Abstract

We present theoretical and experimental studies of the plasmonic properties of hexagonal arrays of gold triangles, fabricated by angle-resolved nanosphere lithography method. Our numerical and experimental results both show that a change in the angle of gold deposition affects the size and the distance between the triangles, leading to a controlled shift in their absorption and scattering spectra. We calculate the force exerted on the polystyrene particles of 650 nm radii numerically while passing above the hexagonal arrays. Simulation results show that the presented hexagonal arrays of gold triangles can operate as efficient plasmonic tweezers with a controllable operating wavelength and high trap strength, owing to the additive interaction of the neighboring triangles. Moreover, we apply the realized plasmonic nanostructures in a conventional optical tweezers configuration and show that the optical tweezers stiffness can be effectively modulated by the plasmonic forces, at the IR wavelength of 1064 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Sequential trapping of single nanoparticles using a gold plasmonic nanohole array

Xue Han, Viet Giang Truong, Prince Sunil Thomas, and Síle Nic Chormaic
Photon. Res. 6(10) 981-986 (2018)

Non-spherical gold nanoparticles trapped in optical tweezers: shape matters

Oto Brzobohatý, Martin Šiler, Jan Trojek, Lukáš Chvátal, Vítězslav Karásek, and Pavel Zemánek
Opt. Express 23(7) 8179-8189 (2015)

Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers

Amr A. E. Saleh, Sassan Sheikhoelislami, Steven Gastelum, and Jennifer A. Dionne
Opt. Express 24(18) 20593-20603 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
    [Crossref]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  4. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [Crossref] [PubMed]
  5. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  6. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  7. M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
    [Crossref]
  8. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
    [Crossref] [PubMed]
  9. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
    [Crossref]
  10. A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
    [Crossref]
  11. T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
    [Crossref] [PubMed]
  12. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
    [Crossref] [PubMed]
  13. L. Huang, S. J. Maerkl, and O. J. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
    [Crossref] [PubMed]
  14. K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
    [Crossref] [PubMed]
  15. X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
    [Crossref]
  16. M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
    [Crossref] [PubMed]
  17. A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
    [Crossref] [PubMed]
  18. M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
    [Crossref]
  19. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
    [Crossref] [PubMed]
  20. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  21. M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
    [Crossref]
  22. M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
    [Crossref]
  23. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
    [Crossref] [PubMed]
  24. M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
    [Crossref] [PubMed]
  25. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref] [PubMed]
  26. C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
    [Crossref]
  27. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
    [Crossref]
  28. J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
    [Crossref]
  29. P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
    [Crossref]
  30. Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
    [Crossref]
  31. U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.
  32. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  33. O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
    [Crossref]
  34. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
    [Crossref]
  35. S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
    [Crossref] [PubMed]
  36. P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
    [Crossref] [PubMed]

2017 (3)

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

2016 (3)

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

2013 (2)

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

2012 (3)

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

2011 (2)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

2010 (1)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

2009 (3)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

L. Huang, S. J. Maerkl, and O. J. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express 17(8), 6018–6024 (2009).
[Crossref] [PubMed]

2008 (3)

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

2007 (2)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]

2006 (1)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

2004 (3)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]

2003 (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2002 (1)

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

2001 (1)

P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]

1997 (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

1986 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Acimovic, S. S.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Alexeenko, A. A.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

Alinezhad, H. G.

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

Anvari, G.

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

Anvari, M.

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Berg-Sørensen, K.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Berthelot, J.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Canaguier-Durand, A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Chow, E. K.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Chu, S.

Chua, S.

Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]

Cižmár, T.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Cuche, A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Darbari, S.

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

Denkov, N. D.

P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]

Devaux, E.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Dholakia, K.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref] [PubMed]

Di Falco, A.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref] [PubMed]

Dickinson, M.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Dmitruk, I. M.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

Dziedzic, J. M.

Ebbesen, T. W.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Flyvbjerg, H.

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Genet, C.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Ghorbanzadeh, M.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

Girard, C.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Gordon, R.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Grigorenko, A.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Hong, C. K.

J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]

Hong, J.

J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]

Hua, Y.

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

Huan, C.

Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]

Huang, L.

Hulteen, J. C.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Hutchison, J. A.

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Ishihara, H.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Jones, S.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kitamura, N.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Kotko, A. V.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

Kralchevsky, P. A.

P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Liu, W.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref] [PubMed]

Maerkl, S. J.

Martin, O. J.

Mazilu, M.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref] [PubMed]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Mestres, P.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Miao, Z.

Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]

Min, C.

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

Mizumoto, Y.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Moravvej-Farshi, M.

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

Moravvej-Farshi, M. K.

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

M. Ghorbanzadeh, M. K. Moravvej-Farshi, and S. Darbari, “Designing a plasmonic optophoresis system for trapping and simultaneous sorting/counting of micro-and nano-particles,” J. Lightwave Technol. 33(16), 3453–3460 (2015).
[Crossref]

Mousavi, S. M.

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

Murakoshi, K.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Petrov, D.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Pinchuk, A. O.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

Ploschner, M.

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref] [PubMed]

Qin, S.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref] [PubMed]

Quidant, R.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Reihani, S. N. S.

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Roberts, N.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Samadi, M.

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Shim, S. E.

J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]

Shoji, T.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Smith, M. T.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Tabar, M. R. R.

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

Takase, M.

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Toussaint, K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Tsuboi, Y.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

Van Duyne, R. P. J. T. J. P. C. B.

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

Verdal, J.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

Volpe, G.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

Wang, X.

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

Xiao, K.

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

Yeshchenko, O. A.

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

Yuan, X.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref] [PubMed]

Yuan, X.-C.

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref] [PubMed]

Zhang, Y.

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zheng, Y.

Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]

Zhu, Z.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref] [PubMed]

Zou, Q.

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

ACS Photonics (1)

M. Ghorbanzadeh, S. Jones, M. K. Moravvej-Farshi, and R. Gordon, “Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps,” ACS Photonics 4(5), 1108–1113 (2017).
[Crossref]

Appl. Phys. Lett. (1)

M. Ghorbanzadeh, S. Darbari, and M. Moravvej-Farshi, “Graphene-based plasmonic force switch,” Appl. Phys. Lett. 108(11), 111105 (2016).
[Crossref]

Colloids Surf. A Physicochem. Eng. Asp. (1)

J. Hong, C. K. Hong, and S. E. Shim, “Synthesis of polystyrene microspheres by dispersion polymerization using poly (vinyl alcohol) as a steric stabilizer in aqueous alcohol media,” Colloids Surf. A Physicochem. Eng. Asp. 302(1-3), 225–233 (2007).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

P. A. Kralchevsky and N. D. Denkov, “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6(4), 383–401 (2001).
[Crossref]

J. Cryst. Growth (1)

Y. Zheng, S. Chua, C. Huan, and Z. Miao, “Selective growth of GaAs quantum dots on the triangle nanocavities bounded by SiO2 mask on Si substrate by MBE,” J. Cryst. Growth 268(3-4), 369–374 (2004).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

M. Righini, C. Girard, and R. Quidant, “Light-induced manipulation with surface plasmons,” J. Opt. A, Pure Appl. Opt. 10(9), 093001 (2008).
[Crossref]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. J. T. J. P. C. B. Van Duyne, “Angle-resolved nanosphere lithography: manipulation of nanoparticle size, shape, and interparticle spacing,” J. Phys. Chem. B 106(8), 1898–1902 (2002).
[Crossref]

J. Phys. Chem. Lett. (2)

Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, and H. Ishihara, “Optical trapping of quantum dots based on gap-mode-excitation of localized surface plasmon,” J. Phys. Chem. Lett. 1(15), 2327–2333 (2010).
[Crossref]

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5(17), 2957–2967 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Nano Lett. (4)

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

K. Wang, E. Schonbrun, and K. B. Crozier, “Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film,” Nano Lett. 9(7), 2623–2629 (2009).
[Crossref] [PubMed]

M. Ploschner, T. Čižmár, M. Mazilu, A. Di Falco, and K. Dholakia, “Bidirectional optical sorting of gold nanoparticles,” Nano Lett. 12(4), 1923–1927 (2012).
[Crossref] [PubMed]

A. Cuche, A. Canaguier-Durand, E. Devaux, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Sorting nanoparticles with intertwined plasmonic and thermo-hydrodynamical forces,” Nano Lett. 13(9), 4230–4235 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2(1), 469 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photonics 2(6), 365–370 (2008).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nat. Phys. (2)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, “Parallel and selective trapping in a patterned plasmonic landscape,” Nat. Phys. 3(7), 477–480 (2007).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (3)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970).
[Crossref]

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008).
[Crossref] [PubMed]

Plasmonics (2)

X. Wang, K. Xiao, C. Min, Q. Zou, Y. Hua, and X.-C. Yuan, “Theoretical and experimental study of surface plasmon radiation force on micrometer-sized spheres,” Plasmonics 8(2), 637–643 (2013).
[Crossref]

O. A. Yeshchenko, I. M. Dmitruk, A. A. Alexeenko, A. V. Kotko, J. Verdal, and A. O. Pinchuk, “Size and temperature effects on the surface plasmon resonance in silver nanoparticles,” Plasmonics 7(4), 685–694 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75(3), 594–612 (2004).
[Crossref]

Sci. Rep. (3)

S. M. Mousavi, S. N. S. Reihani, G. Anvari, M. Anvari, H. G. Alinezhad, and M. R. R. Tabar, “Stochastic analysis of time series for the spatial positions of particles trapped in optical tweezers,” Sci. Rep. 7(1), 4832 (2017).
[Crossref] [PubMed]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref] [PubMed]

M. Samadi, S. Darbari, and M. K. Moravvej-Farshi, “Numerical Investigation of Tunable Plasmonic Tweezers based on Graphene Stripes,” Sci. Rep. 7(1), 14533 (2017).
[Crossref] [PubMed]

Other (1)

U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer Science & Business Media, 2013), Vol. 25.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) PS particles, spread on a glass substrate and dried under a uniform vertical flow of N2. SEM images of the resulting HCP monolayer (b) in a large scale area (~200 × 200 μm2), and (c) in a magnified view. (d) Deposition of an Au layer on top of the HCP monolayer by thermal evaporation with an incident angle of θ. SEM images of the fabricated hexagonal gold array, obtained from different deposition angles (e) θ = 0°, (f) θ = 15°, (g) θ = 25°, (h) θ = 35°, (i) θ = 45°. (j) Variation of the achieved feature sizes versus θ. The error bars present the corresponding size deviations.
Fig. 2
Fig. 2 (a) 2D and (b) 3D AFM images of the achieved gold hexagonal array, (c) the thickness profile along AAʹ, shown in part (a).
Fig. 3
Fig. 3 The measured extinction spectra for the hexagonal array of gold triangles prepared at different deposition angles (θ = 0°, 15°, and 25°); in the (a) visible and (b) near IR wavelength ranges.
Fig. 4
Fig. 4 (a) Scattering spectra calculated for a single gold triangle with three different feature sizes, l = 300, 280, 230 nm, corresponding to the deposition angles of θ = 0°, 15°, 25°, respectively. Inset: Schematic diagram of a single gold triangle with feature size l and thickness h. Field distribution above a single gold triangle at z0 = 10 nm for: (b) λ1 = 650 nm, and (c) λ2 = 1250 nm.
Fig. 5
Fig. 5 (a) Schematic diagram of a hexagonal array of gold triangles with l = 300 nm and h = 50 nm, and d = 300 nm. (b) The scattering spectra calculated for a single gold triangle (dashes-dots), a pair of gold triangles (dots), and a hexagonal array of gold triangles (solid). The normalized plasmonic field distributions monitored at z0 = 10 nm above the hexagonal array, calculated for the incident wavelength (c) λ1≈650 nm and (d) λ2≈1250 nm.
Fig. 6
Fig. 6 (a) Schematic of a PS particle of radius r = 650 nm, moving along x-direction above the hexagonal array of gold triangles (inset) at a height of z0 = 10 nm; (b) Fx (solid curve) and Fz (dashes) represent the components of the plasmonic force exerted on the PS particle. (c) Comparison of the corresponding potentials versus x, (solid curves) with those sensed by the PS particle when passing above the pair of triangles (dashes) (Fig. 5(a)). The thin and thick curves represent the data obtained for the incident laser beams (λS1≈633 nm, IS1 = 3.6 mW/μm2) and (λS2≈1064 nm, IS2 = 560 μW/μm2).
Fig. 7
Fig. 7 The magnified schematic cross-section view of the focused laser beam with respect to (a) the bare glass and (b) the sample with plasmonic structure in the optical tweezers configuration. PS microsphere trapped by optical tweezers with λS2≈1064 nm, and laser power of 80mW (c) on the bare glass, and (d) on the hexagonal arrangement of gold triangles.
Fig. 8
Fig. 8 The power spectra of the PS particle trapped by an 80-mW Nd: YAG laser beam (a), (b): in the absence of the hexagonal arrays along x- and y-direction; and (c), (d): in the presence of the hexagonal arrays along the x- and y-directions. The time series x(t) for the spatial positions were recorded with a sampling rate of 22 kHz. The solid lines represent Lorentzian fits to the experimental data.

Tables (1)

Tables Icon

Table 1 Values of fC and k extracted from the curves fitted to the experimental data of all four cases shown in Fig. 8

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p ( f ) = k B T 2 π 2 γ ( f 2 + f c 2 ) ,
F = 1 2 Re Ω T ( r , t ) n   ^ d s
T ( r , t ) = ε E ( r ) E * ( r ) + µ H ( r ) H * ( r ) 1 2 ( ε | E ( r ) | 2 + µ | H ( r ) | 2 )

Metrics