Abstract

Electrically switchable photonic crystals are demonstrated based on TiO2 inverse opals infiltrated with liquid crystals. Macroporous anatase TiO2 inverse opals are fabricated from polystyrene opal templates through a sandwich vacuum backfilled method and followed by calcination. Upon liquid crystal infiltration, the optical properties of the hybrid organic/inorganic structure are characterized by reflectance measurements of the Bragg peak, the position of which can be switched using an external electric field. The physical mechanism underlying this switchable behavior is the reorientation of the liquid crystal molecules inside the spherical voids by the applied electric field, resulting in a significant change of the refractive index contrast between the liquid crystal and the TiO2 inverse opal. With advantageous features of cost-effective fabrication, easy integration, and electric control, such TiO2 inverse opals infiltrated with liquid crystals could play an important role in future development of active photonic devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture

Aijun Wang, Wenfang Liu, Junjie Tang, Sheng-Li Chen, and Peng Dong
Opt. Lett. 39(8) 2386-2389 (2014)

Exploiting defects in TiO2 inverse opal for enhanced photoelectrochemical water splitting

Rowena Yew, Siva Krishna Karuturi, Jiaqin Liu, Hark Hoe Tan, Yucheng Wu, and Chennupati Jagadish
Opt. Express 27(2) 761-773 (2019)

Inverse silica opal photonic crystals for optical sensing applications

Y. Nishijima, K. Ueno, S. Juodkazis, V. Mizeikis, H. Misawa, T. Tanimura, and K. Maeda
Opt. Express 15(20) 12979-12988 (2007)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton University Press, 2008).
  2. Z. Cai, Z. Xiong, X. Lu, and J. Teng, “In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(2), 545–553 (2014).
    [Crossref]
  3. X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
    [Crossref] [PubMed]
  4. K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U.S.A. 114(24), 6185–6190 (2017).
    [Crossref] [PubMed]
  5. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [Crossref]
  6. J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
    [Crossref] [PubMed]
  7. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
    [Crossref] [PubMed]
  8. X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
    [Crossref]
  9. Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
    [Crossref] [PubMed]
  10. Z. Cai, A. Sasmal, X. Liu, and S. A. Asher, “Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection,” ACS Sens. 2(10), 1474–1481 (2017).
    [Crossref] [PubMed]
  11. H. Zhang and C. Cheng, “Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance,” ACS Energy Lett. 2(4), 813–821 (2017).
    [Crossref]
  12. X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
    [Crossref]
  13. S. S. Mathew, S. Ma, and I. Kretzschmar, “Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization,” J. Mater. Res. 28(3), 369–377 (2013).
    [Crossref]
  14. M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
    [Crossref]
  15. D. P. Gaillot, E. Graugnard, J. S. King, and C. J. Summers, Tunable electro-optic photonic crystals fabricated through template directed multilayer atomic layer deposition, SPIE Proc. 6182, 61820Y (2006).
  16. J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
    [Crossref] [PubMed]
  17. G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
    [Crossref]
  18. M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
    [Crossref]
  19. M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
    [Crossref]
  20. H. Zhang, G. Chen, and D. W. Bahnemann, “Photoelectrocatalytic materials for environmental applications,” J. Mater. Chem. 19(29), 5089–5121 (2009).
    [Crossref]
  21. O. Bunsho, “Preparing articles on photocatalysis—Beyond the illusions, misconceptions, and speculation,” Chem. Lett. 37(3), 216–229 (2008).
    [Crossref]
  22. A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
    [Crossref]
  23. K. Lee and S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
    [Crossref]
  24. J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
    [Crossref] [PubMed]
  25. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
    [Crossref]
  26. Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 6634–6638 (2007).
    [Crossref]
  27. Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
    [Crossref]
  28. S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
    [Crossref] [PubMed]
  29. S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
    [Crossref] [PubMed]
  30. Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
    [Crossref] [PubMed]
  31. Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
    [Crossref]
  32. Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
    [Crossref]
  33. Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
    [Crossref] [PubMed]
  34. S. E. Shim, Y. J. Cha, J. M. Byun, and S. Choe, “Size control of polystyrene beads by multistage seeded emulsion polymerization,” J. Appl. Polym. Sci. 71(13), 2259–2269 (1999).
    [Crossref]
  35. E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
    [Crossref]
  36. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999).
    [Crossref]
  37. I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
    [Crossref]
  38. E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
    [Crossref]
  39. Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
    [Crossref]
  40. Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
    [Crossref] [PubMed]
  41. S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
    [Crossref]
  42. S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
    [Crossref]
  43. S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
    [Crossref] [PubMed]

2018 (2)

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

2017 (7)

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U.S.A. 114(24), 6185–6190 (2017).
[Crossref] [PubMed]

Z. Cai, A. Sasmal, X. Liu, and S. A. Asher, “Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection,” ACS Sens. 2(10), 1474–1481 (2017).
[Crossref] [PubMed]

H. Zhang and C. Cheng, “Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance,” ACS Energy Lett. 2(4), 813–821 (2017).
[Crossref]

X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
[Crossref]

2016 (1)

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

2015 (2)

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

2014 (2)

Z. Cai, Z. Xiong, X. Lu, and J. Teng, “In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(2), 545–553 (2014).
[Crossref]

S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[Crossref] [PubMed]

2013 (1)

S. S. Mathew, S. Ma, and I. Kretzschmar, “Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization,” J. Mater. Res. 28(3), 369–377 (2013).
[Crossref]

2012 (4)

Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
[Crossref]

2011 (4)

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[Crossref]

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
[Crossref]

2009 (4)

H. Zhang, G. Chen, and D. W. Bahnemann, “Photoelectrocatalytic materials for environmental applications,” J. Mater. Chem. 19(29), 5089–5121 (2009).
[Crossref]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[Crossref] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[Crossref] [PubMed]

2008 (2)

O. Bunsho, “Preparing articles on photocatalysis—Beyond the illusions, misconceptions, and speculation,” Chem. Lett. 37(3), 216–229 (2008).
[Crossref]

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

2007 (3)

G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 6634–6638 (2007).
[Crossref]

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

2006 (2)

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

2005 (1)

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
[Crossref]

2004 (1)

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

2002 (1)

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

2000 (1)

K. Lee and S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[Crossref]

1999 (2)

S. E. Shim, Y. J. Cha, J. M. Byun, and S. Choe, “Size control of polystyrene beads by multistage seeded emulsion polymerization,” J. Appl. Polym. Sci. 71(13), 2259–2269 (1999).
[Crossref]

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999).
[Crossref]

1997 (1)

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[Crossref] [PubMed]

An, X.

X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
[Crossref]

Aravindakshan, N.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Asher, S. A.

Z. Cai, A. Sasmal, X. Liu, and S. A. Asher, “Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection,” ACS Sens. 2(10), 1474–1481 (2017).
[Crossref] [PubMed]

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

K. Lee and S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[Crossref]

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[Crossref] [PubMed]

Bahnemann, D. W.

H. Zhang, G. Chen, and D. W. Bahnemann, “Photoelectrocatalytic materials for environmental applications,” J. Mater. Chem. 19(29), 5089–5121 (2009).
[Crossref]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Bertone, J. F.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999).
[Crossref]

Blanco, A.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

Bossard, J. A.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Bourguiga, R.

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Broisson, P.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Bunsho, O.

O. Bunsho, “Preparing articles on photocatalysis—Beyond the illusions, misconceptions, and speculation,” Chem. Lett. 37(3), 216–229 (2008).
[Crossref]

Byun, J. M.

S. E. Shim, Y. J. Cha, J. M. Byun, and S. Choe, “Size control of polystyrene beads by multistage seeded emulsion polymerization,” J. Appl. Polym. Sci. 71(13), 2259–2269 (1999).
[Crossref]

Cai, Z.

Z. Cai, A. Sasmal, X. Liu, and S. A. Asher, “Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection,” ACS Sens. 2(10), 1474–1481 (2017).
[Crossref] [PubMed]

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

Z. Cai, Z. Xiong, X. Lu, and J. Teng, “In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(2), 545–553 (2014).
[Crossref]

Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Cha, Y. J.

S. E. Shim, Y. J. Cha, J. M. Byun, and S. Choe, “Size control of polystyrene beads by multistage seeded emulsion polymerization,” J. Appl. Polym. Sci. 71(13), 2259–2269 (1999).
[Crossref]

Chen, G.

H. Zhang, G. Chen, and D. W. Bahnemann, “Photoelectrocatalytic materials for environmental applications,” J. Mater. Chem. 19(29), 5089–5121 (2009).
[Crossref]

Chen, J.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Chen, K.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Chen, L.-H.

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

Cheng, C.

H. Zhang and C. Cheng, “Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance,” ACS Energy Lett. 2(4), 813–821 (2017).
[Crossref]

Choe, S.

S. E. Shim, Y. J. Cha, J. M. Byun, and S. Choe, “Size control of polystyrene beads by multistage seeded emulsion polymerization,” J. Appl. Polym. Sci. 71(13), 2259–2269 (1999).
[Crossref]

Cole, I. S.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Colvin, V. L.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999).
[Crossref]

Dai, H. T.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[Crossref]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
[Crossref]

Danner, A. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Deparis, O.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

Diaz, A.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Dunham, S. N.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

Eftekhari, E.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Froufe-Pérez, L. S.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

Fujishima, A.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

Galisteo-López, J. F.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

Graugnard, E.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Gu, Z.-Z.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

Hasan, T.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

He, H. L.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Holtz, J. H.

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[Crossref] [PubMed]

Hong, Z.

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

Hou, C.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Hu, Z.-Y.

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Huang, H.

Huang, T. J.

Hupp, J. T.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[Crossref] [PubMed]

Hwang, H.

S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[Crossref] [PubMed]

Hwang, K. S.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999).
[Crossref]

Ibisate, M.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

Jain, S.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Ji, W.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Jiang, P.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999).
[Crossref]

Jiang, S. Z.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Jin, J.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Ju, L.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Kaplan, D. L.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Khoo, I. C.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Kim, S.

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U.S.A. 114(24), 6185–6190 (2017).
[Crossref] [PubMed]

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U.S.A. 114(24), 6185–6190 (2017).
[Crossref] [PubMed]

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Kim, S.-H.

S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[Crossref] [PubMed]

King, J. S.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Kretzschmar, I.

S. S. Mathew, S. Ma, and I. Kretzschmar, “Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization,” J. Mater. Res. 28(3), 369–377 (2013).
[Crossref]

Kubo, S.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

Kwak, D. H.

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

Lan, H.

X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
[Crossref]

Lee, K.

K. Lee and S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[Crossref]

Lee, S. Y.

S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[Crossref] [PubMed]

Leong, E. S. P.

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[Crossref]

Li, L.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Li, Q.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Li, X.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Li, Y.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Li, Z.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Liao, G.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
[Crossref]

Liu, H.

X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
[Crossref]

Liu, J.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Liu, J. H.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
[Crossref]

Liu, R.

X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
[Crossref]

Liu, X.

Z. Cai, A. Sasmal, X. Liu, and S. A. Asher, “Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection,” ACS Sens. 2(10), 1474–1481 (2017).
[Crossref] [PubMed]

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

Liu, Y. J.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[Crossref]

Y. J. Liu, Y. B. Zheng, J. Shi, H. Huang, T. R. Walker, and T. J. Huang, “Optically switchable gratings based on azo-dye-doped, polymer-dispersed liquid crystals,” Opt. Lett. 34(15), 2351–2353 (2009).
[Crossref] [PubMed]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 6634–6638 (2007).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
[Crossref]

López, C.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

Lorang, D.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

Lu, X.

Z. Cai, Z. Xiong, X. Lu, and J. Teng, “In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(2), 545–553 (2014).
[Crossref]

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Luo, D.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Ma, S.

S. S. Mathew, S. Ma, and I. Kretzschmar, “Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization,” J. Mater. Res. 28(3), 369–377 (2013).
[Crossref]

Mahdouani, M.

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

Mathew, S. S.

S. S. Mathew, S. Ma, and I. Kretzschmar, “Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization,” J. Mater. Res. 28(3), 369–377 (2013).
[Crossref]

Min, K.

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U.S.A. 114(24), 6185–6190 (2017).
[Crossref] [PubMed]

Mitropoulos, A. N.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Ohko, Y.

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

Omenetto, F. G.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Ozin, G. A.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Peng, Z.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
[Crossref]

Punihaole, D.

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

Qu, J.

X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
[Crossref]

Rooke, J. C.

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Sanchez, C.

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

Sapienza, R.

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

Sasmal, A.

Z. Cai, A. Sasmal, X. Liu, and S. A. Asher, “Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection,” ACS Sens. 2(10), 1474–1481 (2017).
[Crossref] [PubMed]

Sato, O.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

Schatz, G. C.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[Crossref] [PubMed]

Segawa, H.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

Shi, J.

Shi, T.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
[Crossref]

Shim, S. E.

S. E. Shim, Y. J. Cha, J. M. Byun, and S. Choe, “Size control of polystyrene beads by multistage seeded emulsion polymerization,” J. Appl. Polym. Sci. 71(13), 2259–2269 (1999).
[Crossref]

Si, G. Y.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Sim, J. Y.

S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[Crossref] [PubMed]

Spitzberg, J. D.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Standridge, S. D.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[Crossref] [PubMed]

Su, B.-L.

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Summers, C. J.

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Sun, X. W.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 6634–6638 (2007).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
[Crossref]

Takahashi, K.

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

Tao, H.

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Teng, J.

Z. Cai, Z. Xiong, X. Lu, and J. Teng, “In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(2), 545–553 (2014).
[Crossref]

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Teng, J. H.

Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Azo-dye-doped absorbing photonic crystals with purely imaginary refractive index contrast and all-optically switchable diffraction properties,” Opt. Mater. Express 2(1), 55–61 (2012).
[Crossref]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[Crossref]

Tryk, D. A.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

Van der Schueren, B.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

van Tendeloo, G.

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Velankar, S. S.

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

Walker, T. R.

Waterhouse, G. I. N.

G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

Waterland, M. R.

G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

Werner, D. H.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Williams, Y.

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Wu, M.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Wu, Z.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Xiang, N.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

Xiao, D.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Xiong, Z.

Z. Cai, Z. Xiong, X. Lu, and J. Teng, “In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(2), 545–553 (2014).
[Crossref]

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Xu, K. S.

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
[Crossref]

Xu, S.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Yang, S.-M.

S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[Crossref] [PubMed]

Yang, X.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
[Crossref]

Yang, X.-Y.

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

Yao, C.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Ye, J.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

Yin, S. T.

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Yu, W.-B.

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

Zalfani, M.

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Zhang, H.

H. Zhang and C. Cheng, “Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance,” ACS Energy Lett. 2(4), 813–821 (2017).
[Crossref]

H. Zhang, G. Chen, and D. W. Bahnemann, “Photoelectrocatalytic materials for environmental applications,” J. Mater. Chem. 19(29), 5089–5121 (2009).
[Crossref]

Zhang, X.

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

Zhao, D.

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

Zhao, H.

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

Zhao, X. S.

Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

Zheng, Y. B.

Zhou, M.

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

Zuo, H.

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
[Crossref]

ACS Energy Lett. (1)

H. Zhang and C. Cheng, “Three-dimensional FTO/TiO2/BiVO4 composite inverse opals photoanode with excellent photoelectrochemical performance,” ACS Energy Lett. 2(4), 813–821 (2017).
[Crossref]

ACS Sens. (1)

Z. Cai, A. Sasmal, X. Liu, and S. A. Asher, “Responsive photonic crystal carbohydrate hydrogel sensor materials for selective and sensitive lectin protein detection,” ACS Sens. 2(10), 1474–1481 (2017).
[Crossref] [PubMed]

Adv. Mater. (5)

J. Liu, H. Zhao, M. Wu, B. Van der Schueren, Y. Li, O. Deparis, J. Ye, G. A. Ozin, T. Hasan, and B.-L. Su, “Slow photons for photocatalysis and photovoltaics,” Adv. Mater. 29(17), 1605349 (2017).
[Crossref] [PubMed]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, A. Blanco, and C. López, “Self-assembled photonic structures,” Adv. Mater. 23(1), 30–69 (2011).
[Crossref] [PubMed]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. 24(23), OP131–OP135 (2012).
[Crossref] [PubMed]

S. Y. Lee, S.-H. Kim, H. Hwang, J. Y. Sim, and S.-M. Yang, “Controlled pixelation of inverse opaline structures towards reflection-mode displays,” Adv. Mater. 26(15), 2391–2397 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

Z. Cai, D. H. Kwak, D. Punihaole, Z. Hong, S. S. Velankar, X. Liu, and S. A. Asher, “A photonic crystal protein hydrogel sensor for candida albicans,” Angew. Chem. Int. Ed. Engl. 54(44), 13036–13040 (2015).
[Crossref] [PubMed]

Appl. Catal. B (1)

M. Zalfani, B. van der Schueren, M. Mahdouani, R. Bourguiga, W.-B. Yu, M. Wu, O. Deparis, Y. Li, and B.-L. Su, “ZnO quantum dots decorated 3DOM TiO2 nanocomposites: Symbiose of quantum size effects and photonic structure for highly enhanced photocatalytic degradation of organic pollutants,” Appl. Catal. B 199, 187–198 (2016).
[Crossref]

Appl. Phys. B (1)

Y. J. Liu, H. T. Dai, E. S. P. Leong, J. H. Teng, and X. W. Sun, “Electrically switchable two-dimensional photonic crystals made of polymer-dispersed liquid crystals based on the Talbot self-imaging effect,” Appl. Phys. B 104(3), 659–663 (2011).
[Crossref]

Appl. Phys. Lett. (3)

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

E. Graugnard, S. N. Dunham, J. S. King, D. Lorang, S. Jain, and C. J. Summers, “Enhanced tunable Bragg diffraction in large-pore inverse opals using dual-frequency liquid crystal,” Appl. Phys. Lett. 91(11), 111101 (2007).
[Crossref]

Y. J. Liu, X. W. Sun, J. H. Liu, H. T. Dai, and K. S. Xu, “A polarization insensitive 2×2 optical switch fabricated by liquid crystal-polymer composites,” Appl. Phys. Lett. 86(4), 041115 (2005).
[Crossref]

Chem. Lett. (1)

O. Bunsho, “Preparing articles on photocatalysis—Beyond the illusions, misconceptions, and speculation,” Chem. Lett. 37(3), 216–229 (2008).
[Crossref]

Chem. Mater. (1)

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, “Single-crystal colloidal multilayers of controlled thickness,” Chem. Mater. 11(8), 2132–2140 (1999).
[Crossref]

Chem. Soc. Rev. (1)

X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez, and B.-L. Su, “Hierarchically porous materials: synthesis strategies and structure design,” Chem. Soc. Rev. 46(2), 481–558 (2017).
[Crossref] [PubMed]

J. Am. Chem. Soc. (3)

K. Lee and S. A. Asher, “Photonic crystal chemical sensors: pH and ionic strength,” J. Am. Chem. Soc. 122(39), 9534–9537 (2000).
[Crossref]

S. Kubo, Z.-Z. Gu, K. Takahashi, Y. Ohko, O. Sato, and A. Fujishima, “Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition,” J. Am. Chem. Soc. 124(37), 10950–10951 (2002).
[Crossref] [PubMed]

S. Kubo, Z.-Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure,” J. Am. Chem. Soc. 126(26), 8314–8319 (2004).
[Crossref] [PubMed]

J. Appl. Polym. Sci. (1)

S. E. Shim, Y. J. Cha, J. M. Byun, and S. Choe, “Size control of polystyrene beads by multistage seeded emulsion polymerization,” J. Appl. Polym. Sci. 71(13), 2259–2269 (1999).
[Crossref]

J. Mater. Chem. (2)

Y. J. Liu, Z. Cai, E. S. P. Leong, X. S. Zhao, and J. H. Teng, “Optically switchable photonic crystals based on inverse opals partially infiltrated by photoresponsive liquid crystals,” J. Mater. Chem. 22(15), 7609–7613 (2012).
[Crossref]

H. Zhang, G. Chen, and D. W. Bahnemann, “Photoelectrocatalytic materials for environmental applications,” J. Mater. Chem. 19(29), 5089–5121 (2009).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (3)

E. Eftekhari, P. Broisson, N. Aravindakshan, Z. Wu, I. S. Cole, X. Li, D. Zhao, and Q. Li, “Sandwich-structured TiO2 inverse opal circulates slow photons for tremendous improvement in solar energy conversion efficiency,” J. Mater. Chem. A Mater. Energy Sustain. 5(25), 12803–12810 (2017).
[Crossref]

M. Zalfani, B. van der Schueren, Z.-Y. Hu, J. C. Rooke, R. Bourguiga, M. Wu, Y. Li, G. van Tendeloo, and B.-L. Su, “Novel 3DOM BiVO4/TiO2 nanocomposites for highly enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 3(42), 21244–21256 (2015).
[Crossref]

Z. Cai, Z. Xiong, X. Lu, and J. Teng, “In situ gold-loaded titania photonic crystals with enhanced photocatalytic activity,” J. Mater. Chem. A Mater. Energy Sustain. 2(2), 545–553 (2014).
[Crossref]

J. Mater. Res. (1)

S. S. Mathew, S. Ma, and I. Kretzschmar, “Three-dimensionally ordered macroporous TiO2 electrodes: Fabrication of inverse TiO2 opals for pore-size-dependent characterization,” J. Mater. Res. 28(3), 369–377 (2013).
[Crossref]

J. Mater. Sci. Mater. Electron. (1)

M. Zhou, C. Hou, J. Chen, J. Jin, L. Ju, S. Xu, C. Yao, and Z. Li, “Controlling the size of connecting windows in three-dimensionally ordered macroporous TiO2 for enhanced photocatalytic activity,” J. Mater. Sci. Mater. Electron. 29(14), 11972–11981 (2018).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. T. Yin, Y. J. Liu, D. Xiao, H. L. He, D. Luo, S. Z. Jiang, H. T. Dai, W. Ji, and X. W. Sun, “Liquid-crystal-based tunable plasmonic waveguide filters,” J. Phys. D Appl. Phys. 51(23), 235101 (2018).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystals made of polymer-dispersed liquid crystal,” Jpn. J. Appl. Phys. 46, 6634–6638 (2007).
[Crossref]

Langmuir (2)

Z. Cai, J. Teng, Z. Xiong, Y. Li, Q. Li, X. Lu, and X. S. Zhao, “Fabrication of TiO2 binary inverse opals without overlayers via the sandwich-vacuum infiltration of precursor,” Langmuir 27(8), 5157–5164 (2011).
[Crossref] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2.,” Langmuir 25(5), 2596–2600 (2009).
[Crossref] [PubMed]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

I. C. Khoo, Y. Williams, A. Diaz, K. Chen, J. A. Bossard, L. Li, D. H. Werner, E. Graugnard, J. S. King, S. Jain, and C. J. Summers, “Liquid-crystals for tunable photonic crystals, frequency selective surfaces and negative index material development,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 453(1), 309–319 (2006).
[Crossref]

Nat. Photonics (1)

S. Kim, A. N. Mitropoulos, J. D. Spitzberg, H. Tao, D. L. Kaplan, and F. G. Omenetto, “Silk inverse opals,” Nat. Photonics 6(12), 818–823 (2012).
[Crossref]

Nature (1)

J. H. Holtz and S. A. Asher, “Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials,” Nature 389(6653), 829–832 (1997).
[Crossref] [PubMed]

New J. Chem. (1)

X. An, H. Lan, R. Liu, H. Liu, and J. Qu, “Light absorption modulation of novel Fe2TiO5 inverse opals for photoelectrochemical water splitting,” New J. Chem. 41(16), 7966–7971 (2017).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Polyhedron (1)

G. I. N. Waterhouse and M. R. Waterland, “Opal and inverse opal photonic crystals: Fabrication and characterization,” Polyhedron 26(2), 356–368 (2007).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

K. Min, S. Kim, and S. Kim, “Deformable and conformal silk hydrogel inverse opal,” Proc. Natl. Acad. Sci. U.S.A. 114(24), 6185–6190 (2017).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

X. Yang, Z. Peng, H. Zuo, T. Shi, and G. Liao, “Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling,” Sens. Actuators A Phys. 167(2), 367–373 (2011).
[Crossref]

Surf. Sci. Rep. (1)

A. Fujishima, X. Zhang, and D. A. Tryk, “TiO2 photocatalysis and related surface phenomena,” Surf. Sci. Rep. 63(12), 515–582 (2008).
[Crossref]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Edition (Princeton University Press, 2008).

D. P. Gaillot, E. Graugnard, J. S. King, and C. J. Summers, Tunable electro-optic photonic crystals fabricated through template directed multilayer atomic layer deposition, SPIE Proc. 6182, 61820Y (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the fabrication of TiO2 inverse opals.
Fig. 2
Fig. 2 FESEM images of PS colloidal crystal templates fabricated with the sphere size of 200 (a) and 250 nm (b) in diameter, and their corresponding TiO2-IO films with the spheroidal void size of ~180 nm (c) and ~207 nm (d) replicated from PS opals.
Fig. 3
Fig. 3 The XRD pattern (a) and the EDS spectra (b) of TiO2-IOs.
Fig. 4
Fig. 4 Reflection spectra of PS templates (a) and TiO2-IOs (b).
Fig. 5
Fig. 5 (a) Reflection spectra of TiO2-IOs before and after LC infiltration. (b) Reflection spectra measured at different voltage.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ max = ( 8/3 ) 1/2 D ( n eff 2 sin 2 θ ) 1/2 ,

Metrics