Abstract

A full fiber-optic fluorescence correlation spectroscopy (FF-FCS) technique has been developed without the use of objectives and dichroic mirrors. To achieve this, an excitation laser has been focused onto a sample by a lensed optical fiber or a gradient index lens attached on the terminal surface of the optical fiber. The FF-FCS system does not exhibit a higher sensitivity than the conventional FCS system; however, it is much simpler and smaller. This work demonstrates the feasibility of FF-FCS by measuring fluorescent beads. In the future, we expect FF-FCS to be widely used as a laboratory tool and an embedded tool for quality-control systems, such as cytometers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
EMCCD-based spectrally resolved fluorescence correlation spectroscopy

Felix Bestvater, Zahir Seghiri, Moon Sik Kang, Nadine Gröner, Ji Young Lee, Kang-Bin Im, and Malte Wachsmuth
Opt. Express 18(23) 23818-23828 (2010)

Optical-fiber-microsphere for remote fluorescence correlation spectroscopy

Heykel Aouani, Frédérique Deiss, Jérôme Wenger, Patrick Ferrand, Neso Sojic, and Hervé Rigneault
Opt. Express 17(21) 19085-19092 (2009)

Fiber-optic fluorescence correlation spectrometer

Kanchan Garai, Mohan Muralidhar, and Sudipta Maiti
Appl. Opt. 45(28) 7538-7542 (2006)

References

  • View by:
  • |
  • |
  • |

  1. S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
    [Crossref]
  2. R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
    [Crossref]
  3. S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
    [Crossref] [PubMed]
  4. S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
    [Crossref] [PubMed]
  5. V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
    [Crossref] [PubMed]
  6. S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
    [Crossref] [PubMed]
  7. M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
    [Crossref] [PubMed]
  8. P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
    [Crossref] [PubMed]
  9. K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
    [Crossref] [PubMed]
  10. J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
    [Crossref]
  11. M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
    [Crossref]
  12. M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
    [Crossref] [PubMed]
  13. M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
    [Crossref]
  14. A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
    [Crossref] [PubMed]
  15. D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
    [Crossref] [PubMed]
  16. J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
    [Crossref]
  17. G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
    [Crossref] [PubMed]
  18. K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
    [Crossref] [PubMed]
  19. H. Aouani, F. Deiss, J. Wenger, P. Ferrand, N. Sojic, and H. Rigneault, “Optical-fiber-microsphere for remote fluorescence correlation spectroscopy,” Opt. Express 17(21), 19085–19092 (2009).
    [Crossref] [PubMed]
  20. K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45(28), 7538–7542 (2006).
    [Crossref] [PubMed]
  21. J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy (Springer US, 2006).

2018 (3)

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

2017 (1)

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

2016 (1)

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

2015 (3)

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

2010 (2)

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

2009 (1)

2007 (2)

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

2006 (1)

2003 (1)

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

2002 (1)

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

1997 (1)

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

1993 (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

1976 (1)

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

1974 (1)

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Aouani, H.

Aragón, S. R.

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

Bacia, K.

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

Böhmer, M.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Clausen, M. P.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Deiss, F.

Diaspro, A.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Eggeling, C.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Ehrenberg, M.

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Enderlein, J.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Erdmann, R.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Ferrand, P.

Fukushima, R.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Galiani, S.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Garai, K.

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45(28), 7538–7542 (2006).
[Crossref] [PubMed]

García-Sáez, A. J.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Gehring, W. J.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Ghosh, A.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Gregor, I.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Hell, S. W.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Honigmann, A.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Ishikawa, H.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Karedla, N.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Kask, P.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Kinjo, M.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Krautz, R.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Krmpot, A. J.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Kurosaki, T.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

Maiti, S.

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

K. Garai, M. Muralidhar, and S. Maiti, “Fiber-optic fluorescence correlation spectrometer,” Appl. Opt. 45(28), 7538–7542 (2006).
[Crossref] [PubMed]

Mets, Ü.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Meyer-Almes, F. J.

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

Mikuni, S.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Mueller, V.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Muralidhar, M.

Nikolic, S. N.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Oasa, S.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Oura, M.

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Papadopoulos, D. K.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Pecora, R.

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

Petrášek, Z.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Rahn, H.-J.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Ries, J.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Rigler, R.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Rigneault, H.

Sasaki, A.

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Schwille, P.

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

Sezgin, E.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Sojic, N.

Sureka, R.

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

Ta, H.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Tamura, M.

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

Terenius, L.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Thiele, J. C.

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

Tiwari, M.

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

Tomancak, P.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Vicidomini, G.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Vukojevic, V.

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Wahl, M.

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Waithe, D.

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

Wenger, J.

Widengren, J.

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

Yamamoto, J.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

J. Yamamoto, S. Mikuni, and M. Kinjo, “Multipoint fluorescence correlation spectroscopy using spatial light modulator,” Biomed. Opt. Express 9(12), 5881–5890 (2018).
[Crossref]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

Yamashita, D.

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (2)

K. Garai, R. Sureka, and S. Maiti, “Detecting amyloid-β aggregation with fiber-based fluorescence correlation spectroscopy,” Biophys. J. 92(7), L55–L57 (2007).
[Crossref] [PubMed]

P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72(4), 1878–1886 (1997).
[Crossref] [PubMed]

Chem. Phys. (1)

M. Ehrenberg and R. Rigler, “Rotational brownian motion and fluorescence intensify fluctuations,” Chem. Phys. 4(3), 390–401 (1974).
[Crossref]

Chem. Phys. Lett. (1)

M. Böhmer, M. Wahl, H.-J. Rahn, R. Erdmann, and J. Enderlein, “Time-resolved fluorescence correlation spectroscopy,” Chem. Phys. Lett. 353(5–6), 439–445 (2002).
[Crossref]

Eur. Biophys. J. (1)

R. Rigler, Ü. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22(3), 169–175 (1993).
[Crossref]

FEBS Lett. (2)

S. Mikuni, M. Tamura, and M. Kinjo, “Analysis of intranuclear binding process of glucocorticoid receptor using fluorescence correlation spectroscopy,” FEBS Lett. 581(3), 389–393 (2007).
[Crossref] [PubMed]

S. Oasa, A. Sasaki, J. Yamamoto, S. Mikuni, and M. Kinjo, “Homodimerization of glucocorticoid receptor from single cells investigated using fluorescence correlation spectroscopy and microwells,” FEBS Lett. 589(17), 2171–2178 (2015).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. R. Aragón and R. Pecora, “Fluorescence correlation spectroscopy as a probe of molecular dynamics,” J. Chem. Phys. 64(4), 1791–1803 (1976).
[Crossref]

Mech. Dev. (1)

D. K. Papadopoulos, A. J. Krmpot, S. N. Nikolić, R. Krautz, L. Terenius, P. Tomancak, R. Rigler, W. J. Gehring, and V. Vukojević, “Probing the kinetic landscape of Hox transcription factor-DNA binding in live cells by massively parallel Fluorescence Correlation Spectroscopy,” Mech. Dev. 138, 218–225 (2015).
[Crossref] [PubMed]

Methods (2)

A. Ghosh, N. Karedla, J. C. Thiele, I. Gregor, and J. Enderlein, “Fluorescence lifetime correlation spectroscopy: Basics and applications,” Methods 140-141, 32–39 (2018).
[Crossref] [PubMed]

K. Bacia and P. Schwille, “A dynamic view of cellular processes by in vivo fluorescence auto- and cross-correlation spectroscopy,” Methods 29(1), 74–85 (2003).
[Crossref] [PubMed]

Nano Lett. (1)

G. Vicidomini, H. Ta, A. Honigmann, V. Mueller, M. P. Clausen, D. Waithe, S. Galiani, E. Sezgin, A. Diaspro, S. W. Hell, and C. Eggeling, “STED-FLCS: An advanced tool to reveal spatiotemporal heterogeneity of molecular membrane dynamics,” Nano Lett. 15(9), 5912–5918 (2015).
[Crossref] [PubMed]

New J. Phys. (1)

J. Ries, Z. Petrášek, A. J. García-Sáez, and P. Schwille, “A comprehensive framework for fluorescence cross-correlation spectroscopy,” New J. Phys. 12(11), 113009 (2010).
[Crossref]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Vukojevic, D. K. Papadopoulos, L. Terenius, W. J. Gehring, and R. Rigler, “Quantitative study of synthetic Hox transcription factor-DNA interactions in live cells,” Proc. Natl. Acad. Sci. U.S.A. 107(9), 4093–4098 (2010).
[Crossref] [PubMed]

Sci. Rep. (3)

S. Oasa, S. Mikuni, J. Yamamoto, T. Kurosaki, D. Yamashita, and M. Kinjo, “Relationship between homodimeric glucocorticoid receptor and transcriptional regulation assessed via an in vitro fluorescence correlation spectroscopy-microwell system,” Sci. Rep. 8(1), 7488 (2018).
[Crossref] [PubMed]

M. Tiwari, S. Oasa, J. Yamamoto, S. Mikuni, and M. Kinjo, “A quantitative study of internal and external interactions of homodimeric glucocorticoid receptor using fluorescence cross-correlation spectroscopy in a live cell,” Sci. Rep. 7(1), 4336 (2017).
[Crossref] [PubMed]

M. Oura, J. Yamamoto, H. Ishikawa, S. Mikuni, R. Fukushima, and M. Kinjo, “Polarization-dependent fluorescence correlation spectroscopy for studying structural properties of proteins in living cell,” Sci. Rep. 6(1), 31091 (2016).
[Crossref] [PubMed]

Other (1)

J. R. Lakowicz, ed., Principles of Fluorescence Spectroscopy (Springer US, 2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup for FF-FCS. (a) Entire setup. (b) Corn-shape lensed fiber.
Fig. 2
Fig. 2 Particle size dependence on ACF. (a) Autocorrelation functions with background correction. The circles represent the measured ACF, and the solid lines are the fitted curves according to the model Eq. (1). The error bars show the standard deviations (n = 5). (b) Residual of fitting. (c) Normalized autocorrelation functions of (a). (d) Linearity of diffusion time against diameter of particles. The circles represent average values of the fitted diffusion time, and the blue solid line is the linear regression line. The error bars show the standard error (n = 5).
Fig. 3
Fig. 3 Particle concentration dependence on ACF. (a) Autocorrelation functions were treated with background correction. The error bars represent the standard deviation (n = 3). The circles and solid lines are the measured ACFs and fitted curves, respectively. (b) Residual of fitting (c) Linearity of number of particles against given concentration. The error bars represent the standard error (n = 3). The blue solid line shows the linear regression. (d) Relationship between diffusion time and given concentration. The error bars represent the standard error (n = 3). The blue solid line shows the linear regression line.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

G(τ)= I(t)I(t+τ) I(t) 2 = 1 N ( 1+ τ τ D ) 1 ( 1+ 1 s 2 τ τ D ) 1/2 +1,
τ D = w 0 2 4D ,
G corrected (τ)= ( I I I bg ) 2 G(τ),

Metrics