Abstract

In this paper, the spectral evolution properties and gain dynamics in hybrid rare-earth-Raman fiber amplifiers (H-RFAs) are demonstrated theoretically. Spectral broadening mechanisms and design strategies are given for H-RFAs based on two different types of pump schemes for generating the pump laser of Raman gain. As for the diode-pumped scheme, only a temporal stable pump laser of Raman gain is required to achieve the narrow-linewidth operation of an ultimate Raman fiber laser. As for the tandem-pumped scheme, both temporal stable pump lasers of rare-earth gain and Raman gain are required to achieve narrow-linewidth operation. The physical mechanism behind the phenomenon is the diversity of the pump-to-signal noise transfer property when applying different pump sources of rare-earth gain.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiwatts narrow linewidth fiber Raman amplifiers

Yan Feng, Luke Taylor, and Domenico Bonaccini Calia
Opt. Express 16(15) 10927-10932 (2008)

Theoretical and numerical treatment of modal instability in high-power core and cladding-pumped Raman fiber amplifiers

Shadi Naderi, Iyad Dajani, Jacob Grosek, and Timothy Madden
Opt. Express 24(15) 16550-16565 (2016)

1.7  μm band narrow-linewidth tunable Raman fiber lasers pumped by spectrum-sliced amplified spontaneous emission

Peng Zhang, Di Wu, Quanli Du, Xiaoyan Li, Kexuan Han, Lizhong Zhang, Tianshu Wang, and Huilin Jiang
Appl. Opt. 56(35) 9742-9748 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Y. Feng, Raman fiber lasers (Springer, 2017).
  2. V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
    [Crossref]
  3. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).
  4. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
    [Crossref] [PubMed]
  5. V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded Raman fiber lasers,” Opt. Express 21(6), 7148–7155 (2013).
    [Crossref] [PubMed]
  6. V. R. Supradeepa and J. W. Nicholson, “Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers,” Opt. Lett. 38(14), 2538–2541 (2013).
    [Crossref] [PubMed]
  7. L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated ytterbium-Raman fiber amplifier,” Opt. Lett. 39(7), 1933–1936 (2014).
    [Crossref] [PubMed]
  8. H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
    [Crossref] [PubMed]
  9. L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, X. Gu, and Y. Feng, “Kilowatt Ytterbium-Raman fiber laser,” Opt. Express 22(15), 18483–18489 (2014).
    [Crossref] [PubMed]
  10. P. Ma, H. Zhang, L. Huang, X. Wang, P. Zhou, and Z. Liu, “Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism,” Opt. Express 23(20), 26499–26508 (2015).
    [Crossref] [PubMed]
  11. Q. Xiao, P. Yan, D. Li, J. Sun, X. Wang, Y. Huang, and M. Gong, “Bidirectional pumped high power Raman fiber laser,” Opt. Express 24(6), 6758–6768 (2016).
    [Crossref] [PubMed]
  12. H. Zhang, P. Zhou, H. Xiao, J. Leng, R. Tao, X. Wang, J. Xu, X. Xu, and Z. Liu, “Toward high-power nonlinear fiber amplifier,” High Power Laser Sci. Eng. 6, e51 (2018).
    [Crossref]
  13. L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photonics Rev. 8(6), 889–895 (2014).
    [Crossref]
  14. T. H. Runcorn, R. T. Murray, E. J. R. Kelleher, S. V. Popov, and J. R. Taylor, “Duration-tunable picosecond source at 560 nm with watt-level average power,” Opt. Lett. 40(13), 3085–3088 (2015).
    [Crossref] [PubMed]
  15. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
    [Crossref] [PubMed]
  16. W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
    [Crossref] [PubMed]
  17. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007).
    [Crossref]
  18. I. Dajani, C. Vergien, C. Robin, and B. Ward, “Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm,” Opt. Express 21(10), 12038–12052 (2013).
    [Crossref] [PubMed]
  19. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19(9), 8394–8405 (2011).
    [Crossref] [PubMed]
  20. W. Liu, W. Kuang, M. Jiang, J. Xu, P. Zhou, and Z. Liu, “Modeling of the spectral evolution in a narrow- linewidth fiber amplifier,” Laser Phys. Lett. 13(3), 035105 (2016).
    [Crossref]
  21. W. Liu, P. Ma, Y. Miao, H. Wu, P. Zhou, and Z. Jiang, “Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 3100408 (2018).
    [Crossref]
  22. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013).
    [Crossref] [PubMed]
  23. P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
    [Crossref] [PubMed]
  24. M. Lax, “Classical noise. V. noise in self-sustained oscillators,” Phys. Rev. 160(2), 290–307 (1967).
    [Crossref]
  25. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
    [Crossref] [PubMed]
  26. C. Robin, I. Dajani, and B. Pulford, “Modal instability-suppressing, single-frequency photonic crystal fiber amplifier with 811 W output power,” Opt. Lett. 39(3), 666–669 (2014).
    [Crossref] [PubMed]
  27. P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
    [Crossref]
  28. H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
    [Crossref]
  29. H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
    [Crossref] [PubMed]
  30. P. Ma, R. Tao, L. Huang, X. Wang, P. Zhou, and Z. Liu, “608W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality,” J. Opt. 17(7), 075501 (2015).
    [Crossref]
  31. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
    [Crossref] [PubMed]
  32. M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Raman fiber lasers and passive pump-to-Stokes RIN suppression,” Opt. Express 23(13), 16823–16837 (2015).
    [Crossref] [PubMed]

2018 (2)

H. Zhang, P. Zhou, H. Xiao, J. Leng, R. Tao, X. Wang, J. Xu, X. Xu, and Z. Liu, “Toward high-power nonlinear fiber amplifier,” High Power Laser Sci. Eng. 6, e51 (2018).
[Crossref]

W. Liu, P. Ma, Y. Miao, H. Wu, P. Zhou, and Z. Jiang, “Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 3100408 (2018).
[Crossref]

2017 (2)

2016 (4)

2015 (6)

2014 (5)

2013 (5)

2012 (2)

2011 (1)

2009 (1)

2007 (1)

1967 (1)

M. Lax, “Classical noise. V. noise in self-sustained oscillators,” Phys. Rev. 160(2), 290–307 (1967).
[Crossref]

Babin, S. A.

Bednyakova, A. E.

Calia, D. B.

Chen, Z.

Churkin, D. V.

Cui, S.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photonics Rev. 8(6), 889–895 (2014).
[Crossref]

L. Zhang, H. Jiang, S. Cui, and Y. Feng, “Integrated ytterbium-Raman fiber amplifier,” Opt. Lett. 39(7), 1933–1936 (2014).
[Crossref] [PubMed]

Dajani, I.

Fedoruk, M. P.

Feng, Y.

Fotiadi, A. A.

Gong, M.

Gorbunov, O. A.

Gu, X.

He, B.

Headley, C. E.

Hu, J.

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photonics Rev. 8(6), 889–895 (2014).
[Crossref]

Huang, L.

Huang, Y.

Ismagulov, A. E.

Jakobsen, D.

Jiang, H.

Jiang, M.

W. Liu, W. Kuang, M. Jiang, J. Xu, P. Zhou, and Z. Liu, “Modeling of the spectral evolution in a narrow- linewidth fiber amplifier,” Laser Phys. Lett. 13(3), 035105 (2016).
[Crossref]

Jiang, Z.

Kablukov, S. I.

Kelleher, E. J. R.

Kracht, D.

Kuang, W.

W. Liu, W. Kuang, M. Jiang, J. Xu, P. Zhou, and Z. Liu, “Modeling of the spectral evolution in a narrow- linewidth fiber amplifier,” Laser Phys. Lett. 13(3), 035105 (2016).
[Crossref]

Kurkov, A. S.

Latkin, A. I.

Lax, M.

M. Lax, “Classical noise. V. noise in self-sustained oscillators,” Phys. Rev. 160(2), 290–307 (1967).
[Crossref]

Leng, J.

Li, D.

Liu, C.

Liu, W.

W. Liu, P. Ma, Y. Miao, H. Wu, P. Zhou, and Z. Jiang, “Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 3100408 (2018).
[Crossref]

W. Liu, W. Kuang, M. Jiang, J. Xu, P. Zhou, and Z. Liu, “Modeling of the spectral evolution in a narrow- linewidth fiber amplifier,” Laser Phys. Lett. 13(3), 035105 (2016).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
[Crossref] [PubMed]

Liu, Z.

H. Zhang, P. Zhou, H. Xiao, J. Leng, R. Tao, X. Wang, J. Xu, X. Xu, and Z. Liu, “Toward high-power nonlinear fiber amplifier,” High Power Laser Sci. Eng. 6, e51 (2018).
[Crossref]

P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
[Crossref]

W. Liu, W. Kuang, M. Jiang, J. Xu, P. Zhou, and Z. Liu, “Modeling of the spectral evolution in a narrow- linewidth fiber amplifier,” Laser Phys. Lett. 13(3), 035105 (2016).
[Crossref]

P. Ma, R. Tao, L. Huang, X. Wang, P. Zhou, and Z. Liu, “608W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality,” J. Opt. 17(7), 075501 (2015).
[Crossref]

P. Ma, H. Zhang, L. Huang, X. Wang, P. Zhou, and Z. Liu, “Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism,” Opt. Express 23(20), 26499–26508 (2015).
[Crossref] [PubMed]

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

Lv, H.

Ma, P.

Miao, Y.

W. Liu, P. Ma, Y. Miao, H. Wu, P. Zhou, and Z. Jiang, “Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 3100408 (2018).
[Crossref]

Moore, G. T.

Murray, R. T.

Naderi, S.

Neumann, J.

Nicholson, J. W.

Nichsolson, J. W.

Palsdottir, B.

Podivilov, E. V.

Politko, M. O.

Popov, S. V.

Pulford, B.

Qi, Y.

Randoux, S.

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

Robin, C.

Runcorn, T. H.

Sholokhov, E.

Smirnov, S. V.

Steinke, M.

Sun, J.

Supradeepa, V. R.

Suret, P.

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

Tao, R.

H. Zhang, P. Zhou, H. Xiao, J. Leng, R. Tao, X. Wang, J. Xu, X. Xu, and Z. Liu, “Toward high-power nonlinear fiber amplifier,” High Power Laser Sci. Eng. 6, e51 (2018).
[Crossref]

P. Ma, R. Tao, L. Huang, X. Wang, P. Zhou, and Z. Liu, “608W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality,” J. Opt. 17(7), 075501 (2015).
[Crossref]

Taylor, J. R.

Taylor, L. R.

Tünnermann, H.

Turitsyn, S. K.

Vergien, C.

Walczak, P.

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

Wang, X.

Wang, X. L.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

Ward, B.

Wessels, P.

Weßels, P.

Wu, H.

W. Liu, P. Ma, Y. Miao, H. Wu, P. Zhou, and Z. Jiang, “Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 3100408 (2018).
[Crossref]

Xiao, H.

Xiao, Q.

Xu, J.

Xu, X.

H. Zhang, P. Zhou, H. Xiao, J. Leng, R. Tao, X. Wang, J. Xu, X. Xu, and Z. Liu, “Toward high-power nonlinear fiber amplifier,” High Power Laser Sci. Eng. 6, e51 (2018).
[Crossref]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

Xu, X. J.

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

Yan, M. F.

Yan, P.

Zeringue, C.

Zhang, H.

Zhang, L.

Zhou, J.

Zhou, P.

H. Zhang, P. Zhou, H. Xiao, J. Leng, R. Tao, X. Wang, J. Xu, X. Xu, and Z. Liu, “Toward high-power nonlinear fiber amplifier,” High Power Laser Sci. Eng. 6, e51 (2018).
[Crossref]

W. Liu, P. Ma, Y. Miao, H. Wu, P. Zhou, and Z. Jiang, “Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 3100408 (2018).
[Crossref]

P. Zhou, H. Xiao, J. Leng, J. Xu, Z. Chen, H. Zhang, and Z. Liu, “High-power fiber lasers based on tandem pumping,” J. Opt. Soc. Am. B 34(3), A29–A36 (2017).
[Crossref]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

W. Liu, W. Kuang, M. Jiang, J. Xu, P. Zhou, and Z. Liu, “Modeling of the spectral evolution in a narrow- linewidth fiber amplifier,” Laser Phys. Lett. 13(3), 035105 (2016).
[Crossref]

P. Ma, R. Tao, L. Huang, X. Wang, P. Zhou, and Z. Liu, “608W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality,” J. Opt. 17(7), 075501 (2015).
[Crossref]

H. Xiao, J. Leng, H. Zhang, L. Huang, J. Xu, and P. Zhou, “High-power 1018 nm ytterbium-doped fiber laser and its application in tandem pump,” Appl. Opt. 54(27), 8166–8169 (2015).
[Crossref] [PubMed]

P. Ma, H. Zhang, L. Huang, X. Wang, P. Zhou, and Z. Liu, “Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism,” Opt. Express 23(20), 26499–26508 (2015).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

Appl. Opt. (1)

High Power Laser Sci. Eng. (1)

H. Zhang, P. Zhou, H. Xiao, J. Leng, R. Tao, X. Wang, J. Xu, X. Xu, and Z. Liu, “Toward high-power nonlinear fiber amplifier,” High Power Laser Sci. Eng. 6, e51 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Liu, P. Ma, Y. Miao, H. Wu, P. Zhou, and Z. Jiang, “Intrinsic mechanism for spectral evolution in single-frequency Raman fiber amplifier,” IEEE J. Sel. Top. Quantum Electron. 24(5), 3100408 (2018).
[Crossref]

J. Opt. (2)

P. Ma, R. Tao, L. Huang, X. Wang, P. Zhou, and Z. Liu, “608W average power picosecond all fiber polarization-maintained amplifier with narrow-band and near-diffraction-limited beam quality,” J. Opt. 17(7), 075501 (2015).
[Crossref]

V. R. Supradeepa, Y. Feng, and J. W. Nicholson, “Raman fiber lasers,” J. Opt. 19(2), 023001 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

L. Zhang, H. Jiang, S. Cui, J. Hu, and Y. Feng, “Versatile Raman fiber laser for sodium laser guide star,” Laser Photonics Rev. 8(6), 889–895 (2014).
[Crossref]

Laser Phys. Lett. (2)

H. Xiao, P. Zhou, X. L. Wang, X. J. Xu, and Z. Liu, “High power 1018 nm ytterbium doped fiber laser with an output power of 309 W,” Laser Phys. Lett. 10(6), 065102 (2013).
[Crossref]

W. Liu, W. Kuang, M. Jiang, J. Xu, P. Zhou, and Z. Liu, “Modeling of the spectral evolution in a narrow- linewidth fiber amplifier,” Laser Phys. Lett. 13(3), 035105 (2016).
[Crossref]

Opt. Express (14)

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013).
[Crossref] [PubMed]

C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, “A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light,” Opt. Express 20(19), 21196–21213 (2012).
[Crossref] [PubMed]

H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
[Crossref] [PubMed]

M. Steinke, J. Neumann, D. Kracht, and P. Wessels, “Gain dynamics in Raman fiber lasers and passive pump-to-Stokes RIN suppression,” Opt. Express 23(13), 16823–16837 (2015).
[Crossref] [PubMed]

I. Dajani, C. Vergien, C. Robin, and B. Ward, “Investigations of single-frequency Raman fiber amplifiers operating at 1178 nm,” Opt. Express 21(10), 12038–12052 (2013).
[Crossref] [PubMed]

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19(9), 8394–8405 (2011).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “Investigation of stimulated Raman scattering effect in high-power fiber amplifiers seeded by narrow-band filtered superfluorescent source,” Opt. Express 24(8), 8708–8717 (2016).
[Crossref] [PubMed]

W. Liu, P. Ma, H. Lv, J. Xu, P. Zhou, and Z. Jiang, “General analysis of SRS-limited high-power fiber lasers and design strategy,” Opt. Express 24(23), 26715–26721 (2016).
[Crossref] [PubMed]

Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express 17(26), 23678–23683 (2009).
[Crossref] [PubMed]

V. R. Supradeepa, J. W. Nichsolson, C. E. Headley, M. F. Yan, B. Palsdottir, and D. Jakobsen, “A high efficiency architecture for cascaded Raman fiber lasers,” Opt. Express 21(6), 7148–7155 (2013).
[Crossref] [PubMed]

H. Zhang, H. Xiao, P. Zhou, X. Wang, and X. Xu, “High power Yb-Raman combined nonlinear fiber amplifier,” Opt. Express 22(9), 10248–10255 (2014).
[Crossref] [PubMed]

L. Zhang, C. Liu, H. Jiang, Y. Qi, B. He, J. Zhou, X. Gu, and Y. Feng, “Kilowatt Ytterbium-Raman fiber laser,” Opt. Express 22(15), 18483–18489 (2014).
[Crossref] [PubMed]

P. Ma, H. Zhang, L. Huang, X. Wang, P. Zhou, and Z. Liu, “Kilowatt-level near-diffraction-limited and linear-polarized Ytterbium-Raman hybrid nonlinear amplifier based on polarization selection loss mechanism,” Opt. Express 23(20), 26499–26508 (2015).
[Crossref] [PubMed]

Q. Xiao, P. Yan, D. Li, J. Sun, X. Wang, Y. Huang, and M. Gong, “Bidirectional pumped high power Raman fiber laser,” Opt. Express 24(6), 6758–6768 (2016).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. (1)

M. Lax, “Classical noise. V. noise in self-sustained oscillators,” Phys. Rev. 160(2), 290–307 (1967).
[Crossref]

Phys. Rev. Lett. (1)

P. Walczak, S. Randoux, and P. Suret, “Optical rogue waves in integrable turbulence,” Phys. Rev. Lett. 114(14), 143903 (2015).
[Crossref] [PubMed]

Other (2)

Y. Feng, Raman fiber lasers (Springer, 2017).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Structure diagram of an H-RFA. WDM: wavelength division multiplexer; ISO: isolator; YDF: ytterbium-doped fiber; CPS: cladding pump stripper.
Fig. 2
Fig. 2 The temporal and spectral properties of the phase-modulated single-frequency laser: (a) spectral intensity; (b) temporal evolution.
Fig. 3
Fig. 3 The temporal and spectral properties of the laser which induces strong intensity fluctuations: (a) spectral intensity; (b) temporal evolution.
Fig. 4
Fig. 4 The power distribution, the temporal and spectral properties of the Raman signal light when applying the multi-longitudinal mode fiber oscillator as the Raman-pumped laser: (a) power distribution; (b) temporal evolution; (c) corresponding optical spectrum.
Fig. 5
Fig. 5 The output spectra and powers of the Raman signal laser at different pump powers: (a) output spectra; (b) output powers and ratios of the narrow-linewidth part.
Fig. 6
Fig. 6 The power distribution, the temporal and spectral properties of the Raman signal light when applying the phase-modulated single-frequency laser as the Raman-pumped laser: (a) power distribution; (b) temporal evolution; (c) corresponding optical spectrum.
Fig. 7
Fig. 7 The output spectra and powers of the H-RFA at different pump powers: (a) output spectra; (b) output powers and ratios of the narrow-linewidth part.
Fig. 8
Fig. 8 The power distribution, the temporal and spectral properties of the Raman signal light when there exists strong intensity fluctuations in the initial pump laser operating at 976 nm: (a) power distribution; (b) temporal evolution; (c) corresponding optical spectrum.
Fig. 9
Fig. 9 The power distribution, the temporal and spectral properties of the Raman signal light when there exists strong intensity fluctuations in the initial pump laser operating at 1018 nm: (a) power distribution; (b) temporal evolution; (c) corresponding optical spectrum.
Fig. 10
Fig. 10 The power distribution, the temporal and spectral properties of the Raman signal light when there exists strong intensity fluctuations in the Raman seed laser: (a) power distribution; (b) temporal evolution; (c) corresponding optical spectrum.
Fig. 11
Fig. 11 The magnitudes of the modulation transfer functions for the initial pump and Raman-pumped lasers.

Tables (2)

Tables Icon

Table 1 Major simulation parameters for the H-RFAs

Tables Icon

Table 2 Major results for the five contrast simulations

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

N 2 t = N 2 τ + Γ p λ p hc A eff ( σ p a N 1 σ p e N 2 ) P p + Γ s λ s hc A eff ( σ s a N 1 σ s e N 2 ) P s + Γ R λ R hc A eff ( σ R a N 1 σ R e N 2 ) P R
P p z + 1 v p P p t = Γ p ( σ p e N 2 σ p a N 1 ) P p α p P p
A s z + 1 v s A s t + i β 2s 2 2 A s t 2 =i γ s [ | A s | 2 +( 2 f R ) | A R | 2 ] A s g R 2 | A R | 2 A s α s 2 A s + 1 2 Γ s ( σ s e N 2 σ s a N 1 ) A s
A R z + 1 v R A R t + i β 2R 2 2 A R t 2 =i γ R [ | A R | 2 +( 2 f R ) | A s | 2 ] A R + g R 2 λ s λ R | A s | 2 A R α R 2 A R + 1 2 Γ R ( σ R e N 2 σ R a N 1 ) A R
A ˜ p ( ω )exp( 2In( 2 ) ω 2 Ω L 2 )exp( iφ( ω ) )
P p ( t )= P p 0 [ 1+ δ 0 cos( 2πft ) ]
P R ( t )= P R 0 *[ 1+ δ p ( f )cos( 2πft+ϕ ) ]
T p ( f )= δ p ( f )/ δ 0

Metrics