Abstract

The planar-alignment agent in an electro-optic liquid crystal (LC) device plays an essential role for the LC’s electro-optical characteristics. Rubbed polyimide (PI) layers are conventionally used as the planar-alignment agent in traditional liquid crystal displays (LCDs). Here we experimentally demonstrate that the 2D hexagonal boron nitride (h-BN) nanosheet can serve as the planar-alignment agent in an LC cell. This h-BN has higher chemical stability and more optical transparency than the PI layer. Two h-BN-covered indium tin oxide (ITO) glass slides (without any conventional PI layers) are placed together to fabricate an LC cell. A nematic LC inside this h-BN-based cell exhibits uniform planar-alignment—which is probed by a crossed polarized optical microscope. This planar-alignment at the molecular scale is achieved due to the coherent overlay of the benzene rings of the LC molecules on the hexagonal BN lattice. This h-BN-based LC cell shows the typical electro-optical effect when an electric field is applied via ITO electrodes. The dielectric measurement across this h-BN-based electro-optic cell shows a standard Fréedericksz transition of the LC, confirming that the 2D h-BN, as the planar-alignment agent, supplies adequate anchoring energy—which can be overcome by the Fréedericksz threshold voltage. Finally, we show that the h-BN-based LC cell exhibits more optical transparency than a regular PI alignment layer-based LC cell.

Full Article  |  PDF Article
OSA Recommended Articles
Characterizations of a graphene-polyimide hybrid electro-optical liquid crystal device

Rajratan Basu and Lukas J. Atwood
OSA Continuum 2(1) 83-91 (2019)

References

  • View by:
  • |
  • |
  • |

  1. K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technology and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).
  2. A. Schenning, G. P. Crawford, and D. J. Broer, Liquid Crystal Sensors (Taylor & Francis Group, 2018).
  3. H.-S. Park and K.-C. Shin, “Liquid Crystal Cell Process” in Flat Panel Display Manufacturing, Jun Souk, Shinji Morozumi, Fang-Chen Luo, and Ion Bita, eds. (John Wiley & Sons, Ltd., 2018).
  4. J.-H. Kim and C. Rosenblatt, “Temperature effect on a rubbed polyimide alignment layer,” J. Appl. Phys. 87(1), 155–158 (2000).
    [Crossref]
  5. N. A. J. M. Van Aerle, “Influence of polyimide orientation layer material on the liquid crystal resistivity in LCDs,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 257(1), 193–208 (1994).
    [Crossref]
  6. V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, Ltd., 2008).
  7. L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
    [Crossref]
  8. Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
    [Crossref] [PubMed]
  9. G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimet. 95, 101–147 (2016).
    [Crossref]
  10. A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
    [Crossref]
  11. X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
    [Crossref]
  12. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
    [Crossref] [PubMed]
  13. J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
    [Crossref] [PubMed]
  14. R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
    [Crossref] [PubMed]
  15. Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
    [Crossref]
  16. G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
    [Crossref] [PubMed]
  17. Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
    [Crossref]
  18. M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
    [Crossref] [PubMed]
  19. D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
    [Crossref] [PubMed]
  20. J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
    [Crossref] [PubMed]
  21. Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
    [Crossref] [PubMed]
  22. R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
    [Crossref]
  23. R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
    [Crossref] [PubMed]
  24. R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
    [Crossref]
  25. R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
    [Crossref] [PubMed]
  26. R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
    [Crossref]
  27. K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
    [Crossref]
  28. R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
    [Crossref]
  29. M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
    [Crossref] [PubMed]
  30. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
    [Crossref] [PubMed]
  31. X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
    [Crossref] [PubMed]
  32. Desktop LCD Display Comparison, http://www.prismo.ch/comparisons/desktop.php
  33. L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).
  34. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).
  35. Data Sheet Licristal® E7, Merck KGaA, Germany, 2001.
  36. R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multi-wall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
    [Crossref]
  37. A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
    [Crossref] [PubMed]
  38. D. Demus, J. Goodby, G. W. Gary, H.-W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).
  39. R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
    [Crossref]
  40. L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
    [Crossref] [PubMed]

2017 (6)

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
[Crossref] [PubMed]

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

2016 (6)

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimet. 95, 101–147 (2016).
[Crossref]

2015 (3)

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref] [PubMed]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

2013 (1)

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
[Crossref]

2012 (4)

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref] [PubMed]

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

2011 (4)

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

2010 (1)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

2009 (1)

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

2008 (1)

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multi-wall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

2007 (1)

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

2005 (1)

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

2000 (1)

J.-H. Kim and C. Rosenblatt, “Temperature effect on a rubbed polyimide alignment layer,” J. Appl. Phys. 87(1), 155–158 (2000).
[Crossref]

1994 (1)

N. A. J. M. Van Aerle, “Influence of polyimide orientation layer material on the liquid crystal resistivity in LCDs,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 257(1), 193–208 (1994).
[Crossref]

Arslan Shehzad, M.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Bando, Y.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
[Crossref]

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Basu, R.

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
[Crossref] [PubMed]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multi-wall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

Belle, B. D.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Bhimanapati, G. R.

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimet. 95, 101–147 (2016).
[Crossref]

Borysiak, M.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Brar, V. W.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Britnell, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Bulmash, D.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Cai, W.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Calizo, I.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Chen, D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Chen, Y.

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

Cheng, G.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Chigrinov, V.

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Choi, G. J.

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Choi, J.-Y.

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

Choi, K. S.

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Choi, Y. E.

Colombo, L.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Connell, J. W.

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref] [PubMed]

Crommie, M. F.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Dean, C. R.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Decker, R.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Deshpande, A.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Eaves, L.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Eom, J.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Gannett, W.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Garvey, A.

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

Geim, A. K.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Glavin, N. R.

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimet. 95, 101–147 (2016).
[Crossref]

Golberg, D.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
[Crossref]

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Gorbachev, R. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Gwag, J. S.

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Ha, D. H.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Hacker, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Han, B.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Ho, J.

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Hoang Tien, D.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Hone, J.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Hussain, S.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Hwang, C.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Iannacchione, G. S.

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multi-wall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

Jacquod, P.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Jalil, R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Jang, H. W.

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Jarillo-Herrero, P.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Jeong, H. S.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Jung, H.-T.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Jung, J.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Katsnelson, M. I.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Kim, D. W.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Kim, G.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Kim, J. H.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Kim, J.-H.

J.-H. Kim and C. Rosenblatt, “Temperature effect on a rubbed polyimide alignment layer,” J. Appl. Phys. 87(1), 155–158 (2000).
[Crossref]

Kim, P.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Kim, S. Y.

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Kim, Y. H.

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Kinnamon, D.

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

Kwok, H.-S.

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Kwon, K. C.

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Kwon, Y. R.

Le, Q. V.

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Lee, A.

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

Lee, B. H.

Lee, C.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Lee, J.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Lee, J. H.

Lee, N.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Lee, S. H.

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref] [PubMed]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Lee, S. M.

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Lee, Y. H.

Y. J. Lim, B. H. Lee, Y. R. Kwon, Y. E. Choi, G. Murali, J. H. Lee, V. L. Nguyen, Y. H. Lee, and S. H. Lee, “Monitoring defects on monolayer graphene using nematic liquid crystals,” Opt. Express 23(11), 14162–14167 (2015).
[Crossref] [PubMed]

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Leist, J.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

LeRoy, B. J.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Li, L. H.

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

Li, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Li, X.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Liang, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Lim, Y. J.

Lin, Y.

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref] [PubMed]

Liu, Z.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Mayorov, A. S.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Meric, I.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Morozov, S. V.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Murali, G.

Murauski, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Muravsky, A.

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Neto, A. H. C.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Nguyen, T. P.

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Nguyen, V. L.

Novoselov, K. S.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Obeng, Y.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Pakdel, A.

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Park, J. H.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Park, K. A.

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

Park, M.

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Peng, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Peng, L.-M.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Peres, N. M. R.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Piner, R. D.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Ponomarenko, L. A.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Regan, W.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Richter, C. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Robinson, J. A.

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimet. 95, 101–147 (2016).
[Crossref]

Rosenblatt, C.

J.-H. Kim and C. Rosenblatt, “Temperature effect on a rubbed polyimide alignment layer,” J. Appl. Phys. 87(1), 155–158 (2000).
[Crossref]

Ruoff, R. S.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

Sanchez-Yamagishi, J.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Schedin, F.

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Seo, Y.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Shalov, S. A.

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

Shehzad, M. A.

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

Shepard, K. L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Skaggs, N.

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

Sohn, W.

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Sorgenfrei, S.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Sperling, B. A.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Taniguchi, T.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Tsai, H.-Z.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Van Aerle, N. A. J. M.

N. A. J. M. Van Aerle, “Influence of polyimide orientation layer material on the liquid crystal resistivity in LCDs,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 257(1), 193–208 (1994).
[Crossref]

Van Le, Q.

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Walker, A. R. H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Wang, L.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Wang, X.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
[Crossref]

Wang, Y.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Waqas Iqbal, M.

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Watanabe, K.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Weng, Q.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
[Crossref]

Womack, J.

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

Wu, Q.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Xue, J.

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Yan, K.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Yeung, F. S.-Y.

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Young, A. F.

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

Yu, J. S.

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Yuan, H.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Zettl, A.

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Zhi, C.

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
[Crossref]

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Zhu, X.

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Zhu, Y.

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

ACS Nano (1)

X. Liang, B. A. Sperling, I. Calizo, G. Cheng, C. A. Hacker, Q. Zhang, Y. Obeng, K. Yan, H. Peng, Q. Li, X. Zhu, H. Yuan, A. R. H. Walker, Z. Liu, L.-M. Peng, and C. A. Richter, “Toward clean and crackless transfer of graphene,” ACS Nano 5(11), 9144–9153 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

L. H. Li and Y. Chen, “Atomically Thin Boron Nitride: Unique Properties and Applications,” Adv. Funct. Mater. 26(16), 2594–2608 (2016).
[Crossref]

Adv. Mater. (1)

G. J. Choi, Q. Van Le, K. S. Choi, K. C. Kwon, H. W. Jang, J. S. Gwag, and S. Y. Kim, “Polarized Light-Emitting Diodes Based on Patterned MoS2 Nanosheet Hole Transport Layer,” Adv. Mater. 29(36), 1702598 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

Q. V. Le, T. P. Nguyen, M. Park, W. Sohn, H. W. Jang, and S. Y. Kim, “Bottom‐Up Synthesis of MeSx Nanodots for Optoelectronic Device Applications,” Adv. Opt. Mater. 4(11), 1796–1804 (2016).
[Crossref]

Appl. Phys. Lett. (3)

R. Basu and G. S. Iannacchione, “High-resolution dielectric spectroscopy and electric-field dependence of carbon allotropes including multi-wall and single-wall nanotubes,” Appl. Phys. Lett. 92(5), 052906 (2008).
[Crossref]

R. Basu, D. Kinnamon, and A. Garvey, “Nano-electromechanical rotation of graphene and giant enhancement in dielectric anisotropy in a liquid crystal,” Appl. Phys. Lett. 106(20), 201909 (2015).
[Crossref]

R. Basu and A. Lee, “Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell,” Appl. Phys. Lett. 111(16), 161905 (2017).
[Crossref]

FlatChem (1)

Q. Van Le, J.-Y. Choi, and S. Y. Kim, “Recent advances in the application of two-dimensional materials as charge transport layers in organic and perovskite solar cells,” FlatChem 2, 54–66 (2017).
[Crossref]

J. Appl. Phys. (3)

J.-H. Kim and C. Rosenblatt, “Temperature effect on a rubbed polyimide alignment layer,” J. Appl. Phys. 87(1), 155–158 (2000).
[Crossref]

R. Basu, D. Kinnamon, N. Skaggs, and J. Womack, “Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension,” J. Appl. Phys. 119(18), 185107 (2016).
[Crossref]

R. Basu and A. Garvey, “Insulator-to-conductor transition in liquid crystal-carbon nanotube nanocomposites,” J. Appl. Phys. 120(16), 164309 (2016).
[Crossref]

J. Phys. Chem. C (1)

K. A. Park, S. M. Lee, S. H. Lee, and Y. H. Lee, “Anchoring a Liquid Crystal Molecule on a Single-Walled Carbon Nanotube,” J. Phys. Chem. C 111(4), 1620–1624 (2007).
[Crossref]

J. Phys. Conf. Ser. (1)

X. Wang, C. Zhi, Q. Weng, Y. Bando, and D. Golberg, “Boron Nitride Nanosheets: novel Syntheses and Applications in polymeric Composites,” J. Phys. Conf. Ser. 471, 012003 (2013).
[Crossref]

Liq. Cryst. (1)

R. Basu, D. Kinnamon, and A. Garvey, “Graphene and liquid crystal mediated interactions,” Liq. Cryst. 43(13–15), 2375–2390 (2016).
[Crossref]

Mater. Today (1)

A. Pakdel, C. Zhi, Y. Bando, and D. Golberg, “Low-dimensional boron nitride nanomaterials,” Mater. Today 15(6), 256–265 (2012).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

N. A. J. M. Van Aerle, “Influence of polyimide orientation layer material on the liquid crystal resistivity in LCDs,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 257(1), 193–208 (1994).
[Crossref]

Nano Lett. (4)

R. Decker, Y. Wang, V. W. Brar, W. Regan, H.-Z. Tsai, Q. Wu, W. Gannett, A. Zettl, and M. F. Crommie, “Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy,” Nano Lett. 11(6), 2291–2295 (2011).
[Crossref] [PubMed]

M. A. Shehzad, S. Hussain, J. Lee, J. Jung, N. Lee, G. Kim, and Y. Seo, “Study of Grains and Boundaries of Molybdenum Diselenide and Tungsten Diselenide Using Liquid Crystal,” Nano Lett. 17(3), 1474–1481 (2017).
[Crossref] [PubMed]

X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Lett. 9(12), 4359–4363 (2009).
[Crossref] [PubMed]

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, A. S. Mayorov, N. M. R. Peres, A. H. C. Neto, J. Leist, A. K. Geim, L. A. Ponomarenko, and K. S. Novoselov, “Electron tunneling through ultrathin boron nitride crystalline barriers,” Nano Lett. 12(3), 1707–1710 (2012).
[Crossref] [PubMed]

Nanoscale (1)

Y. Lin and J. W. Connell, “Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene,” Nanoscale 4(22), 6908–6939 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

J. S. Yu, D. H. Ha, and J. H. Kim, “Mapping of the atomic lattice orientation of a graphite flake using macroscopic liquid crystal texture,” Nanotechnology 23(39), 395704 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater. 10(4), 282–285 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol. 5(10), 722–726 (2010).
[Crossref] [PubMed]

D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, “Direct visualization of large-area graphene domains and boundaries by optical birefringency,” Nat. Nanotechnol. 7(1), 29–34 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. E (2)

R. Basu and S. A. Shalov, “Graphene as transmissive electrodes and aligning layers for liquid-crystal-based electro-optic devices,” Phys. Rev. E 96(1-1), 012702 (2017).
[Crossref] [PubMed]

R. Basu, “Enhancement of polar anchoring strength in a graphene-nematic suspension and its effect on nematic electro-optic switching,” Phys. Rev. E 96(1-1), 012707 (2017).
[Crossref] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. Murauski, V. Chigrinov, A. Muravsky, F. S.-Y. Yeung, J. Ho, and H.-S. Kwok, “Determination of liquid-crystal polar anchoring energy by electrical measurements,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 061707 (2005).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Arslan Shehzad, D. Hoang Tien, M. Waqas Iqbal, J. Eom, J. H. Park, C. Hwang, and Y. Seo, “Nematic liquid crystal on a two dimensional hexagonal lattice and its application,” Sci. Rep. 5(1), 13331 (2015).
[Crossref] [PubMed]

Semicond. Semimet. (1)

G. R. Bhimanapati, N. R. Glavin, and J. A. Robinson, “2D Boron Nitride: Synthesis and Applications,” Semicond. Semimet. 95, 101–147 (2016).
[Crossref]

Other (9)

V. G. Chigrinov, V. M. Kozenkov, and H.-S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (John Wiley & Sons, Ltd., 2008).

K. Takatoh, M. Hasegawa, M. Koden, N. Itoh, R. Hasegawa, and M. Sakamoto, Alignment Technology and Applications of Liquid Crystal Devices (Taylor & Francis, 2005).

A. Schenning, G. P. Crawford, and D. J. Broer, Liquid Crystal Sensors (Taylor & Francis Group, 2018).

H.-S. Park and K.-C. Shin, “Liquid Crystal Cell Process” in Flat Panel Display Manufacturing, Jun Souk, Shinji Morozumi, Fang-Chen Luo, and Ion Bita, eds. (John Wiley & Sons, Ltd., 2018).

D. Demus, J. Goodby, G. W. Gary, H.-W. Spiess, and V. Vill, Physical Properties of Liquid Crystals (Wiley-VCH, 1999).

Desktop LCD Display Comparison, http://www.prismo.ch/comparisons/desktop.php

L. M. Blinov and V. G. Chigrinov, Electro-optic Effects in Liquid Crystal Materials (Springer-Verlag, 1996).

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University, 1995).

Data Sheet Licristal® E7, Merck KGaA, Germany, 2001.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a), (b), (c) The alignment of nematic LC molecules (ellipsoids) on 2D h-BN (honeycomb structure) is illustrated. The epitaxial interaction between the LC and the h-BN lattice is schematically shown by matching the LC’s benzene rings on the h-BN-honeycomb structure. The three-fold alignment degeneracy is illustrated as the nematic director, n ^ is orientated at (a) 0°, (b) + 60°, (c) −60°, with the vertical. (d) Raman signal of monolayer h-BN on copper foil. (e) Microphotograph of a thin layer of nematic LC E7 on the h-BN film on the ITO slide under the crossed polarized microscope. (f) Micrograph of the LC sample when rotated by 45° under the crossed polarized microscope. (g), (h) Micrograph of the same LC sample at a different location and its 45° rotated state, respectively.
Fig. 2
Fig. 2 (a), (b) The micrograph of LC E7 in the ITO-only cell under the crossed polarized microscope, and its 45° rotated state, respectively. (c), (d) The micrograph of LC E7 in the h-BN/ITO cell-1 under the crossed polarized microscope, and its 45° rotated state, respectively. (e), (f) The micrograph of LC E7 in the h-BN/ITO cell-2 under the crossed polarized microscope, and its 45° rotated state, respectively. (g), (h) The micrograph of LC E7 in the h-BN/ITO cell-2 under the crossed polarized microscope, and its 45° rotated state, respectively.
Fig. 3
Fig. 3 (a) Crossed polarized micrograph of LC E7 in the h-BN/ITO cell which showed the best uniform planar-alignment. The dotted square area is used for further analysis. (b) A schematic representation of the h-BN/ITO cell containing a layer of ITO and an h-BN film on each glass slide. (c), (d), and (e) Micrographs of the bright, intermediate, and dark states, respectively, as the h-BN/ITO LC cell was rotated under the crossed polarized optical microscope. (h) Normalized transmitted intensity as a function of ��, the angle between the average LC director, n ^ in the cell and the analyzer.
Fig. 4
Fig. 4 Electrically-controlled birefringence effect of LC E7 in the h-BN/ITO cell. (a), (b), (c), (d), (e), (f) Micrographs of the h-BN/ITO LC cell filled with LC E7 under the crossed-polarized optical microscope at 0 V, 4.5V, 8V, 12 V, 18V, and 45 V, respectively. (g) The transmittance, I I o of LC E7 (T = 20° C) in the h-BN/ITO cell as a function of applied ac voltage (f = 1000 Hz). The top inset shows the experimental setup. The bottom inset shows the same transmittance curve in a smaller voltage range where three maxima can be clearly counted.
Fig. 5
Fig. 5 (a) Dielectric constant, ε as a function of Vrms (f = 1000 Hz) in the nematic phase (T = 20° C) of LC E7 in both the cells listed in the legend. The top inset shows the Fréedericksz threshold voltage, Vth for both the cells. The bottom inset shows the schematic representation of the planar orientation of the LC in the h-BN/ITO cell when the applied voltage is below Vth. (b) Dielectric constant, ε as a function of 1/Vrms for the h-BN/ITO cell. The solid line represents the linear fit in the high-voltage linear regime (as 1/Vrms→0, Vrms→∞). The extrapolated y-intercept of the linear fit gives the value of ε||. The inset shows the schematic representation of the homeotropic orientation of the LC in the h-BN/ITO cell for a very high applied voltage.
Fig. 6
Fig. 6 Optical transmission as a function wavelength for the LC-filled PI/ITO cell and the LC-filled h-BN/ITO listed in the legend. The visible wavelength range is shown in the x-axis. The inset pictures show the two cells.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I= I O sin 2 ( πd Δn λ )
C C O = 2 π 1+γ sin 2 φ m V th V φ o φ m (1+γ sin 2 φ)(1+κ sin 2 φ) sin 2 φ m sin 2 φ dφ

Metrics