Abstract

A temperature-insensitive refractometer based on a refractive index (RI)-modulated singlemode-multimode-singlemode (RMSMS) fibre structure is proposed and experimentally demonstrated. In this investigation, a combination of no-core fibre (NCF) and multimode fibre (MMF) regions provides an RI modulation region due to the difference in RI between the NCF and the MMF. In effect, by periodically embedding the NCF within the MMF section of a singlemode-multimode-singlemode (SMS) fibre structure, a long-period grating (LPG) can be effectively introduced in the MMF section, and the excited cladding modes are therefore able to sense surrounding RI variation. The modulation parameters are determined from the numerical simulations, and the experimental results show the maximum RI sensitivity of the fabricated sample is as high as 206.96 nm/RIU. In addition, the proposed RMSMS fibre structure is proven to be unaffected by external temperature variation (in the wavelength domain), which is a very attractive feature in practical sensing applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive strain sensor based on composite interference established within S-tapered multimode fiber structure

Ke Tian, Meng Zhang, Gerald Farrell, Ruoning Wang, Elfed Lewis, and Pengfei Wang
Opt. Express 26(26) 33982-33992 (2018)

Ultrahigh-sensitivity temperature fiber sensor based on multimode interference

Susana Silva, Edwin G. P. Pachon, Marcos A. R. Franco, Juliano G. Hayashi, F. Xavier Malcata, Orlando Frazão, Pedro Jorge, and Cristiano M. B. Cordeiro
Appl. Opt. 51(16) 3236-3242 (2012)

Optimization and experiment of a miniature multimode fiber induced-LPG refractometer

Shuo Zhang, Sifan Deng, Zemin Wang, Wenlei Yang, Cuiting Sun, Xudong Chen, Yiwei Ma, Yuxiang Li, Tao Geng, Weimin Sun, and Libo Yuan
OSA Continuum 2(7) 2190-2198 (2019)

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  2. L. Coelho, D. Viegas, J. L. Santos, and J. De Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sens. Actuators B Chem. 223, 45–51 (2016).
    [Crossref]
  3. Z. Ding, T. Lang, Y. Wang, and C. Zhao, “Surface Plasmon Resonance Refractive Index Sensor Based on Tapered Coreless Optical Fiber Structure,” J. Lightwave Technol. 35(21), 4734–4739 (2017).
    [Crossref]
  4. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [Crossref] [PubMed]
  5. S. K. Srivastava and B. D. Gupta, “A Multitapered Fiber-Optic SPR Sensor With Enhanced Sensitivity,” IEEE Photonics Technol. Lett. 23(13), 923–925 (2011).
    [Crossref]
  6. S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
    [Crossref]
  7. J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan, “In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing,” Opt. Express 26(15), 19091–19099 (2018).
    [Crossref] [PubMed]
  8. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  9. T. Wei, Y. Han, Y. Li, H.-L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  10. Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
    [Crossref]
  11. A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, “Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing,” J. Lightwave Technol. 29(19), 2985–2991 (2011).
    [Crossref]
  12. X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
    [Crossref]
  13. A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
    [Crossref]
  14. W. S. Mohammed, P. W. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
    [Crossref] [PubMed]
  15. P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
    [Crossref] [PubMed]
  16. S. Silva, E. G. Pachon, M. A. Franco, J. G. Hayashi, F. X. Malcata, O. Frazão, P. Jorge, and C. M. B. Cordeiro, “Ultrahigh-sensitivity temperature fiber sensor based on multimode interference,” Appl. Opt. 51(16), 3236–3242 (2012).
    [Crossref] [PubMed]
  17. X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
    [Crossref]
  18. K. Tian, G. Farrell, X. Wang, E. Lewis, and P. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
    [Crossref] [PubMed]
  19. J. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
    [Crossref]
  20. K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
    [Crossref]
  21. K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
    [Crossref] [PubMed]
  22. J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
    [Crossref] [PubMed]
  23. Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
    [Crossref] [PubMed]
  24. P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
    [Crossref] [PubMed]
  25. Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
    [Crossref]
  26. Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
    [Crossref] [PubMed]
  27. E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
    [Crossref] [PubMed]
  28. S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature-insensitive fiber-optic devices using multimode interference effect,” Opt. Lett. 37(22), 4570–4572 (2012).
    [Crossref] [PubMed]
  29. S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature insensitive single-mode-multimode-single-mode fiber optic structures with two multimode fibers in series,” Opt. Lett. 39(11), 3340–3343 (2014).
    [Crossref] [PubMed]
  30. W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength Tunable Fiber Lens Based on Multimode Interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
    [Crossref]
  31. Q. Wang, G. Farrell, and W. Yan, “Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
    [Crossref]
  32. X. Wang, J. Zhang, K. Tian, S. Wang, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance,” Opt. Express 26(20), 26534–26543 (2018).
    [Crossref] [PubMed]
  33. Y. Rao, Y. Wang, Z. Ran, and T. Zhu, “Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO2 Laser Pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
    [Crossref]
  34. Q. Wang and G. Farrell, “Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing,” Proc. SPIE 6189, 61891N (2006).
  35. T. Geng, S. Zhang, F. Peng, W. Yang, C. Sun, X. Chen, Y. Zhou, Q. Hu, and L. Yuan, “A Temperature-Insensitive Refractive Index Sensor Based on No-Core Fiber Embedded Long Period Grating,” J. Lightwave Technol. 35(24), 5391–5396 (2017).
    [Crossref]
  36. K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
    [Crossref]
  37. M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
    [Crossref] [PubMed]

2018 (6)

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
[Crossref]

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
[Crossref]

J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan, “In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing,” Opt. Express 26(15), 19091–19099 (2018).
[Crossref] [PubMed]

X. Wang, J. Zhang, K. Tian, S. Wang, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance,” Opt. Express 26(20), 26534–26543 (2018).
[Crossref] [PubMed]

K. Tian, G. Farrell, X. Wang, E. Lewis, and P. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
[Crossref] [PubMed]

2017 (4)

2016 (1)

L. Coelho, D. Viegas, J. L. Santos, and J. De Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sens. Actuators B Chem. 223, 45–51 (2016).
[Crossref]

2015 (2)

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (4)

Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
[Crossref] [PubMed]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

J. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

2012 (3)

2011 (5)

2010 (1)

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

2009 (2)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
[Crossref]

2008 (2)

2007 (1)

2006 (2)

W. S. Mohammed, P. W. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[Crossref] [PubMed]

Q. Wang and G. Farrell, “Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing,” Proc. SPIE 6189, 61891N (2006).

2004 (1)

2003 (1)

1996 (1)

Antonio-Lopez, J.

J. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

Bhatia, P.

Bhatia, V.

Bo, L.

Bock, W. J.

Brambilla, G.

Cai, L.

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, X.

Chen, Y.

Coelho, L.

L. Coelho, D. Viegas, J. L. Santos, and J. De Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sens. Actuators B Chem. 223, 45–51 (2016).
[Crossref]

Cordeiro, C. M. B.

De Almeida, J.

L. Coelho, D. Viegas, J. L. Santos, and J. De Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sens. Actuators B Chem. 223, 45–51 (2016).
[Crossref]

Ding, M.

Ding, Z.

Du, Y.

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

Ebendorff-Heidepriem, H.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
[Crossref]

Fan, Y.

Farrell, G.

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
[Crossref]

X. Wang, J. Zhang, K. Tian, S. Wang, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance,” Opt. Express 26(20), 26534–26543 (2018).
[Crossref] [PubMed]

K. Tian, G. Farrell, X. Wang, E. Lewis, and P. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
[Crossref] [PubMed]

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref] [PubMed]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
[Crossref] [PubMed]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref] [PubMed]

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
[Crossref]

Q. Wang and G. Farrell, “Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing,” Proc. SPIE 6189, 61891N (2006).

Franco, M. A.

Frazão, O.

Fuentes-Fuentes, M. A.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Gao, Z.

Geng, T.

Gu, X.

Guan, C.

Guan, C. Y.

Gupta, B. D.

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

S. K. Srivastava and B. D. Gupta, “A Multitapered Fiber-Optic SPR Sensor With Enhanced Sensitivity,” IEEE Photonics Technol. Lett. 23(13), 923–925 (2011).
[Crossref]

P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
[Crossref] [PubMed]

Guzman-Sepulveda, J. R.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Han, Q.

Han, Y.

Hatta, A. M.

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

Hayashi, J. G.

Hu, H.-F.

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

Hu, Q.

Huang, J.

Johnson, E. G.

Jorge, P.

Kumar, A.

Kumar, M.

Lan, X.

Lang, T.

Lewis, E.

X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
[Crossref]

X. Wang, J. Zhang, K. Tian, S. Wang, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance,” Opt. Express 26(20), 26534–26543 (2018).
[Crossref] [PubMed]

K. Tian, G. Farrell, X. Wang, E. Lewis, and P. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
[Crossref] [PubMed]

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref] [PubMed]

Li, E.

Li, G.

Li, P.

Li, X.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
[Crossref]

Li, Y.

Liang, H.

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref] [PubMed]

LiKamWa, P.

J. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

Liu, T.

Liu, Z.

Lu, P.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Malcata, F. X.

May-Arrioja, D. A.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

J. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

Mehta, A.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Mishra, S. K.

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

Mohammed, W. S.

Nguyen, L. V.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
[Crossref]

Pachon, E. G.

Peng, F.

Rajan, G.

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

Ran, Z.

Rao, Y.

Ren, J.

Sanchez-Mondragon, J. J.

J. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

Sánchez-Mondragón, J. J.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Santos, J. L.

L. Coelho, D. Viegas, J. L. Santos, and J. De Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sens. Actuators B Chem. 223, 45–51 (2016).
[Crossref]

Semenova, Y.

Shi, J. H.

Silva, S.

Singh, S.

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

Smith, P. W.

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Srivastava, S. K.

S. K. Srivastava and B. D. Gupta, “A Multitapered Fiber-Optic SPR Sensor With Enhanced Sensitivity,” IEEE Photonics Technol. Lett. 23(13), 923–925 (2011).
[Crossref]

Sun, C.

Tian, K.

X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
[Crossref]

K. Tian, G. Farrell, X. Wang, E. Lewis, and P. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
[Crossref] [PubMed]

X. Wang, J. Zhang, K. Tian, S. Wang, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance,” Opt. Express 26(20), 26534–26543 (2018).
[Crossref] [PubMed]

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref] [PubMed]

Torres-Cisneros, M.

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Tripathi, S. M.

Tsai, H.-L.

Vengsarkar, A. M.

Viegas, D.

L. Coelho, D. Viegas, J. L. Santos, and J. De Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sens. Actuators B Chem. 223, 45–51 (2016).
[Crossref]

Wang, H.

Wang, P.

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

X. Wang, J. Zhang, K. Tian, S. Wang, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “Investigation of a novel SMS fiber based planar multimode waveguide and its sensing performance,” Opt. Express 26(20), 26534–26543 (2018).
[Crossref] [PubMed]

K. Tian, G. Farrell, X. Wang, E. Lewis, and P. Wang, “Highly sensitive displacement sensor based on composite interference established within a balloon-shaped bent multimode fiber structure,” Appl. Opt. 57(32), 9662–9668 (2018).
[Crossref] [PubMed]

X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref] [PubMed]

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

Q. Wu, Y. Semenova, P. Wang, and G. Farrell, “High sensitivity SMS fiber structure based refractometer--analysis and experiment,” Opt. Express 19(9), 7937–7944 (2011).
[Crossref] [PubMed]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
[Crossref] [PubMed]

Wang, P. F.

Wang, Q.

Q. Wang, G. Farrell, and W. Yan, “Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
[Crossref]

Q. Wang and G. Farrell, “Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing,” Proc. SPIE 6189, 61891N (2006).

Wang, S.

Wang, X.

Wang, Y.

Warren-Smith, S. C.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
[Crossref]

Wei, T.

Wu, Q.

Xiao, H.

Xin, Y.

Xu, B.

Yan, W.

Yang, J.

Yang, M.

Yang, W.

Yuan, L.

Yuan, L. B.

Zhang, J.

Zhang, S.

Zhang, Y.

Zhao, C.

Zhao, Y.

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
[Crossref]

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

Zhou, A.

Zhou, Y.

Zhu, T.

Zhu, Z.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. K. Srivastava and B. D. Gupta, “A Multitapered Fiber-Optic SPR Sensor With Enhanced Sensitivity,” IEEE Photonics Technol. Lett. 23(13), 923–925 (2011).
[Crossref]

IEEE Sens. J. (1)

Y. Zhao, L. Cai, and H.-F. Hu, “Fiber-optic refractive index sensor based on multi-tapered SMS fiber structure,” IEEE Sens. J. 15(11), 6348–6353 (2015).
[Crossref]

J. Lightwave Technol. (9)

K. Tian, Y. Xin, W. Yang, T. Geng, J. Ren, Y. Fan, G. Farrell, E. Lewis, and P. Wang, “A Curvature Sensor Based on Twisted Single-Mode–Multimode–Single-Mode Hybrid Optical Fiber Structure,” J. Lightwave Technol. 35(9), 1725–1731 (2017).
[Crossref]

W. S. Mohammed, A. Mehta, and E. G. Johnson, “Wavelength Tunable Fiber Lens Based on Multimode Interference,” J. Lightwave Technol. 22(2), 469–477 (2004).
[Crossref]

Q. Wang, G. Farrell, and W. Yan, “Investigation on Single-Mode–Multimode–Single-Mode Fiber Structure,” J. Lightwave Technol. 26(5), 512–519 (2008).
[Crossref]

Y. Rao, Y. Wang, Z. Ran, and T. Zhu, “Novel Fiber-Optic Sensors Based on Long-Period Fiber Gratings Written by High-Frequency CO2 Laser Pulses,” J. Lightwave Technol. 21(5), 1320–1327 (2003).
[Crossref]

T. Geng, S. Zhang, F. Peng, W. Yang, C. Sun, X. Chen, Y. Zhou, Q. Hu, and L. Yuan, “A Temperature-Insensitive Refractive Index Sensor Based on No-Core Fiber Embedded Long Period Grating,” J. Lightwave Technol. 35(24), 5391–5396 (2017).
[Crossref]

Z. Ding, T. Lang, Y. Wang, and C. Zhao, “Surface Plasmon Resonance Refractive Index Sensor Based on Tapered Coreless Optical Fiber Structure,” J. Lightwave Technol. 35(21), 4734–4739 (2017).
[Crossref]

X. Wang, K. Tian, L. Yuan, E. Lewis, G. Farrell, and P. Wang, “A High-Temperature Humidity Sensor Based on a Singlemode-Side Polished Multimode-Singlemode Fiber Structure,” J. Lightwave Technol. 36(13), 2730–2736 (2018).
[Crossref]

Z. Ran, Y. Rao, J. Zhang, Z. Liu, and B. Xu, “A miniature fiber-optic refractive-index sensor based on laser-machined Fabry–Perot interferometer tip,” J. Lightwave Technol. 27(23), 5426–5429 (2009).
[Crossref]

A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, “Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing,” J. Lightwave Technol. 29(19), 2985–2991 (2011).
[Crossref]

Meas. Sci. Technol. (1)

J. Antonio-Lopez, P. LiKamWa, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “All-fiber multimode interference micro-displacement sensor,” Meas. Sci. Technol. 24(5), 055104 (2013).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

A. M. Hatta, Y. Semenova, G. Rajan, and G. Farrell, “Polarization dependence of an edge filter based on singlemode–multimode–singlemode fibre,” Opt. Laser Technol. 42(6), 1044–1048 (2010).
[Crossref]

Opt. Lett. (9)

W. S. Mohammed, P. W. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett. 31(17), 2547–2549 (2006).
[Crossref] [PubMed]

P. Wang, M. Ding, L. Bo, C. Guan, Y. Semenova, Q. Wu, G. Farrell, and G. Brambilla, “Fiber-tip high-temperature sensor based on multimode interference,” Opt. Lett. 38(22), 4617–4620 (2013).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
[Crossref] [PubMed]

E. Li, “Temperature compensation of multimode-interference-based fiber devices,” Opt. Lett. 32(14), 2064–2066 (2007).
[Crossref] [PubMed]

S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature-insensitive fiber-optic devices using multimode interference effect,” Opt. Lett. 37(22), 4570–4572 (2012).
[Crossref] [PubMed]

S. M. Tripathi, A. Kumar, M. Kumar, and W. J. Bock, “Temperature insensitive single-mode-multimode-single-mode fiber optic structures with two multimode fibers in series,” Opt. Lett. 39(11), 3340–3343 (2014).
[Crossref] [PubMed]

J. Huang, X. Lan, H. Wang, L. Yuan, T. Wei, Z. Gao, and H. Xiao, “Polymer optical fiber for large strain measurement based on multimode interference,” Opt. Lett. 37(20), 4308–4310 (2012).
[Crossref] [PubMed]

Y. Chen, Q. Han, T. Liu, X. Lan, and H. Xiao, “Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid,” Opt. Lett. 38(20), 3999–4001 (2013).
[Crossref] [PubMed]

P. Wang, G. Brambilla, M. Ding, Y. Semenova, Q. Wu, and G. Farrell, “High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference,” Opt. Lett. 36(12), 2233–2235 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

Q. Wang and G. Farrell, “Numerical investigation of multimode interference in a multimode fiber and its applications in optical sensing,” Proc. SPIE 6189, 61891N (2006).

Sens. Actuators A Phys. (2)

K. Tian, G. Farrell, X. Wang, Y. Xin, Y. Du, W. Yang, H. Liang, E. Lewis, and P. Wang, “High sensitivity temperature sensor based on singlemode-no-core-singlemode fibre structure and alcohol,” Sens. Actuators A Phys. 284, 28–34 (2018).
[Crossref]

S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sens. Actuators A Phys. 193, 136–140 (2013).
[Crossref]

Sens. Actuators B Chem. (2)

L. Coelho, D. Viegas, J. L. Santos, and J. De Almeida, “Characterization of zinc oxide coated optical fiber long period gratings with improved refractive index sensing properties,” Sens. Actuators B Chem. 223, 45–51 (2016).
[Crossref]

X. Li, L. V. Nguyen, Y. Zhao, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “High-sensitivity Sagnac-interferometer biosensor based on exposed core microstructured optical fiber,” Sens. Actuators B Chem. 269, 103–109 (2018).
[Crossref]

Sensors (Basel) (1)

M. A. Fuentes-Fuentes, D. A. May-Arrioja, J. R. Guzman-Sepulveda, M. Torres-Cisneros, and J. J. Sánchez-Mondragón, “Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects,” Sensors (Basel) 15(10), 26929–26939 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of the proposed RMSMS fibre structure.
Fig. 2
Fig. 2 Schematic diagram of the light propagation within the RMSMS fibre structure.
Fig. 3
Fig. 3 Simulated optical field intensity distribution (a) within a traditional SMS fibre structure; (b) within a RMSMS fibre structure.
Fig. 4
Fig. 4 (a) Simulated transmission spectra of the traditional SMS fibre structure and the RMSMS fibre structure in the wavelength range 1500 nm to 1600 nm; (b) Simulated spectral evolution results as external RI was changed from 1.333 RIU to 1.405 RIU; (c) Fitting curve of the dip wavelength shift against RI variation.
Fig. 5
Fig. 5 (a) Schematic diagram of the fibre micro-cutting system; (b1-b3) Schematic diagram of the fabrication process for the RMSMS fibre structure.
Fig. 6
Fig. 6 (a) Microscope images of the fabricated RMSMS fibre sample; (b) Simulated and experimental transmission spectra of the RMSMS fibre structure (in water).
Fig. 7
Fig. 7 Schematic diagram of the experimental setup for RI measurement.
Fig. 8
Fig. 8 (a) Transmission spectrum evolution as external RI is changed; (b) Fitting curve of the dip wavelength shift against RI variation.
Fig. 9
Fig. 9 (a) Transmission spectrum evolution as the external temperature was changed; (b) Dip wavelength and intensity plotted results.

Tables (2)

Tables Icon

Table 1 Measurement lengths of the embedded NCF and MMF

Tables Icon

Table 2 Comparison of the sensing performance of different RI sensors developed to date

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

M d n c o 2 n c l 2 λ
E ( r , z ) = m = 1 M e m F m ( r ) exp ( i β m z )
e m = 0 E ( r , 0 ) F m ( r ) r d r 0 F m ( r ) F m ( r ) r d r
λ m n = ( n c o e f f m n c l e f f n ) Λ

Metrics