Abstract

The prospect for developing a passively Q-switched Yb:YAG/Cr:YAG monolithic microchip laser that operates at cryogenic temperature is theoretically analyzed. It is concluded that such a system has the potential to deliver laser pulses with improved energy and increased peak power in comparison with composite Yb:YAG/Cr:YAG or Nd:YAG/Cr:YAG devices that are operated at room temperature. Consequently, a cryogenically cooled Yb:YAG/Cr:YAG system is built and the emission performances are investigated. Laser pulses with 3.2 mJ energy, 6.1 MW peak power and high beam quality of M2 = 1.8 are achieved. By increasing the pump beam diameter, laser pulses with higher energy 32 mJ are obtained at 25 MW peak power with M2 = 5.4. To our knowledge, these are the best results obtained from passively Q-switched composite Yb:YAG/Cr:YAG monolithic microchip lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control

Arvydas Kausas and Takunori Taira
Opt. Express 24(4) 3137-3149 (2016)

High-power fiber amplifier with widely tunable repetition rate, fixed pulse duration, and multiple output wavelengths

Paul E. Schrader, Roger L. Farrow, Dahv A. V. Kliner, Jean-Philippe Fève, and Nicolas Landru
Opt. Express 14(24) 11528-11538 (2006)

PCSEL pumped coupling optics free Yb:YAG/Cr:YAG microchip laser

Xiaoyang Guo, Shigeki Tokita, Kazuyoshi Hirose, Takahiro Sugiyama, Akiyoshi Watanabe, Kenji Ishizaki, Susumu Noda, Noriaki Miyanaga, and Junji Kawanaka
Appl. Opt. 57(19) 5295-5298 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
    [Crossref]
  2. J. J. Zayhowski and C. Dill, “Diode-pumped passively Q-switched picosecond microchip lasers,” Opt. Lett. 19(18), 1427–1429 (1994).
    [Crossref] [PubMed]
  3. V. E. Kisel, A. S. Yasukevich, N. V. Kondratyuk, and N. V. Kuleshov, “Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser,” Quantum Electron. 39(11), 1018–1022 (2009).
    [Crossref]
  4. P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
    [Crossref]
  5. J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
    [Crossref]
  6. G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
    [Crossref] [PubMed]
  7. A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
    [Crossref]
  8. A. Freedman, F. J. Iannarilli, and J. C. Wormhoudt, “Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy,” Spec. Acta. B 60(7–8), 1076–1082 (2005).
    [Crossref]
  9. C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
    [Crossref]
  10. R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
    [Crossref] [PubMed]
  11. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
    [Crossref] [PubMed]
  12. H. Ishizuki and T. Taira, “High-gain mid-infrared optical-parametric generation pumped by microchip laser,” Opt. Express 24(2), 1046–1052 (2016).
    [Crossref] [PubMed]
  13. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  14. R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
    [Crossref] [PubMed]
  15. M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
    [Crossref]
  16. L. Zheng, A. Kausas, and T. Taira, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser,” Opt. Express 24(25), 28748–28760 (2016).
    [Crossref] [PubMed]
  17. J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
    [Crossref] [PubMed]
  18. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  19. N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
    [Crossref] [PubMed]
  20. O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
    [Crossref]
  21. N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
    [Crossref] [PubMed]
  22. S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
    [Crossref] [PubMed]
  23. Y. Ren and J. Dong, “Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal,” Opt. Commun. 312, 163–167 (2014).
    [Crossref]
  24. A. Kausas and T. Taira, “Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control,” Opt. Express 24(4), 3137–3149 (2016).
    [Crossref] [PubMed]
  25. C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
    [Crossref]
  26. X. Guo, S. Tokita, and J. Kawanaka, “12 mJ Yb:YAG/Cr:YAG microchip laser,” Opt. Lett. 43(3), 459–461 (2018).
    [Crossref] [PubMed]
  27. X. Guo, S. Tokita, K. Hamamoto, and J. Kawanaka, “160 ps Yb:YAG/Cr:YAG microchip laser,” Laser Phys. Lett. 15(10), 105001 (2018).
    [Crossref]
  28. W. Koechner, Solid-State Laser Engineering (Springer, 1996).
  29. G. J. Spühler, R. Paschotta, R. Fluck, B. Braun, M. Moser, G. Zhang, E. Gini, and U. Keller, “Experimentally confirmed design guidelines for passively Q-switched microchip lasers using semiconductor saturable absorbers,” J. Opt. Soc. Am. B 16(3), 376–388 (1999).
    [Crossref]
  30. X. Guo, S. Tokita, K. Hirose, T. Sugiyama, A. Watanabe, K. Ishizaki, S. Noda, N. Miyanaga, and J. Kawanaka, “PCSEL pumped coupling optics free Yb:YAG/Cr:YAG microchip laser,” Appl. Opt. 57(19), 5295–5298 (2018).
    [Crossref] [PubMed]
  31. A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
    [Crossref]
  32. J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
    [Crossref]
  33. D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Pow. Las. Sci. Eng. 4, e15 (2016).
    [Crossref]
  34. C. Baumgarten, M. Pedicone, H. Bravo, H. Wang, L. Yin, C. S. Menoni, J. J. Rocca, and B. A. Reagan, “1 J, 0.5 kHz repetition rate picosecond laser,” Opt. Lett. 41(14), 3339–3342 (2016).
    [Crossref] [PubMed]

2018 (4)

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

X. Guo, S. Tokita, K. Hamamoto, and J. Kawanaka, “160 ps Yb:YAG/Cr:YAG microchip laser,” Laser Phys. Lett. 15(10), 105001 (2018).
[Crossref]

X. Guo, S. Tokita, and J. Kawanaka, “12 mJ Yb:YAG/Cr:YAG microchip laser,” Opt. Lett. 43(3), 459–461 (2018).
[Crossref] [PubMed]

X. Guo, S. Tokita, K. Hirose, T. Sugiyama, A. Watanabe, K. Ishizaki, S. Noda, N. Miyanaga, and J. Kawanaka, “PCSEL pumped coupling optics free Yb:YAG/Cr:YAG microchip laser,” Appl. Opt. 57(19), 5295–5298 (2018).
[Crossref] [PubMed]

2017 (1)

C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
[Crossref]

2016 (5)

2015 (2)

2014 (1)

Y. Ren and J. Dong, “Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal,” Opt. Commun. 312, 163–167 (2014).
[Crossref]

2013 (3)

2012 (2)

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

2011 (2)

2010 (2)

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2009 (2)

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[Crossref]

V. E. Kisel, A. S. Yasukevich, N. V. Kondratyuk, and N. V. Kuleshov, “Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser,” Quantum Electron. 39(11), 1018–1022 (2009).
[Crossref]

2008 (1)

2007 (1)

2005 (2)

A. Freedman, F. J. Iannarilli, and J. C. Wormhoudt, “Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy,” Spec. Acta. B 60(7–8), 1076–1082 (2005).
[Crossref]

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

2000 (1)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

1999 (1)

1997 (1)

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

1994 (2)

Ancona, A.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Bärwinkel, M.

Baumgarten, C.

Bhandari, R.

Birtas, A.

Boicea, N.

Braun, B.

Bravo, H.

Brown, D. C.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Pow. Las. Sci. Eng. 4, e15 (2016).
[Crossref]

Brüggemann, D.

Buchvarov, I.

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Calendron, A. L.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Cankaya, H.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Chang, G.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Chen, Y. F.

C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
[Crossref]

Chuchumishev, D.

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Dascalu, T.

N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
[Crossref] [PubMed]

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Dearden, G.

Dill, C.

Dinca, M.

Dong, J.

Fallahi, A.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Fluck, R.

Freedman, A.

A. Freedman, F. J. Iannarilli, and J. C. Wormhoudt, “Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy,” Spec. Acta. B 60(7–8), 1076–1082 (2005).
[Crossref]

Gaydardzhiev, A.

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Gini, E.

Gornushkin, I. B.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Guo, X.

Hamamoto, K.

X. Guo, S. Tokita, K. Hamamoto, and J. Kawanaka, “160 ps Yb:YAG/Cr:YAG microchip laser,” Laser Phys. Lett. 15(10), 105001 (2018).
[Crossref]

Hayashi, S.

Heinz, P.

Hemmer, M.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Hirose, K.

Hua, Y.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Huang, Y. J.

C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
[Crossref]

Iannarilli, F. J.

A. Freedman, F. J. Iannarilli, and J. C. Wormhoudt, “Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy,” Spec. Acta. B 60(7–8), 1076–1082 (2005).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Ishizaki, K.

Ishizuki, H.

Kalaydzhyan, A.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Kaminshii, A. A.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Kaminskii, A. A.

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kärtner, F. X.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Kausas, A.

Kawanaka, J.

Kawase, K.

Keller, U.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kisel, V. E.

V. E. Kisel, A. S. Yasukevich, N. V. Kondratyuk, and N. V. Kuleshov, “Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser,” Quantum Electron. 39(11), 1018–1022 (2009).
[Crossref]

Kofler, H.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

Kolis, J.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Pow. Las. Sci. Eng. 4, e15 (2016).
[Crossref]

Kondratyuk, N. V.

V. E. Kisel, A. S. Yasukevich, N. V. Kondratyuk, and N. V. Kuleshov, “Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser,” Quantum Electron. 39(11), 1018–1022 (2009).
[Crossref]

Kuleshov, N. V.

V. E. Kisel, A. S. Yasukevich, N. V. Kondratyuk, and N. V. Kuleshov, “Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser,” Quantum Electron. 39(11), 1018–1022 (2009).
[Crossref]

Laserna, J. J.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Lehmann, S.

Li, C.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Liang, H. C.

C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
[Crossref]

Limpert, J.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[Crossref]

Lorenz, S.

Lu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Manager, K. A.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Matlis, N. H.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Meier, J.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Menoni, C. S.

Minamide, H.

Miyanaga, N.

Moreno, C. L.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Moser, M.

Mühlbauer, W.

Nawata, K.

Nishifuji, M.

Noda, S.

Nodop, D.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[Crossref]

Nolte, S.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[Crossref]

Omenetto, N.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Palanco, S.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Paschotta, R.

Pavel, N.

Pedicone, M.

Prabhu, M.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Reagan, B. A.

Reichert, F.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Ren, Y.

Y. Ren and J. Dong, “Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal,” Opt. Commun. 312, 163–167 (2014).
[Crossref]

Rocca, J. J.

Rooney, P. D.

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Sakai, H.

Salamu, G.

N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
[Crossref] [PubMed]

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Sandu, O.

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Schimpf, D. N.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Shenton, T.

Shirakawa, A.

Smith, B. W.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Song, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Spühler, G. J.

Su, K. W.

C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
[Crossref]

Sugiyama, T.

Sun, L.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Suzuki, T.

Taira, T.

A. Kausas and T. Taira, “Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control,” Opt. Express 24(4), 3137–3149 (2016).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “High-gain mid-infrared optical-parametric generation pumped by microchip laser,” Opt. Express 24(2), 1046–1052 (2016).
[Crossref] [PubMed]

L. Zheng, A. Kausas, and T. Taira, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser,” Opt. Express 24(25), 28748–28760 (2016).
[Crossref] [PubMed]

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
[Crossref] [PubMed]

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

Tang, C. Y.

C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
[Crossref]

Tauer, J.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

Tokita, S.

Tornegard, S.

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Pow. Las. Sci. Eng. 4, e15 (2016).
[Crossref]

Tsuji, N.

Tsunekane, M.

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Tünnermann, A.

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[Crossref]

Ueda, K.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Wang, H.

Wang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Watanabe, A.

Winefordner, J. D.

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

Wintner, E.

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

Wormhoudt, J. C.

A. Freedman, F. J. Iannarilli, and J. C. Wormhoudt, “Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy,” Spec. Acta. B 60(7–8), 1076–1082 (2005).
[Crossref]

Xu, J.

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Yagi, H.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Yanagitani, T.

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

Yasukevich, A. S.

V. E. Kisel, A. S. Yasukevich, N. V. Kondratyuk, and N. V. Kuleshov, “Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser,” Quantum Electron. 39(11), 1018–1022 (2009).
[Crossref]

Yin, L.

Zapata, L. E.

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

Zayhowski, J. J.

Zhang, G.

Zhang, Q.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhang, X.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zhao, S.

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

Zheng, L.

Appl. Opt. (1)

Appl. Phys. B (2)

J. Lu, M. Prabhu, J. Song, C. Li, J. Xu, K. Ueda, A. A. Kaminshii, H. Yagi, and T. Yanagitani, “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys. B 71(4), 469–473 (2000).
[Crossref]

C. Y. Tang, Y. J. Huang, H. C. Liang, Y. F. Chen, and K. W. Su, “Scaling output energy in a diode-end-pumped passively Q-switched laser with a flat–flat resonator,” Appl. Phys. B 123(1), 20 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

A. Ancona, D. Nodop, J. Limpert, S. Nolte, and A. Tünnermann, “Microdrilling of metals with an inexpensive and compact ultra-short-pulse fiber amplified microchip laser,” Appl. Phys., A Mater. Sci. Process. 94(1), 19–24 (2009).
[Crossref]

High Pow. Las. Sci. Eng. (2)

D. C. Brown, S. Tornegard, and J. Kolis, “Cryogenic nanosecond and picosecond high average and peak power (HAPP) pump lasers for ultrafast applications,” High Pow. Las. Sci. Eng. 4, e15 (2016).
[Crossref]

A. L. Calendron, J. Meier, M. Hemmer, L. E. Zapata, F. Reichert, H. Cankaya, D. N. Schimpf, Y. Hua, G. Chang, A. Kalaydzhyan, A. Fallahi, N. H. Matlis, and F. X. Kärtner, “Laser system design for table-top X-ray light source,” High Pow. Las. Sci. Eng. 6, e12 (2018).
[Crossref]

IEEE J. Quantum Electron. (3)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

M. Tsunekane and T. Taira, “High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers,” IEEE J. Quantum Electron. 49(5), 454–461 (2013).
[Crossref]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, “Optimization of Cr4+-doped saturable-absorber Q-switched lasers,” IEEE J. Quantum Electron. 33(12), 2286–2294 (1997).
[Crossref]

J. Anal. At. Spectrom. (1)

C. L. Moreno, K. A. Manager, B. W. Smith, I. B. Gornushkin, N. Omenetto, S. Palanco, J. J. Laserna, and J. D. Winefordner, “Quantitative analysis of low-alloy steel by microchip laser induced breakdown spectroscopy,” J. Anal. At. Spectrom. 20(6), 552–556 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (1)

J. Tauer, H. Kofler, and E. Wintner, “Laser-ignited ignition,” Laser Photonics Rev. 4(1), 99–122 (2010).
[Crossref]

Laser Phys. Lett. (1)

X. Guo, S. Tokita, K. Hamamoto, and J. Kawanaka, “160 ps Yb:YAG/Cr:YAG microchip laser,” Laser Phys. Lett. 15(10), 105001 (2018).
[Crossref]

Opt. Commun. (1)

Y. Ren and J. Dong, “Passively Q-switched microchip lasers based on Yb:YAG/Cr4+:YAG composite crystal,” Opt. Commun. 312, 163–167 (2014).
[Crossref]

Opt. Eng. (1)

P. D. Rooney, “Laser versus conventional ignition of flames,” Opt. Eng. 33(2), 510–521 (1994).
[Crossref]

Opt. Express (12)

A. Kausas and T. Taira, “Giant-pulse Nd:YVO4 microchip laser with MW-level peak power by emission cross-sectional control,” Opt. Express 24(4), 3137–3149 (2016).
[Crossref] [PubMed]

N. Pavel, T. Dascalu, G. Salamu, M. Dinca, N. Boicea, and A. Birtas, “Ignition of an automobile engine by high-peak power Nd:YAG/Cr4+:YAG laser-spark devices,” Opt. Express 23(26), 33028–33037 (2015).
[Crossref] [PubMed]

S. Lorenz, M. Bärwinkel, P. Heinz, S. Lehmann, W. Mühlbauer, and D. Brüggemann, “Characterization of energy transfer for passively Q-switched laser ignition,” Opt. Express 23(3), 2647–2659 (2015).
[Crossref] [PubMed]

G. Dearden and T. Shenton, “Laser ignited engines: progress, challenges and prospects,” Opt. Express 21(S6Suppl 6), A1113–A1125 (2013).
[Crossref] [PubMed]

R. Bhandari, N. Tsuji, T. Suzuki, M. Nishifuji, and T. Taira, “Efficient second to ninth harmonic generation using megawatt peak power microchip laser,” Opt. Express 21(23), 28849–28855 (2013).
[Crossref] [PubMed]

S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, “High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited],” Opt. Express 20(3), 2881–2886 (2012).
[Crossref] [PubMed]

H. Ishizuki and T. Taira, “High-gain mid-infrared optical-parametric generation pumped by microchip laser,” Opt. Express 24(2), 1046–1052 (2016).
[Crossref] [PubMed]

L. Zheng, A. Kausas, and T. Taira, “>MW peak power at 266 nm, low jitter kHz repetition rate from intense pumped microlaser,” Opt. Express 24(25), 28748–28760 (2016).
[Crossref] [PubMed]

J. Dong, K. Ueda, A. Shirakawa, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Composite Yb:YAG/Cr(4+):YAG ceramics picosecond microchip lasers,” Opt. Express 15(22), 14516–14523 (2007).
[Crossref] [PubMed]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

N. Pavel, M. Tsunekane, and T. Taira, “Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition,” Opt. Express 19(10), 9378–9384 (2011).
[Crossref] [PubMed]

R. Bhandari and T. Taira, “> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser,” Opt. Express 19(20), 19135–19141 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Quantum Electron. (2)

V. E. Kisel, A. S. Yasukevich, N. V. Kondratyuk, and N. V. Kuleshov, “Diode-pumped passively Q-switched high-repetition-rate Yb microchip laser,” Quantum Electron. 39(11), 1018–1022 (2009).
[Crossref]

O. Sandu, G. Salamu, N. Pavel, T. Dascalu, D. Chuchumishev, A. Gaydardzhiev, and I. Buchvarov, “High-peak power, passively Q-switched, composite, all-poly-crystalline ceramics Nd:YAG/Cr4+:YAG lasers,” Quantum Electron. 42(3), 211–215 (2012).
[Crossref]

Spec. Acta. B (1)

A. Freedman, F. J. Iannarilli, and J. C. Wormhoudt, “Aluminum alloy analysis using microchip-laser induced breakdown spectroscopy,” Spec. Acta. B 60(7–8), 1076–1082 (2005).
[Crossref]

Other (1)

W. Koechner, Solid-State Laser Engineering (Springer, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Calculated curves of thermal lens focal length as a function of thermal optic coefficient dn/dT for different thermal conductivities with Ip = 6 kW/cm2, ηabs = 90%, and ηs = 91%. (b) Calculated cavity (two flat mirror cavity with an internal lens) mode diameter as a function of internal lens focal length for different cavity lengths.
Fig. 2
Fig. 2 Experimental setup of the Yb:YAG/Cr:YAG microchip laser.
Fig. 3
Fig. 3 (a) Laser pulse energy, solid circles are experimental data and the solid line is the calculated data using Eq. (5); (b) laser pulse M2 factor; (c) laser pulse duration; (d) laser pulse peak power; (e) laser pulse waveform; (f) laser pulse spectrum; (g) laser pulse energy stability; (h) threshold pump intensity; and (i) pump to laser efficiency.
Fig. 4
Fig. 4 Output laser near field beam pattern with energy of (a) 0.64 mJ; (b) 2 mJ; (c) 3.2 mJ; (d) 4.6 mJ; (e) 8.2 mJ; and (f) 32 mJ with cuts across the center (white lines are measured; red lines are fitted with a Gaussian function); (f) air breakdown with 6.1 MW pulse.

Tables (3)

Tables Icon

Table 1 Summary of the spectroscopic and thermo-optic properties of Nd:YAG and Yb:YAG at room temperature (RT) and Yb:YAG at cryogenic temperature (CT)

Tables Icon

Table 2 Comparisons of the RT Nd:YAG/Cr:YAG, RT Yb:YAG/Cr:YAG, and CT Yb:YAG/Cr:YAG microchip laser (normalized by RT Nd:YAG/Cr:YAG values)

Tables Icon

Table 3 Summary of the performance of MW level monolithic microchip lasers

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

f th = 2 I p η abs (1 η s ) κ ( dn dT ) 1
ω 0 2 =( λ L cav π ) f 2 ( f L cav ) L cav
ω 0 2 ==( λ π ) f L cav
I th = I sat η abs η s [ ln( 1 R )+ln( 1 T 0 2 ) ]
E= E sat (1 T 0 )
τ= τ T 3.52 1 T 0
P peak = E τ = (1 T 0 ) 2 3.52 E sat τ T
I= (1 T 0 ) 2 3.52 J sat τ T
E sat = J sat π r 0 2 , I sat = J sat τ f , τ T = 2nL c
f= 2 [ ln( 1 R )+ln( 1 Τ 0 2 ) ] τ f J sat η s 1 η s κ ( dn dΤ ) 1
r 0 2 =( λ π ) 2L [ ln( 1 R )+ln( 1 Τ 0 2 ) ] τ f J sat η s 1 η s κ ( dn dΤ ) 1
E=λ(1 T 0 ) 2L [ ln( 1 R )+ln( 1 Τ 0 2 ) ] J sat τ f η s 1 η s κ ( dn dΤ ) 1 J sat τ f η s 1 η s κ ( dn dΤ ) 1

Metrics