Abstract

Dispersive mirrors operating in a broadband infrared spectral range are reported for the first time. The mirrors are based on Si/SiO2 thin-film materials. The coatings exhibit reflectance exceeding 99.6% in the spectral range from 2 to 3.2 µm and provide a group delay dispersion of −100 fs2 and −200 fs2 in this range. The fabricated mirrors are expected to be key elements of Cr:ZnS/Cr:ZnSe femtosecond lasers and amplifiers. The mirrors open a new avenue in the development of ultrafast dispersive optics operating in the infrared spectral range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design, fabrication and application of dispersive mirrors with a SiO2 sculptured layer

Jia Liu, Yanzhi Wang, Ruirui Zhao, Kesheng Guo, Ruiyi Chen, Hongji Qi, Meiping Zhu, Ding Wang, Kui Yi, Yuxin Leng, and Jianda Shao
Opt. Mater. Express 8(4) 836-843 (2018)

Synthesis, fabrication and characterization of a highly-dispersive mirrors for the 2 µm spectral range

Tatiana Amotchkina, Michael Trubetskov, Florian Habel, Yurij. Pervak, Jinwei Zhang, KaFai Mak, Oleg Pronin, Ferenc Krausz, and Vladimir Pervak
Opt. Express 25(9) 10234-10240 (2017)

Efficient broadband highly dispersive HfO2/SiO2 multilayer mirror for pulse compression in near ultraviolet

O. Razskazovskaya, M. Th. Hassan, T.T. Luu, E. Goulielmakis, and V. Pervak
Opt. Express 24(12) 13628-13633 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3, 55–63 (2014).
  2. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [Crossref] [PubMed]
  3. O. Razskazovskaya, F. Krausz, and V. Pervak, “Multilayer coatings for femto- and attosecond technology,” Optica 4(1), 129–138 (2017).
    [Crossref]
  4. P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
    [Crossref] [PubMed]
  5. E. Fedulova, K. Fritsch, J. Brons, O. Pronin, T. Amotchkina, M. Trubetskov, F. Krausz, and V. Pervak, “Highly-dispersive mirrors reach new levels of dispersion,” Opt. Express 23(11), 13788–13793 (2015).
    [Crossref] [PubMed]
  6. K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. V.-B. Grimm, M. Helm, K. Biermann, and H. Künzel, “Passively mode-locked Tm,Ho:YAG laser at 2 µm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
    [Crossref] [PubMed]
  7. T. Amotchkina, M. Trubetskov, F. Habel, Y. Pervak, J. Zhang, K. Mak, O. Pronin, F. Krausz, and V. Pervak, “Synthesis, fabrication and characterization of a highly-dispersive mirrors for the 2 µm spectral range,” Opt. Express 25(9), 10234–10240 (2017).
    [Crossref] [PubMed]
  8. S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
    [Crossref]
  9. I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
    [Crossref]
  10. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
    [Crossref] [PubMed]
  11. G. Steinmeyer, “Femtosecond dispersion compensation with multilayer coatings: toward the optical octave,” Appl. Opt. 45(7), 1484–1490 (2006).
    [Crossref] [PubMed]
  12. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  13. S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, 1992).
  14. A. V. Tikhonravov, M. K. Trubetskov, and G. W. Debell, “Application of the needle optimization technique to the design of optical coatings,” Appl. Opt. 35(28), 5493–5508 (1996).
    [Crossref] [PubMed]
  15. A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .
  16. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
    [Crossref]
  17. F. Habel, M. Trubetskov, and V. Pervak, “Group delay dispersion measurements in the mid-infrared spectral range of 2-20 µm,” Opt. Express 24(15), 16705–16710 (2016).
    [Crossref] [PubMed]
  18. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
    [Crossref] [PubMed]

2018 (1)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

2017 (2)

2016 (2)

2015 (2)

2014 (1)

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3, 55–63 (2014).

2010 (1)

2009 (2)

2008 (1)

2007 (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

2006 (1)

1996 (1)

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Amotchkina, T.

Amotchkina, T. V.

Angelov, I. B.

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3, 55–63 (2014).

Apolonski, A.

Biermann, K.

Bromberger, H.

Brons, J.

Debell, G. W.

Dekorsy, T.

Dergachev, A.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Dombi, P.

Fedorov, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Fedulova, E.

Fritsch, K.

Gapontsev, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

Grimm, C. V.-B.

Grupe, D.

Habel, F.

Helm, M.

Krausz, F.

Künzel, H.

Lenner, M.

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Mak, K.

Martyshkin, D.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Mirov, M.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

Mirov, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

Moskalev, I.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

Naumov, S.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Neuhaus, J.

Peppers, J.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Pervak, V.

O. Razskazovskaya, F. Krausz, and V. Pervak, “Multilayer coatings for femto- and attosecond technology,” Optica 4(1), 129–138 (2017).
[Crossref]

T. Amotchkina, M. Trubetskov, F. Habel, Y. Pervak, J. Zhang, K. Mak, O. Pronin, F. Krausz, and V. Pervak, “Synthesis, fabrication and characterization of a highly-dispersive mirrors for the 2 µm spectral range,” Opt. Express 25(9), 10234–10240 (2017).
[Crossref] [PubMed]

F. Habel, M. Trubetskov, and V. Pervak, “Group delay dispersion measurements in the mid-infrared spectral range of 2-20 µm,” Opt. Express 24(15), 16705–16710 (2016).
[Crossref] [PubMed]

E. Fedulova, K. Fritsch, J. Brons, O. Pronin, T. Amotchkina, M. Trubetskov, F. Krausz, and V. Pervak, “Highly-dispersive mirrors reach new levels of dispersion,” Opt. Express 23(11), 13788–13793 (2015).
[Crossref] [PubMed]

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3, 55–63 (2014).

P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
[Crossref] [PubMed]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[Crossref] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

Pervak, Y.

Pronin, O.

Rácz, P.

Razskazovskaya, O.

O. Razskazovskaya, F. Krausz, and V. Pervak, “Multilayer coatings for femto- and attosecond technology,” Optica 4(1), 129–138 (2017).
[Crossref]

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3, 55–63 (2014).

Ruf, H.

Schäfer, H.

Smolski, V.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

Sorokin, E.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

Sorokina, I. T.

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

Steinmeyer, G.

Sugita, A.

Teisset, C.

Tikhonravov, A. V.

Trubetskov, M.

Trubetskov, M. K.

Vasilyev, S.

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

Vodopyanov, K. L.

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3, 55–63 (2014).

Yang, K.

Zhang, J.

Adv. Opt. Technol. (1)

V. Pervak, O. Razskazovskaya, I. B. Angelov, K. L. Vodopyanov, and M. Trubetskov, “Dispersive mirror technology for ultrafast lasers in the range 220–4500 nm,” Adv. Opt. Technol. 3, 55–63 (2014).

Appl. Opt. (3)

Appl. Phys. B (1)

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

S. Mirov, I. Moskalev, S. Vasilyev, V. Smolski, V. Fedorov, D. Martyshkin, J. Peppers, M. Mirov, A. Dergachev, and V. Gapontsev, “Frontiers of mid-IR lasers based on transition metal doped chalcogenides,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1601829 (2018).
[Crossref]

I. T. Sorokina and E. Sorokin, “Femtosecond Cr2+ based lasers,” IEEE J. Sel. Top. Quantum Electron. 21(1), 273–291 (2015).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Opt. Express (7)

P. Dombi, P. Rácz, M. Lenner, V. Pervak, and F. Krausz, “Dispersion management in femtosecond laser oscillators with highly dispersive mirrors,” Opt. Express 17(22), 20598–20604 (2009).
[Crossref] [PubMed]

K. Yang, H. Bromberger, H. Ruf, H. Schäfer, J. Neuhaus, T. Dekorsy, C. V.-B. Grimm, M. Helm, K. Biermann, and H. Künzel, “Passively mode-locked Tm,Ho:YAG laser at 2 µm based on saturable absorption of intersubband transitions in quantum wells,” Opt. Express 18(7), 6537–6544 (2010).
[Crossref] [PubMed]

E. Fedulova, K. Fritsch, J. Brons, O. Pronin, T. Amotchkina, M. Trubetskov, F. Krausz, and V. Pervak, “Highly-dispersive mirrors reach new levels of dispersion,” Opt. Express 23(11), 13788–13793 (2015).
[Crossref] [PubMed]

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0-2.6 µm,” Opt. Express 24(2), 1616–1623 (2016).
[Crossref] [PubMed]

F. Habel, M. Trubetskov, and V. Pervak, “Group delay dispersion measurements in the mid-infrared spectral range of 2-20 µm,” Opt. Express 24(15), 16705–16710 (2016).
[Crossref] [PubMed]

T. Amotchkina, M. Trubetskov, F. Habel, Y. Pervak, J. Zhang, K. Mak, O. Pronin, F. Krausz, and V. Pervak, “Synthesis, fabrication and characterization of a highly-dispersive mirrors for the 2 µm spectral range,” Opt. Express 25(9), 10234–10240 (2017).
[Crossref] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

Optica (1)

Other (2)

S. A. Furman and A. V. Tikhonravov, Basics of Optics of Multilayer Systems (Editions Frontières, 1992).

A. V. Tikhonravov and M. K. Trubetskov, “OptiLayer software,” http://www.optilayer.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Initial correspondence between experimental and nominal reflectance data; (b) Correspondence between experimental and model reflectance data after indices correction. The data are related to the 13-layer quarter-wave mirror.
Fig. 2
Fig. 2 Nominal spectral performance of the designed DMs and the target spectral characteristics: (a) CM1705, (b) CM1708. Input and output pulse simulations, Output pulse is calculated after four reflections from the CM1705 (c) and from the CM1708 (d).
Fig. 3
Fig. 3 (a): Structure of CM1705 design; (b): Correspondence between the nominal and experimental reflectance data of CM1705 sample; (c) Comparison of the nominal and experimental reflectance data of CM1705 sample in the high reflectance zone, reflectance of the gold mirror is shown as a reference; (d) Measured and nominal GD of CM1705 sample.
Fig. 4
Fig. 4 (a): Structure of CM1708 design; (b): Corresponding between the nominal and experimental reflectance data of CM1708 sample; (c) Comparison of the nominal and experimental reflectance data of CM1708 sample in the high reflectance zone, reflectance of the gold mirror is shown as a reference; (d) Measured and nominal GD of CM1708 sample.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = A 0 + A 1 ( λ 0 λ ) 2 + A 2 ( λ 0 λ ) 4 ,
M F 2 = j = 1 500 ( R ( p ) ( X ; λ j ) R ^ ( λ j ) Δ 1 , j ) 2 + j = 1 500 ( G D D ( p ) ( X ; λ j ) + G D ^ D ( λ j ) Δ 2 , j ) 2 ,

Metrics