Abstract

Microlens arrays (MLAs) are increasingly applied in high-end photonics and imaging systems. Advanced diamond turning machining with tool servo technique is a superior method of fabricating micro-structured arrays with sub-micrometer form accuracy and nanometer surface finish. This paper proposes an innovative framework for ultraprecision machining of MLA. The established metrology-integrated machining platform consists of a 3-axis ultraprecision turning machine and a nanometric interferometric probe. On-machine surface measurement enables the in situ inspection and characterization of MLA features while preserving the consistency between the machining and measurement coordinate. The dedicated surface error characterization method and 3D corrective machining strategy are also presented. An experimental study is carried out in order to prove the proposed MLA characterization’s and 3D corrective machining’s effectiveness in improving the MLA surface accuracy.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of a microlens array by use of a slow tool servo

A. Y. Yi and L. Li
Opt. Lett. 30(13) 1707-1709 (2005)

Off-spindle-axis spiral grinding of aspheric microlens array mold inserts

Guangpeng Yan, Yue Zhang, Kaiyuan You, Zexiao Li, Yukun Yuan, and Fengzhou Fang
Opt. Express 27(8) 10873-10889 (2019)

Large-scale fabrication of micro-lens array by novel end-fly-cutting-servo diamond machining

Zhiwei Zhu, Suet To, and Shaojian Zhang
Opt. Express 23(16) 20593-20604 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27(15), 1324–1326 (2002).
    [Crossref] [PubMed]
  2. S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
    [Crossref] [PubMed]
  3. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001).
    [Crossref] [PubMed]
  4. S. Möller and S. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
    [Crossref]
  5. C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
    [Crossref]
  6. S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
    [Crossref]
  7. S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
    [Crossref]
  8. Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
    [Crossref]
  9. M. K. Lee and K. K. Kuo, “Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam,” Appl. Phys. Lett. 91(5), 051111 (2007).
    [Crossref]
  10. C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
    [Crossref]
  11. C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
    [Crossref]
  12. K. Cheng and D. Huo, Micro-cutting: fundamentals and applications (John Wiley & Sons, 2013).
  13. L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
    [Crossref]
  14. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
    [Crossref] [PubMed]
  15. W. Sawangsri and K. Cheng, “An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear,” Proc. Institution Mechanical Eng. Part B. 230(3), 405–415 (2016).
    [Crossref]
  16. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
    [Crossref] [PubMed]
  17. C. C. Chen, C. L. Chao, W. Y. Hsu, F. C. Chen, and C. W. Chao, “Fabrication of aspheric micro lens array by slow tool servo,” in Advanced Materials Research, (Trans Tech Publ, 2009), pp. 479–484.
  18. S. To, T. Kwok, C. Cheung, and W. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” in 2nd international Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2006), 61490S–61490S–61496.
    [Crossref]
  19. D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
    [Crossref]
  20. Y. Tohme, “Trends in ultra-precision machining of freeform optical surfaces,” in Optical fabrication and testing, (Optical Society of America, 2008), OThC6.
  21. L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
    [Crossref]
  22. C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
    [Crossref]
  23. L. Kong and C. Cheung, “Modeling and characterization of surface generation in fast tool servo machining of microlens arrays,” Comput. Ind. Eng. 63(4), 957–970 (2012).
    [Crossref]
  24. X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
    [Crossref]
  25. D. P. Yu, G. S. Hong, and Y. S. Wong, “Profile error compensation in fast tool servo diamond turning of micro-structured surfaces,” Int. J. Mach. Tools Manuf. 52(1), 13–23 (2012).
    [Crossref]
  26. W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).
  27. X. Jiang, “Precision surface measurement,” Philos. Trans. R. Soc. London, Ser. A 370, 4089–4114 (2012).
  28. X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49(15), 2903–2909 (2010).
    [Crossref] [PubMed]
  29. X. Jiang and D. Whitehouse, “Miniaturized optical measurement methods for surface nanometrology,” CIRP Annals-Manuf. Technol. 55, 577–580 (2006).
  30. F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).
  31. X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
    [Crossref] [PubMed]
  32. J. Williamson, H. Martin, and X. Jiang, “High resolution position measurement from dispersed reference interferometry using template matching,” Opt. Express 24(9), 10103–10114 (2016).
    [Crossref] [PubMed]
  33. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB (2004).
  34. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
    [Crossref]
  35. P. Soille, Morphological image analysis: principles and applications (Springer Science & Business Media, 2013).
  36. D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
    [Crossref]
  37. D. Li, X. Jiang, Z. Tong, and L. Blunt, “Development and application of interferometric on-machine surface measurement for ultraprecision turning process,” J. Manuf. Sci. Eng. 141(1), 014502 (2019).
    [Crossref]
  38. D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine,” Micromachines (Basel) 9(7), 334 (2018).
    [Crossref] [PubMed]
  39. F. Cazals and J. Giesen, “Delaunay triangulation based surface reconstruction,” in Effective computational geometry for curves and surfaces (Springer, 2006), pp. 231–276.
  40. Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
    [Crossref]

2019 (1)

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Development and application of interferometric on-machine surface measurement for ultraprecision turning process,” J. Manuf. Sci. Eng. 141(1), 014502 (2019).
[Crossref]

2018 (3)

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine,” Micromachines (Basel) 9(7), 334 (2018).
[Crossref] [PubMed]

D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
[Crossref]

C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
[Crossref]

2016 (2)

W. Sawangsri and K. Cheng, “An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear,” Proc. Institution Mechanical Eng. Part B. 230(3), 405–415 (2016).
[Crossref]

J. Williamson, H. Martin, and X. Jiang, “High resolution position measurement from dispersed reference interferometry using template matching,” Opt. Express 24(9), 10103–10114 (2016).
[Crossref] [PubMed]

2015 (2)

X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
[Crossref] [PubMed]

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

2013 (2)

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).

2012 (4)

X. Jiang, “Precision surface measurement,” Philos. Trans. R. Soc. London, Ser. A 370, 4089–4114 (2012).

D. P. Yu, G. S. Hong, and Y. S. Wong, “Profile error compensation in fast tool servo diamond turning of micro-structured surfaces,” Int. J. Mach. Tools Manuf. 52(1), 13–23 (2012).
[Crossref]

L. Kong and C. Cheung, “Modeling and characterization of surface generation in fast tool servo machining of microlens arrays,” Comput. Ind. Eng. 63(4), 957–970 (2012).
[Crossref]

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

2011 (1)

2010 (2)

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49(15), 2903–2909 (2010).
[Crossref] [PubMed]

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

2008 (1)

S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
[Crossref]

2007 (1)

M. K. Lee and K. K. Kuo, “Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam,” Appl. Phys. Lett. 91(5), 051111 (2007).
[Crossref]

2006 (5)

C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[Crossref]

S. I. Chang, J. B. Yoon, H. Kim, J. J. Kim, B. K. Lee, and D. H. Shin, “Microlens array diffuser for a light-emitting diode backlight system,” Opt. Lett. 31(20), 3016–3018 (2006).
[Crossref] [PubMed]

X. Jiang and D. Whitehouse, “Miniaturized optical measurement methods for surface nanometrology,” CIRP Annals-Manuf. Technol. 55, 577–580 (2006).

2005 (1)

2003 (1)

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[Crossref]

2002 (2)

S. Möller and S. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, and S. Kawata, “Second-harmonic-generation microscope with a microlens array scanner,” Opt. Lett. 27(15), 1324–1326 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

1999 (1)

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

1979 (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[Crossref]

Allen, Y. Y.

L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[Crossref]

Benatar, A.

L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[Crossref]

Blunt, L.

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Development and application of interferometric on-machine surface measurement for ultraprecision turning process,” J. Manuf. Sci. Eng. 141(1), 014502 (2019).
[Crossref]

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine,” Micromachines (Basel) 9(7), 334 (2018).
[Crossref] [PubMed]

D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
[Crossref]

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Bryan, A.

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

Chang, S. I.

Chen, H.

Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
[Crossref]

Chen, Y.

L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[Crossref]

Chen, Y.-L.

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

Cheng, K.

W. Sawangsri and K. Cheng, “An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear,” Proc. Institution Mechanical Eng. Part B. 230(3), 405–415 (2016).
[Crossref]

Cheung, C.

C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
[Crossref]

L. Kong and C. Cheung, “Modeling and characterization of surface generation in fast tool servo machining of microlens arrays,” Comput. Ind. Eng. 63(4), 957–970 (2012).
[Crossref]

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Dai, Y.

Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
[Crossref]

Eberhardt, R.

Eddins, S. L.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB (2004).

Erdmann, L.

Evans, C.

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).

Fang, F.

X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
[Crossref] [PubMed]

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).

Feng, X.

C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
[Crossref]

Forrest, S.

S. Möller and S. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Fu, Y. Q.

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

Fujita, K.

Gabriel, K. J.

Gan, S. W.

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

Gao, F.

D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
[Crossref]

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49(15), 2903–2909 (2010).
[Crossref] [PubMed]

Gao, H.

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

Gao, W.

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

Gebhardt, A.

Gonzalez, R. C.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB (2004).

Grewell, D. A.

L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[Crossref]

Guan, C.

Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
[Crossref]

Hong, G. S.

D. P. Yu, G. S. Hong, and Y. S. Wong, “Profile error compensation in fast tool servo diamond turning of micro-structured surfaces,” Int. J. Mach. Tools Manuf. 52(1), 13–23 (2012).
[Crossref]

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

Hong, M.

C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Hong, M. H.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Hu, X.

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

Huang, C.

L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[Crossref]

Ito, S.

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

Jiang, X.

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Development and application of interferometric on-machine surface measurement for ultraprecision turning process,” J. Manuf. Sci. Eng. 141(1), 014502 (2019).
[Crossref]

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine,” Micromachines (Basel) 9(7), 334 (2018).
[Crossref] [PubMed]

D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
[Crossref]

J. Williamson, H. Martin, and X. Jiang, “High resolution position measurement from dispersed reference interferometry using template matching,” Opt. Express 24(9), 10103–10114 (2016).
[Crossref] [PubMed]

X. Jiang, “Precision surface measurement,” Philos. Trans. R. Soc. London, Ser. A 370, 4089–4114 (2012).

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

X. Jiang, K. Wang, F. Gao, and H. Muhamedsalih, “Fast surface measurement using wavelength scanning interferometry with compensation of environmental noise,” Appl. Opt. 49(15), 2903–2909 (2010).
[Crossref] [PubMed]

X. Jiang and D. Whitehouse, “Miniaturized optical measurement methods for surface nanometrology,” CIRP Annals-Manuf. Technol. 55, 577–580 (2006).

Jo, K. W.

S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
[Crossref]

Kaneko, T.

Kang, S.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[Crossref]

Kawata, S.

Kim, H.

Kim, J. J.

Kim, M. G.

S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
[Crossref]

Kobayashi, M.

Kok, N.

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

Kong, L.

L. Kong and C. Cheung, “Modeling and characterization of surface generation in fast tool servo machining of microlens arrays,” Comput. Ind. Eng. 63(4), 957–970 (2012).
[Crossref]

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Kopp, C.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Kumar, A. S.

C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Kuo, K. K.

M. K. Lee and K. K. Kuo, “Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam,” Appl. Phys. Lett. 91(5), 051111 (2007).
[Crossref]

Leach, R.

C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
[Crossref]

Lee, B. K.

Lee, J. H.

S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
[Crossref]

Lee, K.-W.

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

Lee, M. K.

M. K. Lee and K. K. Kuo, “Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam,” Appl. Phys. Lett. 91(5), 051111 (2007).
[Crossref]

Lee, N.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[Crossref]

Lee, S. K.

S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
[Crossref]

Lee, W.

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Li, D.

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Development and application of interferometric on-machine surface measurement for ultraprecision turning process,” J. Manuf. Sci. Eng. 141(1), 014502 (2019).
[Crossref]

D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
[Crossref]

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine,” Micromachines (Basel) 9(7), 334 (2018).
[Crossref] [PubMed]

Li, L.

Lim, C.

C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Lim, C. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Lin, Y.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Liu, M.

C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
[Crossref]

Liu, X.

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
[Crossref] [PubMed]

C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Luk’yanchuk, B. S.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Martin, H.

Meyrueis, P.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Möller, S.

S. Möller and S. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

Moon, S. D.

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[Crossref]

Muhamedsalih, H.

Nakamura, O.

Noh, Y.-J.

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

Otsu, N.

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[Crossref]

Rahman, M.

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

Ravel, L.

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

Risse, S.

Sawangsri, W.

W. Sawangsri and K. Cheng, “An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear,” Proc. Institution Mechanical Eng. Part B. 230(3), 405–415 (2016).
[Crossref]

Scheiding, S.

Scott, P.

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Senthil Kumar, A.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Shimizu, Y.

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

Shin, D. H.

Shin, S. M.

S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
[Crossref]

Takamatsu, T.

Tie, G.

Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
[Crossref]

To, S.

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Tong, Z.

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Development and application of interferometric on-machine surface measurement for ultraprecision turning process,” J. Manuf. Sci. Eng. 141(1), 014502 (2019).
[Crossref]

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine,” Micromachines (Basel) 9(7), 334 (2018).
[Crossref] [PubMed]

D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
[Crossref]

Tünnermann, A.

Wang, J.

Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
[Crossref]

Wang, K.

Weckenmann, A.

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).

Whitehouse, D.

X. Jiang and D. Whitehouse, “Miniaturized optical measurement methods for surface nanometrology,” CIRP Annals-Manuf. Technol. 55, 577–580 (2006).

Williamson, J.

Wong, S. Y.

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

Wong, Y. S.

D. P. Yu, G. S. Hong, and Y. S. Wong, “Profile error compensation in fast tool servo diamond turning of micro-structured surfaces,” Int. J. Mach. Tools Manuf. 52(1), 13–23 (2012).
[Crossref]

Woods, R. E.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB (2004).

Xie, Q.

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

Yao, J.

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

Yi, A. Y.

Yin, Z.

Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
[Crossref]

Yoon, J. B.

Yu, D. P.

D. P. Yu, G. S. Hong, and Y. S. Wong, “Profile error compensation in fast tool servo diamond turning of micro-structured surfaces,” Int. J. Mach. Tools Manuf. 52(1), 13–23 (2012).
[Crossref]

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

Zeng, Z.

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
[Crossref] [PubMed]

Zhang, G.

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).

Zhang, X.

X. Zhang, Z. Zeng, X. Liu, and F. Fang, “Compensation strategy for machining optical freeform surfaces by the combined on- and off-machine measurement,” Opt. Express 23(19), 24800–24810 (2015).
[Crossref] [PubMed]

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).

Zhao, C.

C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. K. Lee and K. K. Kuo, “Single-step fabrication of Fresnel microlens array on sapphire substrate of flip-chip gallium nitride light emitting diode by focused ion beam,” Appl. Phys. Lett. 91(5), 051111 (2007).
[Crossref]

C. S. Lim, M. H. Hong, Y. Lin, Q. Xie, B. S. Luk’yanchuk, A. Senthil Kumar, and M. Rahman, “Microlens array fabrication by laser interference lithography for super-resolution surface nanopatterning,” Appl. Phys. Lett. 89(19), 191125 (2006).
[Crossref]

CIRP Ann. (1)

C. Cheung, M. Liu, R. Leach, X. Feng, and C. Zhao, “Hierarchical-information-based characterization of multiscale structured surfaces,” CIRP Ann. 67(1), 539–542 (2018).
[Crossref]

CIRP Annals-Manuf. Technol. (3)

W. Gao, Y.-L. Chen, K.-W. Lee, Y.-J. Noh, Y. Shimizu, and S. Ito, “Precision tool setting for fabrication of a microstructure array,” CIRP Annals-Manuf. Technol. 62, 523–526 (2013).

X. Jiang and D. Whitehouse, “Miniaturized optical measurement methods for surface nanometrology,” CIRP Annals-Manuf. Technol. 55, 577–580 (2006).

F. Fang, X. Zhang, A. Weckenmann, G. Zhang, and C. Evans, “Manufacturing and measurement of freeform optics,” CIRP Annals-Manuf. Technol. 62, 823–846 (2013).

Comput. Ind. Eng. (1)

L. Kong and C. Cheung, “Modeling and characterization of surface generation in fast tool servo machining of microlens arrays,” Comput. Ind. Eng. 63(4), 957–970 (2012).
[Crossref]

IEEE Trans. Syst. Man Cybern. (1)

N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

D. P. Yu, S. W. Gan, S. Y. Wong, G. S. Hong, M. Rahman, and J. Yao, “Optimized tool path generation for fast tool servo diamond turning of micro-structured surfaces,” Int. J. Adv. Manuf. Technol. 63(9-12), 1137–1152 (2012).
[Crossref]

Int. J. Mach. Tools Manuf. (3)

X. Liu, X. Zhang, F. Fang, Z. Zeng, H. Gao, and X. Hu, “Influence of machining errors on form errors of microlens arrays in ultra-precision turning,” Int. J. Mach. Tools Manuf. 96, 80–93 (2015).
[Crossref]

D. P. Yu, G. S. Hong, and Y. S. Wong, “Profile error compensation in fast tool servo diamond turning of micro-structured surfaces,” Int. J. Mach. Tools Manuf. 52(1), 13–23 (2012).
[Crossref]

C. Lim, M. Hong, A. S. Kumar, M. Rahman, and X. Liu, “Fabrication of concave micro lens array using laser patterning and isotropic etching,” Int. J. Mach. Tools Manuf. 46(5), 552–558 (2006).
[Crossref]

J. Appl. Phys. (1)

S. Möller and S. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91(5), 3324–3327 (2002).
[Crossref]

J. Manuf. Sci. Eng. (1)

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Development and application of interferometric on-machine surface measurement for ultraprecision turning process,” J. Manuf. Sci. Eng. 141(1), 014502 (2019).
[Crossref]

J. Micromech. Microeng. (1)

S. D. Moon, N. Lee, and S. Kang, “Fabrication of a microlens array using micro-compression molding with an electroformed mold insert,” J. Micromech. Microeng. 13(1), 98–103 (2003).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

C. Kopp, L. Ravel, and P. Meyrueis, “Efficient beamshaper homogenizer design combining diffractive optical elements, microlens array and random phase plate,” J. Opt. A, Pure Appl. Opt. 1(3), 398–403 (1999).
[Crossref]

S. K. Lee, M. G. Kim, K. W. Jo, S. M. Shin, and J. H. Lee, “A glass reflowed microlens array on a Si substrate with rectangular through-holes,” J. Opt. A, Pure Appl. Opt. 10(4), 044003 (2008).
[Crossref]

Measurement (1)

D. Li, Z. Tong, X. Jiang, L. Blunt, and F. Gao, “Calibration of an interferometric on-machine probing system on an ultra-precision turning machine,” Measurement 118, 96–104 (2018).
[Crossref]

Microelectron. Eng. (1)

Y. Q. Fu, N. Kok, and A. Bryan, “Microfabrication of microlens array by focused ion beam technology,” Microelectron. Eng. 54(3-4), 211–221 (2000).
[Crossref]

Micromachines (Basel) (1)

D. Li, X. Jiang, Z. Tong, and L. Blunt, “Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine,” Micromachines (Basel) 9(7), 334 (2018).
[Crossref] [PubMed]

Opt. Eng. (1)

L. Li, Y. Y. Allen, C. Huang, D. A. Grewell, A. Benatar, and Y. Chen, “Fabrication of diffractive optics by use of slow tool servo diamond turning process,” Opt. Eng. 45(11), 113401 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Philos. Trans. R. Soc. London, Ser. A (1)

X. Jiang, “Precision surface measurement,” Philos. Trans. R. Soc. London, Ser. A 370, 4089–4114 (2012).

Precis. Eng. (1)

L. Kong, C. Cheung, X. Jiang, W. Lee, S. To, L. Blunt, and P. Scott, “Characterization of surface generation of optical microstructures using a pattern and feature parametric analysis method,” Precis. Eng. 34(4), 755–766 (2010).
[Crossref]

Proc. Institution Mechanical Eng. Part B. (1)

W. Sawangsri and K. Cheng, “An innovative approach to cutting force modelling in diamond turning and its correlation analysis with tool wear,” Proc. Institution Mechanical Eng. Part B. 230(3), 405–415 (2016).
[Crossref]

Other (8)

C. C. Chen, C. L. Chao, W. Y. Hsu, F. C. Chen, and C. W. Chao, “Fabrication of aspheric micro lens array by slow tool servo,” in Advanced Materials Research, (Trans Tech Publ, 2009), pp. 479–484.

S. To, T. Kwok, C. Cheung, and W. Lee, “Study of ultra-precision diamond turning of a microlens array with a fast tool servo system,” in 2nd international Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2006), 61490S–61490S–61496.
[Crossref]

K. Cheng and D. Huo, Micro-cutting: fundamentals and applications (John Wiley & Sons, 2013).

P. Soille, Morphological image analysis: principles and applications (Springer Science & Business Media, 2013).

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using MATLAB (2004).

Y. Tohme, “Trends in ultra-precision machining of freeform optical surfaces,” in Optical fabrication and testing, (Optical Society of America, 2008), OThC6.

F. Cazals and J. Giesen, “Delaunay triangulation based surface reconstruction,” in Effective computational geometry for curves and surfaces (Springer, 2006), pp. 231–276.

Y. Dai, C. Guan, Z. Yin, G. Tie, H. Chen, and J. Wang, “Tool decentration effect in slow tool servo diamond turning off-axis conic aspheric surface,” in 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies, (International Society for Optics and Photonics, 2010), pp. 76550.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the metrology-integrated machining platform.
Fig. 2
Fig. 2 Framework of MLA ultraprecision machining.
Fig. 3
Fig. 3 Simulated MLA measurement map.
Fig. 4
Fig. 4 Process of MLA individual lens characterization.
Fig. 5
Fig. 5 Photo of experimental setup.
Fig. 6
Fig. 6 Photo of machined MLA surface.
Fig. 7
Fig. 7 OMSM point clouds and the corresponding reconstructed surface.
Fig. 8
Fig. 8 The generation of the corrective tool path.
Fig. 9
Fig. 9 Holistic error before and after corrective machining.
Fig. 10
Fig. 10 Individual error distribution before and after corrective machining.
Fig. 11
Fig. 11 Bar graph of form error characterization.

Tables (5)

Tables Icon

Table 1 MLA design parameters

Tables Icon

Table 2 Processing parameters in slow tool servo machining of MLA

Tables Icon

Table 3 Diamond tool parameters

Tables Icon

Table 4 DRI scanning parameters

Tables Icon

Table 5 Individual surface error characterization

Metrics