804B2 (Mar.252008).

Chapin, E.

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

Dai, D.

Dennis, R.

S. Levine, R. Dennis, and K. L. Bachman, “Strapdown astro-Inertial navigation utilizing the optical Wide-angle lens startracker,” Navigation 37(2), 347–362 (1990).
[Crossref]

Denver, T.

J. L. Jorgensen, T. Denver, M. Betto, and P. V. d. Braembussche, “The PROBA satellite star tracker performance,” Acta Astronaut. 56(1), 153–159 (2005).
[Crossref]

Devlin, M. J.

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

Diller, J.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Diller, J. H.

N. A. Truesdale, K. J. Dinkel, Z. J. B. Dischner, J. H. Diller, and E. F. Young, “DayStar: Modeling and test results of a balloon-borne daytime star tracker,” in IEEE Aerospace Conference (SPIE, 2013), pp. 1–12.

Dinkel, K.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Dinkel, K. J.

N. A. Truesdale, K. J. Dinkel, Z. J. B. Dischner, J. H. Diller, and E. F. Young, “DayStar: Modeling and test results of a balloon-borne daytime star tracker,” in IEEE Aerospace Conference (SPIE, 2013), pp. 1–12.

Dischner, Z.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Dischner, Z. J. B.

N. A. Truesdale, K. J. Dinkel, Z. J. B. Dischner, J. H. Diller, and E. F. Young, “DayStar: Modeling and test results of a balloon-borne daytime star tracker,” in IEEE Aerospace Conference (SPIE, 2013), pp. 1–12.

Eisenman, A. R.

A. R. Eisenman, C. C. Liebe, and J. L. Joergensen, “New generation of autonomous star trackers,” Proc. SPIE 3221, 524–535 (1997).
[Crossref]

Fowell, R. A.

R. A. Fowell, S. I. Saeed, R. Li, and Y.-W. A. Wu, “Mitigation of angular acceleration effects on optical sensor data,” U.S. Patent 6, 863, 244 (2005).

R. A. Fowell, R. Li, and Y.-W. A. Wu, “Method for compensating star motion induced error in a stellar inertial attitude determination system,” U.S. Patent 7, 487, 016 (2009).

Fox, J.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

Fu, S.

Gasparini, S.

P. Sturm, S. Ramalingam, J. P. Tardif, S. Gasparini, and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision (Now Publishers, 2004), chap. 3.

Gautier, J. D.

J. D. Gautier, GPS/INS Generalized Valuation Tool (GIGET) for the Design and Testing of Integrated Navigation System (Stanford University, 2003).

Gundersen, J.

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

Ho, K.

K. Ho and S. Nakasuka, “Novel star identification algorithm utilizing images of two star trackers,” in 2010 IEEE Aerospace Conference (IEEE, 2010), pp. 1–10.

Holt, A.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Hu, F.

Huang, Z.

Jaehnig, K. P.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

Jia, H.

Jiang, G.

Jiang, J.

Joergensen, J. L.

A. R. Eisenman, C. C. Liebe, and J. L. Joergensen, “New generation of autonomous star trackers,” Proc. SPIE 3221, 524–535 (1997).
[Crossref]

Jorgensen, J. L.

J. L. Jorgensen, T. Denver, M. Betto, and P. V. d. Braembussche, “The PROBA satellite star tracker performance,” Acta Astronaut. 56(1), 153–159 (2005).
[Crossref]

Kayutin, I. S.

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

Klein, J.

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

Kruzhilov, I. S.

I. S. Kruzhilov, “Evaluation of instrument stellar magnitudes without recourse to data as to star spectral classes,” Proc. SPIE 0635, 063537 (2012).

Kurkina, A. N.

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

Lachenmeier, T.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

Levine, S.

S. Levine, R. Dennis, and K. L. Bachman, “Strapdown astro-Inertial navigation utilizing the optical Wide-angle lens startracker,” Navigation 37(2), 347–362 (1990).
[Crossref]

Li, J.

W. Wang, X. Wei, J. Li, and G. Zhang, “Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor,” Rev. Sci. Instruments 89, 075003 (2018).
[Crossref]

W. Wang, X. Wei, J. Li, and G. Wang, “Noise suppression algorithm of short-wave infrared star image for daytime star sensor,” Infrared Phys. Technol. 85, 382–394 (2017).
[Crossref]

Li, R.

R. A. Fowell, R. Li, and Y.-W. A. Wu, “Method for compensating star motion induced error in a stellar inertial attitude determination system,” U.S. Patent 7, 487, 016 (2009).

R. A. Fowell, S. I. Saeed, R. Li, and Y.-W. A. Wu, “Mitigation of angular acceleration effects on optical sensor data,” U.S. Patent 6, 863, 244 (2005).

Liebe, C. C.

C. C. Liebe, “Accuracy performance of star trackers - a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
[Crossref]

A. R. Eisenman, C. C. Liebe, and J. L. Joergensen, “New generation of autonomous star trackers,” Proc. SPIE 3221, 524–535 (1997).
[Crossref]

C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10(6), 10–16 (1995).
[Crossref]

Lu, J.

J. Lu and L. Yang, “Optimal scheme of star observation of missile-borne inertial navigation system/stellar refraction integrated navigation,” Rev. Sci. Instruments 89(5), 054501(2018).
[Crossref]

Lyudomirskii, M. B.

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

Ma, L.

Mellon, R.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

Morris, T. J.

Murphy, T.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Myers, R. M.

Nakasuka, S.

K. Ho and S. Nakasuka, “Novel star identification algorithm utilizing images of two star trackers,” in 2010 IEEE Aerospace Conference (IEEE, 2010), pp. 1–10.

O’Malley, M. J.

M. J. O’Malley and E. O’Mongain, “Charge-coupled devices: frame adding as an alternative to long integration times and cooling,” Opt. Eng. 31(3), 522–526 (1992).
[Crossref]

O’Mongain, E.

M. J. O’Malley and E. O’Mongain, “Charge-coupled devices: frame adding as an alternative to long integration times and cooling,” Opt. Eng. 31(3), 522–526 (1992).
[Crossref]

Oglevie, B.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

Pascale, E.

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

Percival, J. W.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

Qin, S.

Ramalingam, S.

P. Sturm, S. Ramalingam, J. P. Tardif, S. Gasparini, and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision (Now Publishers, 2004), chap. 3.

Rex, M.

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

Rye, V. A.

M. Belenkii, D. G. Bruns, V. A. Rye, and T. Brinkley, “Daytime stellar imager,” US007349804B2 (Mar.252008).

Saeed, S. I.

R. A. Fowell, S. I. Saeed, R. Li, and Y.-W. A. Wu, “Mitigation of angular acceleration effects on optical sensor data,” U.S. Patent 6, 863, 244 (2005).

Schuette, S.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Skeen, M.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Sturm, P.

P. Sturm, S. Ramalingam, J. P. Tardif, S. Gasparini, and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision (Now Publishers, 2004), chap. 3.

Tan, W.

Tardif, J. P.

P. Sturm, S. Ramalingam, J. P. Tardif, S. Gasparini, and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision (Now Publishers, 2004), chap. 3.

Titterton, D. H.

D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology (The Institution of Engineering and Technology, 2004), chap. 12.
[Crossref]

Truesdale, N.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Truesdale, N. A.

N. A. Truesdale, K. J. Dinkel, Z. J. B. Dischner, J. H. Diller, and E. F. Young, “DayStar: Modeling and test results of a balloon-borne daytime star tracker,” in IEEE Aerospace Conference (SPIE, 2013), pp. 1–12.

Wang, G.

W. Wang, X. Wei, J. Li, and G. Wang, “Noise suppression algorithm of short-wave infrared star image for daytime star sensor,” Infrared Phys. Technol. 85, 382–394 (2017).
[Crossref]

G. Wang, F. Xing, M. Wei, and Z. You, “Rapid optimization method of the strong stray light elimination for extremely weak light signal detection,” Opt. Express 25(21), 26175–26185 (2017).
[Crossref] [PubMed]

Wang, W.

W. Wang, X. Wei, J. Li, and G. Zhang, “Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor,” Rev. Sci. Instruments 89, 075003 (2018).
[Crossref]

W. Wang, X. Wei, J. Li, and G. Wang, “Noise suppression algorithm of short-wave infrared star image for daytime star sensor,” Infrared Phys. Technol. 85, 382–394 (2017).
[Crossref]

Wang, X.

Wei, M.

M. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
[Crossref]

G. Wang, F. Xing, M. Wei, and Z. You, “Rapid optimization method of the strong stray light elimination for extremely weak light signal detection,” Opt. Express 25(21), 26175–26185 (2017).
[Crossref] [PubMed]

Wei, X.

W. Wang, X. Wei, J. Li, and G. Zhang, “Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor,” Rev. Sci. Instruments 89, 075003 (2018).
[Crossref]

W. Wang, X. Wei, J. Li, and G. Wang, “Noise suppression algorithm of short-wave infrared star image for daytime star sensor,” Infrared Phys. Technol. 85, 382–394 (2017).
[Crossref]

Weston, J. L.

D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology (The Institution of Engineering and Technology, 2004), chap. 12.
[Crossref]

Wiebe, D.

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

Wu, W.

Wu, Y.-W. A.

R. A. Fowell, S. I. Saeed, R. Li, and Y.-W. A. Wu, “Mitigation of angular acceleration effects on optical sensor data,” U.S. Patent 6, 863, 244 (2005).

R. A. Fowell, R. Li, and Y.-W. A. Wu, “Method for compensating star motion induced error in a stellar inertial attitude determination system,” U.S. Patent 7, 487, 016 (2009).

Xing, F.

M. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
[Crossref]

G. Wang, F. Xing, M. Wei, and Z. You, “Rapid optimization method of the strong stray light elimination for extremely weak light signal detection,” Opt. Express 25(21), 26175–26185 (2017).
[Crossref] [PubMed]

Yamshchikov, N. E.

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

Yan, J.

Yang, L.

J. Lu and L. Yang, “Optimal scheme of star observation of missile-borne inertial navigation system/stellar refraction integrated navigation,” Rev. Sci. Instruments 89(5), 054501(2018).
[Crossref]

You, Z.

M. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
[Crossref]

G. Wang, F. Xing, M. Wei, and Z. You, “Rapid optimization method of the strong stray light elimination for extremely weak light signal detection,” Opt. Express 25(21), 26175–26185 (2017).
[Crossref] [PubMed]

Young, E. F.

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

N. A. Truesdale, K. J. Dinkel, Z. J. B. Dischner, J. H. Diller, and E. F. Young, “DayStar: Modeling and test results of a balloon-borne daytime star tracker,” in IEEE Aerospace Conference (SPIE, 2013), pp. 1–12.

Zhan, D.

Zhang, G.

Zhao, Y.

Zheng, J.

Zizzi, A.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

Acta Astronaut. (1)

J. L. Jorgensen, T. Denver, M. Betto, and P. V. d. Braembussche, “The PROBA satellite star tracker performance,” Acta Astronaut. 56(1), 153–159 (2005).
[Crossref]

Appl. Opt. (1)

Gyroscopy and Navig. (1)

G. A. Avanesov, R. V. Bessonov, A. N. Kurkina, M. B. Lyudomirskii, I. S. Kayutin, and N. E. Yamshchikov, “Autonomous strapdown stellar-inertial navigation systems: design principles, operating modes and operational experience,” Gyroscopy and Navig. 4(4), 204–215 (2013).
[Crossref]

IEEE Aerosp. Electron. Syst. Mag. (1)

C. C. Liebe, “Star trackers for attitude determination,” IEEE Aerosp. Electron. Syst. Mag. 10(6), 10–16 (1995).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (1)

C. C. Liebe, “Accuracy performance of star trackers - a tutorial,” IEEE Trans. Aerosp. Electron. Syst. 38(2), 587–599 (2002).
[Crossref]

Infrared Phys. Technol. (1)

W. Wang, X. Wei, J. Li, and G. Wang, “Noise suppression algorithm of short-wave infrared star image for daytime star sensor,” Infrared Phys. Technol. 85, 382–394 (2017).
[Crossref]

Light Sci. Appl. (1)

M. Wei, F. Xing, and Z. You, “A real-time detection and positioning method for small and weak targets using a 1D morphology-based approach in 2D images,” Light Sci. Appl. 7, 18006 (2018).
[Crossref]

Navigation (1)

S. Levine, R. Dennis, and K. L. Bachman, “Strapdown astro-Inertial navigation utilizing the optical Wide-angle lens startracker,” Navigation 37(2), 347–362 (1990).
[Crossref]

Opt. Eng. (1)

M. J. O’Malley and E. O’Mongain, “Charge-coupled devices: frame adding as an alternative to long integration times and cooling,” Opt. Eng. 31(3), 522–526 (1992).
[Crossref]

Opt. Express (4)

Proc. SPIE (3)

M. Rex, E. Chapin, M. J. Devlin, J. Gundersen, J. Klein, E. Pascale, and D. Wiebe, “BLAST autonomous daytime star cameras,” Proc. SPIE 6269, 62693H (2006).
[Crossref]

I. S. Kruzhilov, “Evaluation of instrument stellar magnitudes without recourse to data as to star spectral classes,” Proc. SPIE 0635, 063537 (2012).

A. R. Eisenman, C. C. Liebe, and J. L. Joergensen, “New generation of autonomous star trackers,” Proc. SPIE 3221, 524–535 (1997).
[Crossref]

Rev. Sci. Instruments (2)

J. Lu and L. Yang, “Optimal scheme of star observation of missile-borne inertial navigation system/stellar refraction integrated navigation,” Rev. Sci. Instruments 89(5), 054501(2018).
[Crossref]

W. Wang, X. Wei, J. Li, and G. Zhang, “Guide star catalog generation for short-wave infrared (SWIR) All-Time star sensor,” Rev. Sci. Instruments 89, 075003 (2018).
[Crossref]

Other (11)

M. Belenkii, D. G. Bruns, V. A. Rye, and T. Brinkley, “Daytime stellar imager,” US007349804B2 (Mar.252008).

Trex Enterprises Corporation Products/services, “Optical GPS” (Trex Enterprises Corporation, 2016), http://www.trexenterprise-s.com/Pages/Products

N. A. Truesdale, K. J. Dinkel, Z. J. B. Dischner, J. H. Diller, and E. F. Young, “DayStar: Modeling and test results of a balloon-borne daytime star tracker,” in IEEE Aerospace Conference (SPIE, 2013), pp. 1–12.

K. Ho and S. Nakasuka, “Novel star identification algorithm utilizing images of two star trackers,” in 2010 IEEE Aerospace Conference (IEEE, 2010), pp. 1–10.

N. Truesdale, M. Skeen, J. Diller, K. Dinkel, Z. Dischner, A. Holt, T. Murphy, S. Schuette, and A. Zizzi, “DayStar: modeling the daytime performance of a star tracker for high altitude balloons,” in 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (American Institute of Aeronautics and Astronautics, 2013), https://arc.aiaa.org/doi/abs/10.2514/6.2013-139.
[Crossref]

E. F. Young, R. Mellon, J. W. Percival, K. P. Jaehnig, J. Fox, T. Lachenmeier, B. Oglevie, and M. Bingenheimer, “Sub-arcsecond performance of the ST5000 star tracker on a balloon-borne platform,” in 2012 IEEE Aerospace Conference (IEEE, 2012), pp. 1–7.

R. A. Fowell, S. I. Saeed, R. Li, and Y.-W. A. Wu, “Mitigation of angular acceleration effects on optical sensor data,” U.S. Patent 6, 863, 244 (2005).

R. A. Fowell, R. Li, and Y.-W. A. Wu, “Method for compensating star motion induced error in a stellar inertial attitude determination system,” U.S. Patent 7, 487, 016 (2009).

D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology (The Institution of Engineering and Technology, 2004), chap. 12.
[Crossref]

P. Sturm, S. Ramalingam, J. P. Tardif, S. Gasparini, and J. Barreto, Camera Models and Fundamental Concepts Used in Geometric Computer Vision (Now Publishers, 2004), chap. 3.

J. D. Gautier, GPS/INS Generalized Valuation Tool (GIGET) for the Design and Testing of Integrated Navigation System (Stanford University, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Two successive frames taken by the star tracker at different moments. (a) The attitude of the star tracker is changing with time in the inertial coordinate system. (b) There are 4 same stars on two different images taken at tk and tj respectively. ST refers to star tracker, and GUs refers to gyroscope units.
Fig. 2
Fig. 2 Coordinates of a transformed pixel: the coordinate of A0 is an integer between 1 and 512, in the jth image. But it becomes fractional after transformation, which has overlapping areas with four pixels of the nth image.
Fig. 3
Fig. 3 Flow chart of ACFA approach.
Fig. 4
Fig. 4 12 seconds’ three-axis attitude of the vehicle in i-frame.
Fig. 5
Fig. 5 The same region of a single image and correlated image: (a) The SNR of a single frame is too low to see the dim star in the image. (b) The star signal becomes obvious when 60 frames are correlated and added.
Fig. 6
Fig. 6 The star signal growth and noise growth of of correlated images. (a) Star signal is proportional to number of added frames. (b) Noise is between n / 2 and n of a single frame.
Fig. 7
Fig. 7 SNR growth and centroiding accuracy estimation: (a) SNR is between n and 2 n of a single frame. (b) The centroiding error of the navigation star with respect to the number of correlated frames. δx and δy represents the centroiding error in the x-axis and y-axis direction of the image coordinate system, δr represents the centroiding error in radical derenction.
Fig. 8
Fig. 8 Adding result with errors: (a) GUs of four different error grades; (b) Different fixed angle errors of three perpendicular axes.
Fig. 9
Fig. 9 Analyze the reason of declined SNR: For automotive-graded GUs, star signal distribution of 10 correlated frames is dispersed.
Fig. 10
Fig. 10 Analyze the error of attitude-correlated matrix: (a) The output attitude error of gyro is accumulating with time. (b) The output attitude error of fixed angle is small.
Fig. 11
Fig. 11 Experimental system.
Fig. 12
Fig. 12 Attitude change of the vehicle.
Fig. 13
Fig. 13 Contrast before and after addition: red circle is the identified stars. (a) A single frame; (b) 5 correlated frames.
Fig. 14
Fig. 14 Experimental result of ACFA approach: (a) The noise of n correlated frames is between n / 2 and n of a single image. (b) The SNR of n correlated frames is between n and 2 n of a single image.
Fig. 15
Fig. 15 The influence of ACFA on the star detection and star identification: (a) Maximum of identified star magnitude. (b) The mean number of identified stars. (c) Failure rate. (d) RMS value of angular distance error.

Tables (3)

Tables Icon

Table 1 Simulation parameters

Tables Icon

Table 3 Experimental parameters

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

SNR = s ¯ i N τ 2 + 2 N 0 2 ,
SNR add = n s ¯ i n ( N τ 2 + 2 N 0 2 ) = n SNR .
{ r k s = [ x k s y k s z k s ] T = C i s ( k ) r i r j s = [ x j s y j s z j s ] T = C i s ( j ) r i ,
{ C i s ( k ) = C b s C i b ( k ) C i s ( j ) = C b s C i b ( j ) .
C s ( j ) s ( k ) = C b s C b ( j ) b ( k ) ( C b s ) T ,
C b ( j ) b ( k ) = ( I + [ Φ j × ] ) ( I + [ Φ k 2 × ] ) ( I + [ Φ k 1 × ] ) ,
[ Φ × ] = [ 0 ϕ z ϕ y ϕ z 0 ϕ x ϕ y ϕ x 0 ] .
Φ = ω i b b Δ t = [ ϕ x ϕ y ϕ z ] .
r k s = C s ( j ) s ( k ) r j s .
{ x k s = T 11 x j s + T 12 y j s + T 13 z j s y k s = T 21 x j s + T 22 y j s + T 23 z j s z k s = T 31 x j s + T 32 y j s + T 33 z j s .
{ u = u 0 + f x s z s + δ u v = v 0 + f y s z s + δ v .
{ u j = u 0 + f x j s z j s + δ u v j = v 0 + f y j s z j s + δ v ,
{ u k = u 0 + f x k s z k s + δ u v k = v 0 + f y k s z k s + δ v ,
{ u k = T 11 ( u j u 0 δ u ) + T 12 ( v j v 0 δ v ) + T 13 T 31 ( u j u 0 δ u ) + T 32 ( v j v 0 δ v ) + T 33 + δ u v k = T 21 ( u j u 0 δ u ) + T 22 ( v j v 0 δ v ) + T 23 T 31 ( u j u 0 δ u ) + T 32 ( v j v 0 δ v ) + T 33 + δ v .
{ I ( A 1 ) = I n ( A 1 ) + S 1 × I j ( A 0 ) I ( A 2 ) = I n ( A 2 ) + S 2 × I j ( A 0 ) I ( A 3 ) = I n ( A 3 ) + S 3 × I j ( A 0 ) I ( A 4 ) = I n ( A 4 ) + S 4 × I j ( A 0 ) ,
n 2 σ σ add n σ .
n SNR SNR add 2 n SNR .
E = I C s ( j ) s ( k ) ( C ¯ s ( j ) s ( k ) ) T
{ I ¯ = 1 M N i = 1 M j = 1 N I i , j σ = 1 M N i = 1 M j = 1 N ( I i , j I ¯ ) 2 ,
{ I i , j S 1 = k 1 I i , j , I i , j S 2 = k 2 I i j , I i , j S 3 = k 3 I i , j I i , j S 4 = k 4 I i , j k 1 + k 2 + k 3 + k 4 = 1 ,
{ I ¯ S 1 = 1 M N i = 1 M j = 1 N I i , j S 1 = k 1 M N i = 1 M j = 1 N I i , j = k 1 I ¯ σ 1 = 1 M N i = 1 M j = 1 N ( I i , j S 1 I ¯ S 1 ) 2 = 1 M N i = 1 M j = 1 N ( k 1 I i , j k 1 I ¯ ) 2 = k 1 σ ,
σ 2 = k 2 σ , σ 3 = k 3 σ , σ 4 = k 4 σ .
σ = σ 1 + σ 2 + σ 3 + σ 4 .
σ add 2 = f = 1 n σ f 1 2 + σ f 2 2 + σ f 3 2 + σ f 4 2 ,
σ = σ f 1 + σ f 2 + σ f 3 + σ f 4 .
1 4 ( a + b + c + d ) 2 a 2 + b 2 + c i 3 2 + d 2 ( a + b + c + d ) 2 ,
1 4 ( σ f 1 + σ f 2 + σ f 3 + σ f 4 ) 2 σ f 1 2 + σ f 2 2 + σ f 3 2 + σ f 4 2 ( σ f 1 + σ f 2 + σ f 3 + σ f 4 ) 2 ,
f = 1 n 1 4 ( σ f 1 + σ f 2 + σ f 3 + σ f 4 ) 2 f = 1 n σ f 1 2 + σ f 2 2 + σ f 3 2 + σ f 4 2 f = 1 n ( σ f 1 + σ f 2 + σ f 3 + σ f 4 ) 2 ,
n 4 σ 2 σ add 2 n σ 2 .
n 2 σ σ add n σ .
n SNR SNR add 2 n SNR .

Metrics