Abstract

Both integer and fractional electromagnetically induced Talbot effects are experimentally investigated in a coherent rubidium 5S1/2 − 5P3/2 − 5D5/2 ladder-type system. By launching a probe laser into a periodically modulated lattice constructed by two crossed coupling fields with a small angle inside the rubidium vapor, a high-resolution diffraction pattern is obtained. The diffraction pattern is reproduced completely at detection positions of an integer multiple of twice the Talbot lengths. Meanwhile, the fractional Talbot effect, presented as complicated subimages at special positions, is also clearly observed. Furthermore, the theoretical simulations are conducted and agree well with the experimental results. These results pave the way for studying the control of light dynamics based on the periodically modulated medium.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coupling-intensity effects in ladder-type electromagnetically induced transparency of rubidium atoms

Han Seb Moon, Lim Lee, and Jung Bog Kim
J. Opt. Soc. Am. B 22(12) 2529-2533 (2005)

Atomic coherence effects in four-wave mixing process of a ladder-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 24(10) 10723-10732 (2016)

Coherence effects in electromagnetically induced transparency in V-type systems of 87Rb

Hyun-Jong Kang and Heung-Ryoul Noh
Opt. Express 25(18) 21762-21774 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401–407 (1836).
  2. M. V. Berry and S. Klein, “Integer, fractional and fractal talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
    [Crossref]
  3. L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under gaussian illumination,” Opt. Commun. 278, 23–27 (2007).
    [Crossref]
  4. A. W. Lohmann and J. A. Thomas, “Making an array illuminator based on the talbot effect,” Appl. Opt. 29, 4337–4340 (1990).
    [Crossref] [PubMed]
  5. K. Patorski, in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), vol. 27, pp. 1–108.
    [Crossref]
  6. S. Wu, E. Su, and M. Prentiss, “Demonstration of an area-enclosing guided-atom interferometer for rotation sensing,” Phys. Rev. Lett. 99, 173201 (2007).
    [Crossref] [PubMed]
  7. R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
    [Crossref] [PubMed]
  8. T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
    [Crossref]
  9. F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
    [Crossref] [PubMed]
  10. C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
    [Crossref] [PubMed]
  11. T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
    [Crossref] [PubMed]
  12. H. Nikkhah, M. Hasan, and T. J. Hall, “The talbot effect in a metamaterial,” Appl. Phys. A 124, 106 (2018).
    [Crossref]
  13. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic talbot effect,” Opt. Express 17, 19757–19762 (2009).
    [Crossref] [PubMed]
  14. L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
    [Crossref]
  15. Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear talbot effect,” Phys. Rev. Lett. 104, 183901 (2010).
    [Crossref] [PubMed]
  16. X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
    [Crossref] [PubMed]
  17. J. Azaña and H. Guillet de Chatellus, “Angular talbot effect,” Phys. Rev. Lett. 112, 213902 (2014).
    [Crossref]
  18. T. Qiu and G. Yang, “Electromagnetically induced angular talbot effect,” J. Phys. B: At. Mol. Opt. Phys. 48, 245502 (2015).
    [Crossref]
  19. H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
    [Crossref] [PubMed]
  20. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  21. D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
    [Crossref] [PubMed]
  22. J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48 (2008).
    [Crossref]
  23. H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
    [Crossref]
  24. M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
    [Crossref]
  25. G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
    [Crossref]
  26. E. M. Becerra-Castro and L. E. E. de Araujo, “Electromagnetically induced cross focusing in a four-level atomic medium,” J. Opt. Soc. Am. B 33, 1574–1579 (2016).
    [Crossref]
  27. M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638 (2003).
    [Crossref] [PubMed]
  28. J. H. Wu, M. Artoni, and G. C. La Rocca, “Stationary light pulses in cold thermal atomic clouds,” Phys. Rev. A 82, 013807 (2010).
    [Crossref]
  29. O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
    [Crossref]
  30. I. Iakoupov, J. R. Ott, D. E. Chang, and A. S. Sørensen, “Dispersion relations for stationary light in one-dimensional atomic ensembles,” Phys. Rev. A 94, 053824 (2016).
    [Crossref]
  31. Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
    [Crossref] [PubMed]
  32. Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
    [Crossref] [PubMed]
  33. Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
    [Crossref]
  34. Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).
  35. Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
    [Crossref]
  36. J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
    [Crossref]
  37. Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
    [Crossref]
  38. J. Sheng, J. Wang, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “Observation of discrete diffraction patterns in an optically induced lattice,” Opt. Express 23, 19777–19782 (2015).
    [Crossref] [PubMed]
  39. J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
    [Crossref]
  40. J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
    [Crossref] [PubMed]
  41. S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
    [Crossref]
  42. E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
    [Crossref]

2018 (6)

H. Nikkhah, M. Hasan, and T. J. Hall, “The talbot effect in a metamaterial,” Appl. Phys. A 124, 106 (2018).
[Crossref]

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
[Crossref]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

2017 (1)

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

2016 (4)

I. Iakoupov, J. R. Ott, D. E. Chang, and A. S. Sørensen, “Dispersion relations for stationary light in one-dimensional atomic ensembles,” Phys. Rev. A 94, 053824 (2016).
[Crossref]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

E. M. Becerra-Castro and L. E. E. de Araujo, “Electromagnetically induced cross focusing in a four-level atomic medium,” J. Opt. Soc. Am. B 33, 1574–1579 (2016).
[Crossref]

2015 (2)

2014 (1)

J. Azaña and H. Guillet de Chatellus, “Angular talbot effect,” Phys. Rev. Lett. 112, 213902 (2014).
[Crossref]

2012 (1)

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

2011 (2)

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

2010 (2)

J. H. Wu, M. Artoni, and G. C. La Rocca, “Stationary light pulses in cold thermal atomic clouds,” Phys. Rev. A 82, 013807 (2010).
[Crossref]

Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear talbot effect,” Phys. Rev. Lett. 104, 183901 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (3)

J. Zhang, G. Hernandez, and Y. Zhu, “Slow light with cavity electromagnetically induced transparency,” Opt. Lett. 33, 46–48 (2008).
[Crossref]

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

2007 (2)

S. Wu, E. Su, and M. Prentiss, “Demonstration of an area-enclosing guided-atom interferometer for rotation sensing,” Phys. Rev. Lett. 99, 173201 (2007).
[Crossref] [PubMed]

L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under gaussian illumination,” Opt. Commun. 278, 23–27 (2007).
[Crossref]

2006 (1)

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

2005 (4)

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[Crossref]

2004 (1)

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

2003 (1)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638 (2003).
[Crossref] [PubMed]

2002 (1)

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

1999 (2)

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

1998 (1)

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

1996 (1)

M. V. Berry and S. Klein, “Integer, fractional and fractal talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

1995 (1)

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

1990 (1)

1836 (1)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401–407 (1836).

Akamatsu, D.

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

Akiba, K.

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

Andersen, M. F.

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

Artoni, M.

J. H. Wu, M. Artoni, and G. C. La Rocca, “Stationary light pulses in cold thermal atomic clouds,” Phys. Rev. A 82, 013807 (2010).
[Crossref]

Auslaender, O. M.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Azaña, J.

J. Azaña and H. Guillet de Chatellus, “Angular talbot effect,” Phys. Rev. Lett. 112, 213902 (2014).
[Crossref]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638 (2003).
[Crossref] [PubMed]

Becerra-Castro, E. M.

Bech, M.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

Bernabeu, E.

L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under gaussian illumination,” Opt. Commun. 278, 23–27 (2007).
[Crossref]

Berry, M. V.

M. V. Berry and S. Klein, “Integer, fractional and fractal talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

Bleu, O.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Bonn, D. A.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Brönnimann, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

Bunk, O.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

Cardoso, G. C.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

Chang, D. E.

I. Iakoupov, J. R. Ott, D. E. Chang, and A. S. Sørensen, “Dispersion relations for stationary light in one-dimensional atomic ensembles,” Phys. Rev. A 94, 053824 (2016).
[Crossref]

Chen, H. Y.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

Christodoulides, D. N.

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

J. Sheng, J. Wang, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “Observation of discrete diffraction patterns in an optically induced lattice,” Opt. Express 23, 19777–19782 (2015).
[Crossref] [PubMed]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

Clark, C. W.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

d’Arcy, M. B.

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

David, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
[Crossref]

de Araujo, L. E. E.

Deng, L.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Denschlag, J.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Diaz, A.

T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
[Crossref]

Donley, E. A.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[Crossref]

Du, S. W.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

Edwards, M.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Egorov, O. A.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Eikenberry, E. F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

Estrecho, E.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Feng, J.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Gao, T.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Gea-Banacloche, J.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Grossman, J. M.

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

Grünzweig, C.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

Guillet de Chatellus, H.

J. Azaña and H. Guillet de Chatellus, “Angular talbot effect,” Phys. Rev. Lett. 112, 213902 (2014).
[Crossref]

Hagley, E. W.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Hall, T. J.

H. Nikkhah, M. Hasan, and T. J. Hall, “The talbot effect in a metamaterial,” Appl. Phys. A 124, 106 (2018).
[Crossref]

Hardy, W. N.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Hasan, M.

H. Nikkhah, M. Hasan, and T. J. Hall, “The talbot effect in a metamaterial,” Appl. Phys. A 124, 106 (2018).
[Crossref]

He, B.

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Heavner, T. P.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[Crossref]

Helmerson, K.

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Hernandez, G.

Hoffman, J. E.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Höfling, S.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Iakoupov, I.

I. Iakoupov, J. R. Ott, D. E. Chang, and A. S. Sørensen, “Dispersion relations for stationary light in one-dimensional atomic ensembles,” Phys. Rev. A 94, 053824 (2016).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Imoto, N.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

Iwanow, R.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

Jefferts, S. R.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[Crossref]

Jia, S.

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
[Crossref]

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

Jin, S.

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Kamp, M.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Klein, S.

M. V. Berry and S. Klein, “Integer, fractional and fractal talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

Koniakhin, S.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Koshnick, N. C.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Kottos, T.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Kovanis, V.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Kozuma, M.

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

Kraft, P.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

La Rocca, G. C.

J. H. Wu, M. Artoni, and G. C. La Rocca, “Stationary light pulses in cold thermal atomic clouds,” Phys. Rev. A 82, 013807 (2010).
[Crossref]

Levi, F.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[Crossref]

Li, C.

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Li, F.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Li, G.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Li, S.

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

Li, Y.

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Li, Y. Q.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Liang, R.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Ling, H. Y.

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

Liu, X.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

Lohmann, A. W.

Luan, L.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638 (2003).
[Crossref] [PubMed]

Luo, K. H.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

Ma, D.

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

Ma, X.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Malpuech, G.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

May-Arrioja, D. A.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

Min, Y.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

Miri, M.-A.

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

J. Sheng, J. Wang, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “Observation of discrete diffraction patterns in an optically induced lattice,” Opt. Express 23, 19777–19782 (2015).
[Crossref] [PubMed]

Mitsunaga, M.

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

Moler, K. A.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Nikkhah, H.

H. Nikkhah, M. Hasan, and T. J. Hall, “The talbot effect in a metamaterial,” Appl. Phys. A 124, 106 (2018).
[Crossref]

Nöhammer, B.

T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
[Crossref]

Ostrovskaya, E. A.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Ott, J. R.

I. Iakoupov, J. R. Ott, D. E. Chang, and A. S. Sørensen, “Dispersion relations for stationary light in one-dimensional atomic ensembles,” Phys. Rev. A 94, 053824 (2016).
[Crossref]

Patorski, K.

K. Patorski, in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), vol. 27, pp. 1–108.
[Crossref]

Pfeiffer, F.

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

Phillips, W. D.

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Prentiss, M.

S. Wu, E. Su, and M. Prentiss, “Demonstration of an area-enclosing guided-atom interferometer for rotation sensing,” Phys. Rev. Lett. 99, 173201 (2007).
[Crossref] [PubMed]

Qiu, T.

T. Qiu and G. Yang, “Electromagnetically induced angular talbot effect,” J. Phys. B: At. Mol. Opt. Phys. 48, 245502 (2015).
[Crossref]

Ramezani, H.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Rolston, S. L.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Ryu, C.

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

Sanchez-Brea, L. M.

L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under gaussian illumination,” Opt. Commun. 278, 23–27 (2007).
[Crossref]

Schneider, C.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Sheng, J.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

J. Sheng, J. Wang, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “Observation of discrete diffraction patterns in an optically induced lattice,” Opt. Express 23, 19777–19782 (2015).
[Crossref] [PubMed]

Simsarian, J. E.

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Sohler, W.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

Solnyshkov, D.

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Song, X. B.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

Sørensen, A. S.

I. Iakoupov, J. R. Ott, D. E. Chang, and A. S. Sørensen, “Dispersion relations for stationary light in one-dimensional atomic ensembles,” Phys. Rev. A 94, 053824 (2016).
[Crossref]

Stegeman, G. I.

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

Straver, E. W. J.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Su, E.

S. Wu, E. Su, and M. Prentiss, “Demonstration of an area-enclosing guided-atom interferometer for rotation sensing,” Phys. Rev. Lett. 99, 173201 (2007).
[Crossref] [PubMed]

Tabosa, J. W. R.

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401–407 (1836).

Tataw, M. O.

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[Crossref]

Thomas, J. A.

Torcal-Milla, F. J.

L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under gaussian illumination,” Opt. Commun. 278, 23–27 (2007).
[Crossref]

Truscott, A. G.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Vaziri, A.

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

Vitebskiy, I.

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

Wang, H. B.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

Wang, J.

Wang, K.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

Wang, L.

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
[Crossref]

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

Wang, S.

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
[Crossref]

Weitkamp, T.

T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
[Crossref]

Wen, J.

Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear talbot effect,” Phys. Rev. Lett. 104, 183901 (2010).
[Crossref] [PubMed]

Wen, J. M.

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

Winkler, K.

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Wu, J. H.

J. H. Wu, M. Artoni, and G. C. La Rocca, “Stationary light pulses in cold thermal atomic clouds,” Phys. Rev. A 82, 013807 (2010).
[Crossref]

Wu, L. A.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

Wu, S.

S. Wu, E. Su, and M. Prentiss, “Demonstration of an area-enclosing guided-atom interferometer for rotation sensing,” Phys. Rev. Lett. 99, 173201 (2007).
[Crossref] [PubMed]

Xiao, L.

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
[Crossref]

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

Xiao, M.

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

J. Sheng, J. Wang, M.-A. Miri, D. N. Christodoulides, and M. Xiao, “Observation of discrete diffraction patterns in an optically induced lattice,” Opt. Express 23, 19777–19782 (2015).
[Crossref] [PubMed]

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear talbot effect,” Phys. Rev. Lett. 104, 183901 (2010).
[Crossref] [PubMed]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Xiong, J.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

Yang, G.

T. Qiu and G. Yang, “Electromagnetically induced angular talbot effect,” J. Phys. B: At. Mol. Opt. Phys. 48, 245502 (2015).
[Crossref]

Yang, L.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Yuan, J.

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
[Crossref]

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

Zeldov, E.

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Zhang, D.

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

Zhang, J.

Zhang, W.

Zhang, X.

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

Zhang, Y.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear talbot effect,” Phys. Rev. Lett. 104, 183901 (2010).
[Crossref] [PubMed]

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Zhang, Z.

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

Z. Zhang, J. Feng, X. Liu, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Controllable photonic crystal with periodic raman gain in a coherent atomic medium,” Opt. Lett. 43, 919–922 (2018).
[Crossref] [PubMed]

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Zhao, C.

Zhu, S. N.

Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear talbot effect,” Phys. Rev. Lett. 104, 183901 (2010).
[Crossref] [PubMed]

Zhu, Y.

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638 (2003).
[Crossref] [PubMed]

Ziegler, E.

T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

H. Nikkhah, M. Hasan, and T. J. Hall, “The talbot effect in a metamaterial,” Appl. Phys. A 124, 106 (2018).
[Crossref]

Appl. Phys. Lett. (2)

T. Weitkamp, B. Nöhammer, A. Diaz, C. David, and E. Ziegler, “X-ray wavefront analysis and optics characterization with a grating interferometer,” Appl. Phys. Lett. 86, 054101 (2005).
[Crossref]

J. M. Wen, S. W. Du, H. Y. Chen, and M. Xiao, “Electromagnetically induced talbot effect,” Appl. Phys. Lett. 98, 081108 (2011).
[Crossref]

J. Mod. Opt. (1)

M. V. Berry and S. Klein, “Integer, fractional and fractal talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B: At. Mol. Opt. Phys. (2)

T. Qiu and G. Yang, “Electromagnetically induced angular talbot effect,” J. Phys. B: At. Mol. Opt. Phys. 48, 245502 (2015).
[Crossref]

Z. Zhang, D. Ma, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Non-hermitian optics in atomic systems,” J. Phys. B: At. Mol. Opt. Phys. 51, 072001 (2018).
[Crossref]

J. Phys. Soc. Jpn. (1)

S. Wang, J. Yuan, L. Wang, L. Xiao, and S. Jia, “Investigation on the monochromatic two-photon transition spectroscopy of rubidium by using intensity modulation method,” J. Phys. Soc. Jpn. 87, 084301 (2018).
[Crossref]

Laser & Photonics Rev. (1)

Z. Zhang, L. Yang, J. Feng, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Parity-time-symmetric optical lattice with alternating gain and loss atomic configurations,” Laser & Photonics Rev. 12, 1800155 (2018).
[Crossref]

Laser Phys. Lett. (1)

J. Yuan, Y. Li, S. Li, C. Li, L. Wang, L. Xiao, and S. Jia, “Experimental study of discrete diffraction behavior in a coherent atomic system,” Laser Phys. Lett. 14, 125206 (2017).
[Crossref]

Nat. Mater. (1)

F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and C. David, “Hard-x-ray dark-field imaging using a grating interferometer,” Nat. Mater. 7, 134 (2008).
[Crossref] [PubMed]

Nat. Phys. (1)

O. M. Auslaender, L. Luan, E. W. J. Straver, J. E. Hoffman, N. C. Koshnick, E. Zeldov, D. A. Bonn, R. Liang, W. N. Hardy, and K. A. Moler, “Mechanics of individual isolated vortices in a cuprate superconductor,” Nat. Phys. 5, 35 (2008).
[Crossref]

Nature (1)

M. Bajcsy, A. S. Zibrov, and M. D. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

L. M. Sanchez-Brea, F. J. Torcal-Milla, and E. Bernabeu, “Talbot effect in metallic gratings under gaussian illumination,” Opt. Commun. 278, 23–27 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Philos. Mag. (1)

H. F. Talbot, “Facts relating to optical science,” Philos. Mag. 9, 401–407 (1836).

Phys. Rev. A (7)

J. H. Wu, M. Artoni, and G. C. La Rocca, “Stationary light pulses in cold thermal atomic clouds,” Phys. Rev. A 82, 013807 (2010).
[Crossref]

H. Y. Ling, Y. Q. Li, and M. Xiao, “Electromagnetically induced grating: Homogeneously broadened medium,” Phys. Rev. A 57, 1338–1344 (1998).
[Crossref]

M. Mitsunaga and N. Imoto, “Observation of an electromagnetically induced grating in cold sodium atoms,” Phys. Rev. A 59, 4773–4776 (1999).
[Crossref]

G. C. Cardoso and J. W. R. Tabosa, “Electromagnetically induced gratings in a degenerate open two-level system,” Phys. Rev. A 65, 033803 (2002).
[Crossref]

I. Iakoupov, J. R. Ott, D. E. Chang, and A. S. Sørensen, “Dispersion relations for stationary light in one-dimensional atomic ensembles,” Phys. Rev. A 94, 053824 (2016).
[Crossref]

Z. Zhang, X. Liu, D. Zhang, J. Sheng, Y. Zhang, Y. Zhang, and M. Xiao, “Observation of electromagnetically induced talbot effect in an atomic system,” Phys. Rev. A 97, 013603 (2018).
[Crossref]

J. Gea-Banacloche, Y. Li, S. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment,” Phys. Rev. A 51, 576–584 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (11)

Z. Zhang, Y. Zhang, J. Sheng, L. Yang, M.-A. Miri, D. N. Christodoulides, B. He, Y. Zhang, and M. Xiao, “Observation of parity-time symmetry in optically induced atomic lattices,” Phys. Rev. Lett. 117, 123601 (2016).
[Crossref] [PubMed]

D. Akamatsu, K. Akiba, and M. Kozuma, “Electromagnetically induced transparency with squeezed vacuum,” Phys. Rev. Lett. 92, 203602 (2004).
[Crossref] [PubMed]

L. Deng, E. W. Hagley, J. Denschlag, J. E. Simsarian, M. Edwards, C. W. Clark, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Temporal, matter-wave-dispersion talbot effect,” Phys. Rev. Lett. 83, 5407–5411 (1999).
[Crossref]

Y. Zhang, J. Wen, S. N. Zhu, and M. Xiao, “Nonlinear talbot effect,” Phys. Rev. Lett. 104, 183901 (2010).
[Crossref] [PubMed]

X. B. Song, H. B. Wang, J. Xiong, K. Wang, X. Zhang, K. H. Luo, and L. A. Wu, “Experimental observation of quantum talbot effects,” Phys. Rev. Lett. 107, 033902 (2011).
[Crossref] [PubMed]

J. Azaña and H. Guillet de Chatellus, “Angular talbot effect,” Phys. Rev. Lett. 112, 213902 (2014).
[Crossref]

H. Ramezani, D. N. Christodoulides, V. Kovanis, I. Vitebskiy, and T. Kottos, “PT-symmetric talbot effects,” Phys. Rev. Lett. 109, 033902 (2012).
[Crossref] [PubMed]

S. Wu, E. Su, and M. Prentiss, “Demonstration of an area-enclosing guided-atom interferometer for rotation sensing,” Phys. Rev. Lett. 99, 173201 (2007).
[Crossref] [PubMed]

R. Iwanow, D. A. May-Arrioja, D. N. Christodoulides, G. I. Stegeman, Y. Min, and W. Sohler, “Discrete talbot effect in waveguide arrays,” Phys. Rev. Lett. 95, 053902 (2005).
[Crossref] [PubMed]

C. Ryu, M. F. Andersen, A. Vaziri, M. B. d’Arcy, J. M. Grossman, K. Helmerson, and W. D. Phillips, “High-order quantum resonances observed in a periodically kicked bose-einstein condensate,” Phys. Rev. Lett. 96, 160403 (2006).
[Crossref] [PubMed]

T. Gao, E. Estrecho, G. Li, O. A. Egorov, X. Ma, K. Winkler, M. Kamp, C. Schneider, S. Höfling, A. G. Truscott, and E. A. Ostrovskaya, “Talbot effect for exciton polaritons,” Phys. Rev. Lett. 117, 097403 (2016).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

E. A. Donley, T. P. Heavner, F. Levi, M. O. Tataw, and S. R. Jefferts, “Double-pass acousto-optic modulator system,” Rev. Sci. Instrum. 76, 063112 (2005).
[Crossref]

Other (2)

K. Patorski, in Progress in Optics, E. Wolf, ed. (North-Holland, 1989), vol. 27, pp. 1–108.
[Crossref]

Z. Zhang, F. Li, G. Malpuech, Y. Zhang, O. Bleu, S. Koniakhin, C. Li, Y. Zhang, M. Xiao, and D. Solnyshkov, “Particle-like behavior of topological defects in linear wave packets in photonic graphene,” ArXiv:1806.05540 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) The related energy levels of 85Rb ladder-type atomic system. (b) The schematic plot of the periodically modulated lattice by two crossed coupling fields. (c) Experiment setup, HWP: half-wave plate, PBS: polarization beam splitter, QWP: quarter-wave plate, G: glass, L: lens, M: high reflection mirror, BS: beam splitter, PD: photodiode detector, CCD: charge-coupled device, AP: anamorphic prism, AOM: acousto-optic modulator, BB: beam block, SAS: saturation absorption spectroscopy, EIT: electromagnetically induced transparency.
Fig. 2
Fig. 2 (a) The diffraction pattern in the near field of a periodic grating in the z-x plane, shown as a “Talbot carpet”. The plotted paramrters are chosen as Ω c /2π = 20 MHz, Δ c = Δ p = 0. The calculated intensity distributions of the probe field at the output surface (b) z = 0, z = zT/2, z = zT, z = 3zT/2 and z = 2zT (c) z = 0, z = zT/5, z = zT/4, z = zT/3, z = 2zT/5 and z = zT/2.
Fig. 3
Fig. 3 The output and intensity profiles of the probe laser without (a)–(b)/with (c)–(d) the standing-wave field.
Fig. 4
Fig. 4 The diffraction patterns at different detection positions. (a)–(i) show the images at representative positions of z =0, 8, 15, 17, 23, 30, 32, 38, 45 mm, respectively. The crossed lines in each figure identify same position for reference.
Fig. 5
Fig. 5 The diffraction patterns at different detection positions to demonstrate the fractional Talbot effect. (a)–(f) show the images at positions of 0, 3, 4, 5, 6, 8 mm, respectively.
Fig. 6
Fig. 6 The xy distribution of the diffraction pattern in Fig. 3.
Fig. 7
Fig. 7 The experimental and theoretical transversal intensity distributions at different positions.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H = Δ p | 2 2 | ( Δ p + Δ c ) | 3 3 | 2 ( Ω p | 2 1 | + Ω c | 3 2 | + H . c . ) ,
d ρ d t = i [ H , ρ ] + Γ 32 2 ( 2 σ 23 ρ σ 32 σ 33 ρ ρ σ 33 ) + Γ 21 2 ( 2 σ 12 ρ σ 21 σ 22 ρ ρ σ 22 ) ,
χ = i N | μ 21 | 2 ε 0 [ Γ 31 2 i Δ p + | Ω c | 2 cos 2 ( π x / d ) Γ 32 / 2 i ( Δ p + Δ c ) ] 1 ,
E p ( x , L ) = E p ( x , 0 ) e k p χ L / 2 e i k p χ L / 2 ,
E p ( X , Z ) + E p ( x , L ) exp [ i k p ( z + x 2 2 z x X z + X 2 2 z ) ] d x ,
E p ( X , z ) n = + E n exp ( i π λ p n 2 z / d 2 + i 2 π n X / d )
E p ( X , z ) n = + E n exp ( i π n 2 z / z T + i 2 π n X / d )

Metrics