Abstract

The plastic subsurface damages distribution and their influence on the laser induced damage performance of fused silica optics polished with different pads are investigated. The elastic interaction model, plastic indentation model and wear relationships are combined together to theoretically characterize the plastic subsurface damages distribution in different polishing processes, which shows consistent results with experiments. It reveals that most of the polishing-induced subsurface damages are plastic damages. A few largest polishing particles in the tail end distribution mainly decide the final depth distribution and density of the polishing-induced plastic subsurface damages. The larger pad elastic modulus will make the few largest polishing particles bear much larger load and generate larger proportion of observable plastic subsurface damages. Using polishing pad with lower elastic modulus is prominent for restricting the generation of fractures and plastic damages and finally makes the polished optics show higher laser induced damage threshold, lower damage density and smaller slope damage probability curve. This research is meaningful for further establishing the quantitative relationships between polishing parameters, subsurface damages distribution and laser induced damage performance in fused silica optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Subsurface damages of fused silica developed during deterministic small tool polishing

Haobo Cheng, Zhichao Dong, Xu Ye, and Hon-Yuen Tam
Opt. Express 22(15) 18588-18603 (2014)

Evaluation and analysis of polished fused silica subsurface quality by the nanoindenter technique

Bin Ma, Zhengxiang Shen, Pengfei He, Fei Sha, Chunliang Wang, Bin Wang, Yiqin Ji, Huasong Liu, Weihao Li, and Zhanshan Wang
Appl. Opt. 50(9) C279-C285 (2011)

Investigation of laser-induced damage by various initiators on the subsurface of fused silica

Xiang Gao, Guoying Feng, Jinghua Han, and Lingling Zhai
Opt. Express 20(20) 22095-22101 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
    [Crossref]
  2. M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
    [Crossref]
  3. P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
    [Crossref] [PubMed]
  4. T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
    [Crossref]
  5. G. Hu, Y. Zhao, X. Liu, D. Li, Q. Xiao, K. Yi, and J. Shao, “Combining wet etching and real-time damage event imaging to reveal the most dangerous laser damage initiator in fused silica,” Opt. Lett. 38(15), 2632–2635 (2013).
    [Crossref] [PubMed]
  6. M. Buijs and K. Korpelvanhouten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166(2), 237–245 (1993).
    [Crossref]
  7. K. Phillips, G. M. Crimes, and T. R. Wilshaw, “Mechanism of material removal by free abrasive grinding of glass and fused silica,” Wear 41(2), 327–350 (1977).
    [Crossref]
  8. Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
    [Crossref]
  9. T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
    [Crossref]
  10. H. Cheng, Z. Dong, X. Ye, and H. Y. Tam, “Subsurface damages of fused silica developed during deterministic small tool polishing,” Opt. Express 22(15), 18588–18603 (2014).
    [Crossref] [PubMed]
  11. D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
    [Crossref]
  12. T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
    [Crossref]
  13. J. F. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semiconduct. Meth. 16(3), 469–476 (2003).
    [Crossref]
  14. Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
    [Crossref]
  15. S. Oh and J. Seok, “An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes,” Wear 266(7-8), 839–849 (2009).
    [Crossref]
  16. N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
    [Crossref]
  17. T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
    [Crossref]
  18. X. He, G. Wang, H. Zhao, and P. Ma, “Subsurface defects characterization and laser induced damage performance of fused silica optics polished with colloidal silica and ceria,” Chin. Phys. B 25(4), 048104 (2016).
    [Crossref]
  19. D. F. Liu, G. L. Chen, and Q. Hu, “Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles,” Int. J. Adv. Manuf. Technol. 88(9-12), 3515–3525 (2017).
    [Crossref]
  20. Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
    [Crossref] [PubMed]
  21. X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
    [Crossref]
  22. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  23. D. W. Kim, W. H. Park, H. K. An, and J. H. Burge, “Parametric smoothing model for visco-elastic polishing tools,” Opt. Express 18(21), 22515–22526 (2010).
    [Crossref] [PubMed]
  24. Y. Wang, Y. W. Zhao, and J. Gu, “A new nonlinear-micro-contact model for single particle in the chemical-mechanical polishing with soft pad,” J. Mater. Process. Technol. 183(2-3), 374–379 (2007).
    [Crossref]
  25. T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
    [Crossref]
  26. S. Kim, N. Saka, and J. H. Chun, “The role of pad topography in chemical-mechanical polishing,” IEEE Trans. Semiconduct. Meth. 27(3), 431–442 (2014).
    [Crossref]
  27. M. Tomozawa, “Oxide CMP mechanisms,” Solid State Technol. 40, 169–174 (1997).
  28. C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
    [Crossref]
  29. J. Y. Natoli, L. Gallais, H. Akhouayri, and C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41(16), 3156–3166 (2002).
    [Crossref] [PubMed]

2017 (1)

D. F. Liu, G. L. Chen, and Q. Hu, “Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles,” Int. J. Adv. Manuf. Technol. 88(9-12), 3515–3525 (2017).
[Crossref]

2016 (5)

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
[Crossref]

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

X. He, G. Wang, H. Zhao, and P. Ma, “Subsurface defects characterization and laser induced damage performance of fused silica optics polished with colloidal silica and ceria,” Chin. Phys. B 25(4), 048104 (2016).
[Crossref]

2014 (4)

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

S. Kim, N. Saka, and J. H. Chun, “The role of pad topography in chemical-mechanical polishing,” IEEE Trans. Semiconduct. Meth. 27(3), 431–442 (2014).
[Crossref]

H. Cheng, Z. Dong, X. Ye, and H. Y. Tam, “Subsurface damages of fused silica developed during deterministic small tool polishing,” Opt. Express 22(15), 18588–18603 (2014).
[Crossref] [PubMed]

2013 (1)

2011 (2)

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2010 (2)

2009 (4)

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

S. Oh and J. Seok, “An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes,” Wear 266(7-8), 839–849 (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

2008 (1)

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

2007 (1)

Y. Wang, Y. W. Zhao, and J. Gu, “A new nonlinear-micro-contact model for single particle in the chemical-mechanical polishing with soft pad,” J. Mater. Process. Technol. 183(2-3), 374–379 (2007).
[Crossref]

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

2004 (1)

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[Crossref]

2003 (2)

J. F. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semiconduct. Meth. 16(3), 469–476 (2003).
[Crossref]

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

2002 (1)

1997 (1)

M. Tomozawa, “Oxide CMP mechanisms,” Solid State Technol. 40, 169–174 (1997).

1993 (1)

M. Buijs and K. Korpelvanhouten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166(2), 237–245 (1993).
[Crossref]

1977 (1)

K. Phillips, G. M. Crimes, and T. R. Wilshaw, “Mechanism of material removal by free abrasive grinding of glass and fused silica,” Wear 41(2), 327–350 (1977).
[Crossref]

Akhouayri, H.

Amra, C.

An, H. K.

Ashizawa, T.

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

Baxamusa, S.

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

Bude, J. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Buijs, M.

M. Buijs and K. Korpelvanhouten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166(2), 237–245 (1993).
[Crossref]

Burge, J. H.

Byrne, G.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Carr, C. W.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Chen, G. L.

D. F. Liu, G. L. Chen, and Q. Hu, “Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles,” Int. J. Adv. Manuf. Technol. 88(9-12), 3515–3525 (2017).
[Crossref]

Chen, X. H.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Cheng, H.

Chun, J. H.

S. Kim, N. Saka, and J. H. Chun, “The role of pad topography in chemical-mechanical polishing,” IEEE Trans. Semiconduct. Meth. 27(3), 431–442 (2014).
[Crossref]

Crimes, G. M.

K. Phillips, G. M. Crimes, and T. R. Wilshaw, “Mechanism of material removal by free abrasive grinding of glass and fused silica,” Wear 41(2), 327–350 (1977).
[Crossref]

Dambon, O.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Davis, P.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Desjardin, R.

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

Dong, Z.

Dornfeld, D.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Dornfeld, D. A.

J. F. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semiconduct. Meth. 16(3), 469–476 (2003).
[Crossref]

Elhadj, S.

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

Evans, C. J.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Feit, M.

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

Feit, M. D.

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[Crossref]

Feldman, T.

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Gallais, L.

Geraghty, P.

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

Gu, J.

Y. Wang, Y. W. Zhao, and J. Gu, “A new nonlinear-micro-contact model for single particle in the chemical-mechanical polishing with soft pad,” J. Mater. Process. Technol. 183(2-3), 374–379 (2007).
[Crossref]

Guo, Y. B.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Guo, Z. Z.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

He, X.

X. He, G. Wang, H. Zhao, and P. Ma, “Subsurface defects characterization and laser induced damage performance of fused silica optics polished with colloidal silica and ceria,” Chin. Phys. B 25(4), 048104 (2016).
[Crossref]

X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
[Crossref]

Hou, J.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Hu, G.

Hu, Q.

D. F. Liu, G. L. Chen, and Q. Hu, “Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles,” Int. J. Adv. Manuf. Technol. 88(9-12), 3515–3525 (2017).
[Crossref]

Kim, D. W.

Kim, S.

S. Kim, N. Saka, and J. H. Chun, “The role of pad topography in chemical-mechanical polishing,” IEEE Trans. Semiconduct. Meth. 27(3), 431–442 (2014).
[Crossref]

Klocke, F.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Korpelvanhouten, K.

M. Buijs and K. Korpelvanhouten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166(2), 237–245 (1993).
[Crossref]

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Lei, X. Y.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Li, D.

Li, H. B.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Li, Y.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Li, Y. G.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Liao, D. F.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Liu, D. F.

D. F. Liu, G. L. Chen, and Q. Hu, “Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles,” Int. J. Adv. Manuf. Technol. 88(9-12), 3515–3525 (2017).
[Crossref]

Liu, X.

Liu, Z.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Lucca, D. A.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Luo, J. F.

J. F. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semiconduct. Meth. 16(3), 469–476 (2003).
[Crossref]

Ma, P.

X. He, G. Wang, H. Zhao, and P. Ma, “Subsurface defects characterization and laser induced damage performance of fused silica optics polished with colloidal silica and ceria,” Chin. Phys. B 25(4), 048104 (2016).
[Crossref]

X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
[Crossref]

Mason, D.

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

Menapace, J.

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Menapace, J. A.

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Miller, P.

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Miller, P. E.

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Morishima, H.

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

Mullany, B. A.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Natoli, J. Y.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Oh, S.

S. Oh and J. Seok, “An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes,” Wear 266(7-8), 839–849 (2009).
[Crossref]

Park, W. H.

Paul, E.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Philipossian, A.

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

Phillips, K.

K. Phillips, G. M. Crimes, and T. R. Wilshaw, “Mechanism of material removal by free abrasive grinding of glass and fused silica,” Wear 41(2), 327–350 (1977).
[Crossref]

Rubenchik, A. M.

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[Crossref]

Saka, N.

S. Kim, N. Saka, and J. H. Chun, “The role of pad topography in chemical-mechanical polishing,” IEEE Trans. Semiconduct. Meth. 27(3), 431–442 (2014).
[Crossref]

Sampurno, Y.

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

Seok, J.

S. Oh and J. Seok, “An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes,” Wear 266(7-8), 839–849 (2009).
[Crossref]

Shao, J.

Shen, N.

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Spears, R. D.

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

Steele, R.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Steele, W.

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Sudargho, F.

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

Suratwala, T.

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Tam, H. Y.

Tomozawa, M.

M. Tomozawa, “Oxide CMP mechanisms,” Solid State Technol. 40, 169–174 (1997).

Tricard, M.

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wang, G.

X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
[Crossref]

X. He, G. Wang, H. Zhao, and P. Ma, “Subsurface defects characterization and laser induced damage performance of fused silica optics polished with colloidal silica and ceria,” Chin. Phys. B 25(4), 048104 (2016).
[Crossref]

Wang, J.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Wang, J. A.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Wang, Y.

Y. Wang, Y. W. Zhao, and J. Gu, “A new nonlinear-micro-contact model for single particle in the chemical-mechanical polishing with soft pad,” J. Mater. Process. Technol. 183(2-3), 374–379 (2007).
[Crossref]

Wilshaw, T. R.

K. Phillips, G. M. Crimes, and T. R. Wilshaw, “Mechanism of material removal by free abrasive grinding of glass and fused silica,” Wear 41(2), 327–350 (1977).
[Crossref]

Wong, L.

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

P. E. Miller, J. D. Bude, T. I. Suratwala, N. Shen, T. A. Laurence, W. A. Steele, J. Menapace, M. D. Feit, and L. L. Wong, “Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces,” Opt. Lett. 35(16), 2702–2704 (2010).
[Crossref] [PubMed]

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

Xiao, Q.

Xie, R. Q.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Xu, Q.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Xu, Q. A.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Xu, X.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Ye, H.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Ye, X.

Yi, K.

Yuan, Z.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Yuan, Z. G.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Zhang, S.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Zhang, Z.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Zhao, H.

X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
[Crossref]

X. He, G. Wang, H. Zhao, and P. Ma, “Subsurface defects characterization and laser induced damage performance of fused silica optics polished with colloidal silica and ceria,” Chin. Phys. B 25(4), 048104 (2016).
[Crossref]

Zhao, S.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Zhao, S. J.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Zhao, Y.

Zhao, Y. W.

Y. Wang, Y. W. Zhao, and J. Gu, “A new nonlinear-micro-contact model for single particle in the chemical-mechanical polishing with soft pad,” J. Mater. Process. Technol. 183(2-3), 374–379 (2007).
[Crossref]

Zheng, N.

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Zheng, Y.

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Zhong, B.

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

Zhou, P. F.

X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
[Crossref]

Zhuang, Y.

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. A. Laurence, J. D. Bude, N. Shen, T. Feldman, P. E. Miller, W. A. Steele, and T. Suratwala, “Metallic-like photoluminescence and absorption in fused silica surface flaws,” Appl. Phys. Lett. 94(15), 151114 (2009).
[Crossref]

Appl. Surf. Sci. (1)

Y. G. Li, N. Zheng, H. B. Li, J. Hou, X. Y. Lei, X. H. Chen, Z. G. Yuan, Z. Z. Guo, J. A. Wang, Y. B. Guo, and Q. A. Xu, “Morphology and distribution of subsurface damage in optical fused silica parts: bound-abrasive grinding,” Appl. Surf. Sci. 257(6), 2066–2073 (2011).
[Crossref]

Chin. Phys. B (2)

X. He, G. Wang, H. Zhao, and P. Ma, “Subsurface defects characterization and laser induced damage performance of fused silica optics polished with colloidal silica and ceria,” Chin. Phys. B 25(4), 048104 (2016).
[Crossref]

X. He, H. Zhao, G. Wang, P. F. Zhou, and P. Ma, “Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics,” Chin. Phys. B 25(8), 088105 (2016).
[Crossref]

CIRP Ann. Manuf. Techn. (1)

C. J. Evans, E. Paul, D. Dornfeld, D. A. Lucca, G. Byrne, M. Tricard, F. Klocke, O. Dambon, and B. A. Mullany, “Material removal mechanisms in lapping and polishing,” CIRP Ann. Manuf. Techn. 52(2), 611–633 (2003).
[Crossref]

Electrochem. Solid St. (1)

Y. Sampurno, F. Sudargho, Y. Zhuang, T. Ashizawa, H. Morishima, and A. Philipossian, “Effect of cerium oxide particle sizes in oxide chemical mechanical planarization,” Electrochem. Solid St. 12(6), H191–H194 (2009).
[Crossref]

IEEE Trans. Semiconduct. Meth. (2)

J. F. Luo and D. A. Dornfeld, “Effects of abrasive size distribution in chemical mechanical planarization: modeling and verification,” IEEE Trans. Semiconduct. Meth. 16(3), 469–476 (2003).
[Crossref]

S. Kim, N. Saka, and J. H. Chun, “The role of pad topography in chemical-mechanical polishing,” IEEE Trans. Semiconduct. Meth. 27(3), 431–442 (2014).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

D. F. Liu, G. L. Chen, and Q. Hu, “Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles,” Int. J. Adv. Manuf. Technol. 88(9-12), 3515–3525 (2017).
[Crossref]

J. Am. Ceram. Soc. (4)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-based etching processes for improving laser damage resistance of fused silica optical surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

N. Shen, T. Suratwala, W. Steele, L. Wong, M. D. Feit, P. E. Miller, R. D. Spears, and R. Desjardin, “Nanoscratching of optical glass surfaces near the elastic-plastic load boundary to mimic the mechanics of polishing particles,” J. Am. Ceram. Soc. 99(5), 1477–1484 (2016).
[Crossref]

T. Suratwala, W. Steele, M. Feit, N. Shen, R. D. Spears, L. Wong, P. Miller, R. Desjardin, and S. Elhadj, “Mechanism and simulation of removal rate and surface roughness during optical polishing of glasses,” J. Am. Ceram. Soc. 99(6), 1974–1984 (2016).
[Crossref]

T. Suratwala, M. Feit, W. Steele, L. Wong, N. Shen, R. D. Spears, R. Desjardin, D. Mason, P. Geraghty, P. Miller, and S. Baxamusa, “Microscopic removal function and the relationship between slurry particle size distribution and workpiece roughness dring pad polishing,” J. Am. Ceram. Soc. 97(1), 81–91 (2014).
[Crossref]

J. Mater. Process. Technol. (1)

Y. Wang, Y. W. Zhao, and J. Gu, “A new nonlinear-micro-contact model for single particle in the chemical-mechanical polishing with soft pad,” J. Mater. Process. Technol. 183(2-3), 374–379 (2007).
[Crossref]

J. Non-Cryst. Solids (3)

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grindingpolishing,” J. Non-Cryst. Solids 354(18), 2023–2037 (2008).
[Crossref]

D. F. Liao, J. Wang, S. J. Zhao, R. Q. Xie, X. H. Chen, Z. G. Yuan, B. Zhong, X. Xu, and S. Zhang, “Analysis of the optic/impurity-particle/pad interaction for reduction of scratches formed on optics during pad polishing,” J. Non-Cryst. Solids 391, 96–100 (2014).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

P. E. Miller, T. I. Suratwala, J. D. Bude, T. A. Laurence, N. Shen, W. A. Steele, M. D. Feit, J. A. Menapace, and L. L. Wong, “Laser damage precursors in fused silica,” Proc. SPIE 7504, 75040X (2009).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–271 (2004).
[Crossref]

Sci. Rep. (1)

Y. Li, H. Ye, Z. Yuan, Z. Liu, Y. Zheng, Z. Zhang, S. Zhao, J. Wang, and Q. Xu, “Generation of scratches and their effects on laser damage performance of silica glass,” Sci. Rep. 6(1), 34818 (2016).
[Crossref] [PubMed]

Solid State Technol. (1)

M. Tomozawa, “Oxide CMP mechanisms,” Solid State Technol. 40, 169–174 (1997).

Wear (3)

S. Oh and J. Seok, “An integrated material removal model for silicon dioxide layers in chemical mechanical polishing processes,” Wear 266(7-8), 839–849 (2009).
[Crossref]

M. Buijs and K. Korpelvanhouten, “Three-body abrasion of brittle materials as studied by lapping,” Wear 166(2), 237–245 (1993).
[Crossref]

K. Phillips, G. M. Crimes, and T. R. Wilshaw, “Mechanism of material removal by free abrasive grinding of glass and fused silica,” Wear 41(2), 327–350 (1977).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The particle size distribution of polishing slurry.
Fig. 2
Fig. 2 The AFM images of (a) sample A, (b) sample B, (c) sample C, (d) sample D and (e) sample E with the same color scale.
Fig. 3
Fig. 3 The depth profile of the AFM images.
Fig. 4
Fig. 4 The surface morphologies of (a) sample A, (b) sample B, (c) sample C, (d) sample D and (e) sample E observed by Nomarski microscopy.
Fig. 5
Fig. 5 The damage probability curves of different samples, the solid lines are the linear fitting curves.
Fig. 6
Fig. 6 The zero probability damage threshold and damage density at the fluence of 40 J/cm2 for different samples.
Fig. 7
Fig. 7 The calculated bear load F(r) of different particles in different polishing processes.
Fig. 8
Fig. 8 The calculated indentation depth δ o into optics for different particles in different polishing processes.
Fig. 9
Fig. 9 The calculated instantaneous fraction number ( f ins ( δ o )) of scratches with different depth generated during a certain polishing time.
Fig. 10
Fig. 10 The calculated final fraction number ( f fin ( δ o )) of scratches with different depth generated during different polishing process.
Fig. 11
Fig. 11 (a) The AFM image of sample D. (b) The depth profile of the white line in Fig. 11(a). (c) The enlarged 3D picture of the red square in Fig. 11(a). (d) The side view picture of Fig. 11(c).
Fig. 12
Fig. 12 Calculated final cumulative depth distribution ( S cum (δ)) of scratches generated during different polishing process.
Fig. 13
Fig. 13 Rmax, Rq and subsurface damage area percentage versus laser-induced damage threshold for all samples.
Fig. 14
Fig. 14 Rmax, Rq and subsurface damage area percentage versus laser-induced damage density for all samples.

Tables (4)

Tables Icon

Table 1 Sample preparation methods.

Tables Icon

Table 2 Elastic modulus of different polishing pads at room temperature (21 degrees centigrade).

Tables Icon

Table 3 Measured subsurface damage area percentage, maximum subsurface damage depth and surface roughness for all samples.

Tables Icon

Table 4 Calculated results in all samples.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

F(r)= 4 3 E sp r 1 2 δ p 3 2
E sp = 4 E p 3(1 υ p 2 )
δ p =2rg
F(r)= 16 E p 9(1 υ p 2 ) r 1 2 (2rg) 3 2
δ o (r)= F(r) 2π H o r
δ o (r)= 8 E p 9π(1 υ p 2 ) H o r 1 2 (2rg) 3 2
F 0 = f po S o N p r f(r)F(r)
f fin ( δ o )= f ins ( δ o )+ f ins ( δ o +Δ)+ f ins ( δ o +2Δ)+= n f ins ( δ o +nΔ)
S(δ)=L×2×( δ o δ)×tan θ 2 ,δ δ o
S cum (δ)= δ o f fin ( δ o )×L×2×( δ o δ)×tan θ 2
S dep (δ)= S cum (δ) S cum (δΔ)
δ ave = δ S dep (δ)δ δ S dep (δ)
Rq= δ S dep (δ) (δ δ ave ) 2 δ S dep (δ)
F T i ;P(F)=1 e d i S i =1 ( F T i ) 0.5 d i S

Metrics