Abstract

High-index dielectric metasurfaces are rarely reported around 0.1-0.3 THz, as an extremely large etching depth is needed according to the millimeter-scale wavelength. In this work, we propose an easy solution to sub-THz wideband polarization control by utilizing 3D-printed low-index (n~1.5) metagratings. The metagrating with subwavelength lattice is shown as a very efficient half-wave plate (net polarization conversion of 87%) at 0.14 THz but showing noisy spectrum. The design with superwavelength lattice offers a smooth and wide bandwidth for linear polarization rotation. Study of the mechanism shows that the lattice size slightly above wavelength is a better choice for the low-index metadevice as it maintains high efficiency in the zero diffraction order and wide bandwidth due to the small mode dispersion. Such designs offer a feasible solution especially suitable for sub-THz polarization and phase control, complementary to the existing high-index dielectric and metallic metasurfaces.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dielectric metasurfaces in transmission and reflection modes approaching and beyond bandwidth of conventional blazed grating

Jierong Cheng, Sandeep Inampudi, Fei Fan, Xianghui Wang, Shengjiang Chang, and Hossein Mosallaei
Opt. Express 26(10) 12547-12557 (2018)

3D printed low-loss THz waveguide based on Kagome photonic crystal structure

Jing Yang, Jiayu Zhao, Cheng Gong, Haolin Tian, Lu Sun, Ping Chen, Lie Lin, and Weiwei Liu
Opt. Express 24(20) 22454-22460 (2016)

References

  • View by:
  • |
  • |
  • |

  1. H. Rubens and E. F. Nichols, “Heat rays of great wave length,” Phys. Rev. 4(4), 314–323 (1987).
  2. J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362(1815), 199 (2004).
  3. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
    [Crossref]
  4. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  5. S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).
  6. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
    [Crossref] [PubMed]
  7. F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
    [Crossref]
  8. T. Niu, W. Withayachumnankul, A. Upadhyay, P. Gutruf, D. Abbott, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Terahertz reflectarray as a polarizing beam splitter,” Opt. Express 22(13), 16148–16160 (2014).
    [Crossref] [PubMed]
  9. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  10. F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Opt. Express 23(21), 27204–27212 (2015).
    [Crossref] [PubMed]
  11. Q. He, S. Sun, S. Xiao, and L. Zhou, “High-Efficiency Metasurfaces: Principles, Realizations, and Applications,” Adv. Opt. Mater. 6(19), 1800415 (2018).
    [Crossref]
  12. X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
    [Crossref] [PubMed]
  13. W. Liu, S. Chen, Z. Li, H. Cheng, P. Yu, J. Li, and J. Tian, “Realization of broadband cross-polarization conversion in transmission mode in the terahertz region using a single-layer metasurface,” Opt. Lett. 40(13), 3185–3188 (2015).
    [Crossref] [PubMed]
  14. H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
    [Crossref]
  15. H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
    [Crossref]
  16. P. Y. Han, G. C. Cho, and X. C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,” Opt. Lett. 25(4), 242–244 (2000).
    [Crossref] [PubMed]
  17. Z. D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
    [Crossref]
  18. M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, “3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz,” Opt. Express 24(25), 28968–28976 (2016).
    [Crossref] [PubMed]
  19. X. Wei, C. Liu, L. Niu, Z. Zhang, K. Wang, Z. Yang, and J. Liu, “Generation of arbitrary order Bessel beams via 3D printed axicons at the terahertz frequency range,” Appl. Opt. 54(36), 10641–10649 (2015).
    [Crossref] [PubMed]
  20. Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
    [Crossref]
  21. A. D. Squires, E. Constable, and R. A. Lewis, “3D Printed Terahertz Diffraction Gratings And Lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
    [Crossref]
  22. J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
    [Crossref]
  23. A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
    [Crossref]
  24. G. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006–2015 (1990).
    [Crossref]
  25. J.-B. Masson and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Lett. 31(2), 265–267 (2006).
    [Crossref] [PubMed]

2018 (4)

Q. He, S. Sun, S. Xiao, and L. Zhou, “High-Efficiency Metasurfaces: Principles, Realizations, and Applications,” Adv. Opt. Mater. 6(19), 1800415 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

2016 (3)

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, “3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz,” Opt. Express 24(25), 28968–28976 (2016).
[Crossref] [PubMed]

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

2015 (5)

2014 (1)

2013 (2)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

2010 (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

2007 (1)

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

2006 (1)

2004 (1)

J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362(1815), 199 (2004).

2003 (1)

Z. D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
[Crossref]

2002 (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

2000 (1)

1995 (1)

1990 (1)

1987 (1)

H. Rubens and E. F. Nichols, “Heat rays of great wave length,” Phys. Rev. 4(4), 314–323 (1987).

Abbott, D.

Arnone, D. D.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Balzer, J. C.

Bastian, M.

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

Baudrit, B.

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

Beltrán-Mejía, F.

Bhaskaran, M.

Busch, S. F.

Cao, W.

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

Chamberlain, J. M.

J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362(1815), 199 (2004).

Chang, S.

Changming Liu, C. L.

Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
[Crossref]

Chen, H.-T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, S.

Cheng, H.

Cho, G. C.

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Colburn, S.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

Cole, B. E.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Constable, E.

A. D. Squires, E. Constable, and R. A. Lewis, “3D Printed Terahertz Diffraction Gratings And Lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Deng, D.

Dodson, C. M.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

Dong, B.

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

Fan, F.

Fattinger, C.

Federici, J.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Fryett, T. K.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

Fumeaux, C.

Gallot, G.

Gospodaric, J.

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Grischkowsky, G. D.

Gu, J.

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Gutruf, P.

Han, J.

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Han, P. Y.

He, Q.

Q. He, S. Sun, S. Xiao, and L. Zhou, “High-Efficiency Metasurfaces: Principles, Realizations, and Applications,” Adv. Opt. Mater. 6(19), 1800415 (2018).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Hu, B. B.

Hu, C.

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

Huber, C.

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

Jahn, D.

Jinsong Liu, J. L.

Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
[Crossref]

Jördens, C.

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

Keiding, S.

Kejia Wang, K. W.

Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
[Crossref]

Koch, M.

M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, “3D printed dielectric rectangular waveguides, splitters and couplers for 120 GHz,” Opt. Express 24(25), 28968–28976 (2016).
[Crossref] [PubMed]

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

Krumbholz, N.

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

Kuzmenko, A.

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

Lewis, R. A.

A. D. Squires, E. Constable, and R. A. Lewis, “3D Printed Terahertz Diffraction Gratings And Lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Li, J.

Li, S.

Li, Y.

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

Li, Z.

Linfield, E. H.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Liu, C.

Liu, J.

Liu, W.

Majumdar, A.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

Masson, J.-B.

Moeller, L.

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

Nichols, E. F.

H. Rubens and E. F. Nichols, “Heat rays of great wave length,” Phys. Rev. 4(4), 314–323 (1987).

Niu, L.

Niu, T.

Nuss, M. C.

Ouyang, C.

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Pepper, M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Pimenov, A.

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

Pye, R. J.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Rehn, A.

Reissman, T.

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Rotter, S.

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

Rubens, H.

H. Rubens and E. F. Nichols, “Heat rays of great wave length,” Phys. Rev. 4(4), 314–323 (1987).

Squires, A. D.

A. D. Squires, E. Constable, and R. A. Lewis, “3D Printed Terahertz Diffraction Gratings And Lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

Sriram, S.

Suess, D.

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

Sun, C.

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

Sun, S.

Q. He, S. Sun, S. Xiao, and L. Zhou, “High-Efficiency Metasurfaces: Principles, Realizations, and Applications,” Adv. Opt. Mater. 6(19), 1800415 (2018).
[Crossref]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Tian, C.

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Tian, J.

Tian, Z.

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Trivedi, R.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

Upadhyay, A.

van Exter, M.

Wallace, V. P.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Wang, K.

Wang, N.

Wang, Q.

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Wei, M.

Wei, X.

Weidenbach, M.

Wietzke, S.

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

Withayachumnankul, W.

Woodward, R. M.

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Xiao, S.

Q. He, S. Sun, S. Xiao, and L. Zhou, “High-Efficiency Metasurfaces: Principles, Realizations, and Applications,” Adv. Opt. Mater. 6(19), 1800415 (2018).
[Crossref]

Xu, Q.

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

Xu, Y.

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

Xuli Wei, X. W.

Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
[Crossref]

Yang, Z.

Yu, P.

Yue, W.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhan, A.

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

Zhang, H.

Zhang, S.

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zhang, W.

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zhang, X.

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

H. Zhang, X. Zhang, Q. Xu, Q. Wang, Y. Xu, M. Wei, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime,” Photon. Res. 6(1), 24–29 (2018).
[Crossref]

F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Opt. Express 23(21), 27204–27212 (2015).
[Crossref] [PubMed]

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Zhang, X. C.

Zhang, Z.

Zhengang Yang, Z. Y.

Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
[Crossref]

Zhongqi Zhang, Z. Z.

Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
[Crossref]

Zhou, F.

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

Zhou, L.

Q. He, S. Sun, S. Xiao, and L. Zhou, “High-Efficiency Metasurfaces: Principles, Realizations, and Applications,” Adv. Opt. Mater. 6(19), 1800415 (2018).
[Crossref]

Zimdars, Z. D.

Z. D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
[Crossref]

ACS Photonics (1)

A. Zhan, S. Colburn, R. Trivedi, T. K. Fryett, C. M. Dodson, and A. Majumdar, “Low-Contrast Dielectric Metasurface Optics,” ACS Photonics 3(2), 209–214 (2016).
[Crossref]

Adv. Mater. (1)

X. Zhang, Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, “Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities,” Adv. Mater. 25(33), 4567–4572 (2013).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

H. Zhang, X. Zhang, Q. Xu, C. Tian, Q. Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, “High-Efficiency Dielectric Metasurfaces for Polarization-Dependent Terahertz Wavefront Manipulation,” Adv. Opt. Mater. 6(1), 1700773 (2018).
[Crossref]

F. Zhou, W. Cao, B. Dong, T. Reissman, W. Zhang, and C. Sun, “Additive Manufacturing of a 3D Terahertz Gradient-Refractive Index Lens,” Adv. Opt. Mater. 4(7), 1034–1040 (2016).
[Crossref]

Q. He, S. Sun, S. Xiao, and L. Zhou, “High-Efficiency Metasurfaces: Principles, Realizations, and Applications,” Adv. Opt. Mater. 6(19), 1800415 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. Gospodaric, A. Kuzmenko, A. Pimenov, C. Huber, D. Suess, S. Rotter, and A. Pimenov, “3D-printed phase waveplates for THz beam shaping,” Appl. Phys. Lett. 112(22), 221104 (2018).
[Crossref]

Chin. Opt. Lett. (1)

Z. Z. Zhongqi Zhang, X. W. Xuli Wei, C. L. Changming Liu, K. W. Kejia Wang, J. L. Jinsong Liu, and Z. Y. Zhengang Yang, “Rapid fabrication of terahertz lens via three-dimensional printing technology,” Chin. Opt. Lett. 13(2), 22201 (2015).
[Crossref]

J. Appl. Phys. (1)

J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010).
[Crossref]

J. Eur. Opt. Soc. Rap. Pub. (1)

S. Wietzke, C. Jördens, N. Krumbholz, B. Baudrit, M. Bastian, and M. Koch, “Terahertz imaging: a new non-destructive technique for the quality control of plastic weld joints,” J. Eur. Opt. Soc. Rap. Pub. 21 (2007).

J. Infrared Millim. Terahertz Waves (1)

A. D. Squires, E. Constable, and R. A. Lewis, “3D Printed Terahertz Diffraction Gratings And Lenses,” J. Infrared Millim. Terahertz Waves 36(1), 72–80 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (4)

Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences (1)

J. M. Chamberlain, “Where optics meets electronics: recent progress in decreasing the terahertz gap,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 362(1815), 199 (2004).

Photon. Res. (1)

Phys. Med. Biol. (1)

R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue,” Phys. Med. Biol. 47(21), 3853–3863 (2002).
[Crossref] [PubMed]

Phys. Rev. (1)

H. Rubens and E. F. Nichols, “Heat rays of great wave length,” Phys. Rev. 4(4), 314–323 (1987).

Proc. SPIE (1)

Z. D. Zimdars, “Fiber-pigtailed terahertz time-domain spectroscopy instrumentation for package inspection and security imaging,” Proc. SPIE 5070, 108–116 (2003).
[Crossref]

Science (1)

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of a dielectric grating. (b) Top view and (c) side view of the 3D-printed HWP sample.
Fig. 2
Fig. 2 Simulated (a) T and (b) PCR and (c) T•PCR as functions of duty and H, with P and h both kept as 2 mm.
Fig. 3
Fig. 3 (a) Schematic plot and (b) photograph of the experimental setup. P1 and P2 are polarizers, and L is a collimating lens.
Fig. 4
Fig. 4 (a) Intensity distribution without and (b) with the HWP. (c) Transmission with different polarizer angles. The blue and the red lines are from perfect y and x polarized beam. The blue and red dots are the measured result without and with the HWP.
Fig. 5
Fig. 5 (a) T•PCR over frequency in the designed HWP. Transmittance spectrum for (b) TE and (c) TM mode.
Fig. 6
Fig. 6 (a) Effective mode index of TE1 and TE2 over frequency. (b) Amplitude and phase retardation of TE1 and TE2 at the grating-air interface. (c) and (d) Same information as (a) and (b) for TM polarization.
Fig. 7
Fig. 7 Transmittance spectrum of TM mode when H is 2 mm, 8 mm and 12 mm, respectively.
Fig. 8
Fig. 8 (a) Amplitude of TE and TM mode and their phase delay when the grating geometry parameters are P = 2.3 mm, duty = 0.4, H = 12 mm, h = 1.3 mm. (b) Transmittance spectrum of cross and co-polarized beam intensities. (c) PCR over frequency.
Fig. 9
Fig. 9 (a) Transmittance spectrum when the scaled coefficient is 1.07, 1, and 0.95. (b) Photograph of the 5 gratings with different scaling coefficients. (c) Cross and co-polarized beam transmittance (d) PCR by zooming the geometry with different scaling coefficients. The curves are simulation results and the dots with error bar are experimental data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = T c r o s s + T c o
P C R = T c r o s s / ( T c r o s s + T c o )
T c r o s s = 1 4 | t T E t T M | 2
T c o = 1 4 | t T E + t T M | 2

Metrics