Abstract

Making use of digital filtering, drop RF signal-driven intensity modulation and passive optical coupling, DSP-enabled flexible ROADMs, termed soft-ROADMs, are experimentally demonstrated in real-time, which are free from both optical filters and O-E-O conversions and are inherently transparent to major network design characteristics. In a 4-channel IMDD optical network node incorporating FPGA-based orthogonal digital filter multiplexing, fully real-time soft-ROADM dynamic add and drop operations at both sub-wavelength and spectrally overlapped orthogonal sub-band levels are extensively, experimentally explored, along with their performance robustness against condition variations of practical networks associated with low-cost optical/electrical components. It is shown that the soft-ROADMs introduce optical power penalties as low as 1.4dB for add operation and 2dB for drop operation. For received optical powers fixed at −10dBm, the add operation can tolerate a differential optical input dynamic range of 6.5dB (1.5dB) for sub-wavelength (sub-band) add operation. On the other hand, robust drop operation performances are obtainable over a ~5dB (16°) drop RF signal amplitude (phase) variation range. This work is a significant milestone in demonstrating the technical feasibility of utilising soft-ROADMs to create a programmable networking environment capable of addressing elastic 5G slicing and the SDN paradigm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
OSNR Penalty-Free Add/Drop Performance of DSP-Enabled ROADMs in Coherent Systems

W. Jin, C. F. Zhang, X. L. Zhang, X. Duan, Y. X. Dong, R. P. Giddings, K. Qiu, and J. M. Tang
J. Opt. Commun. Netw. 9(9) 730-738 (2017)

Improved Performance Robustness of DSP-Enabled Flexible ROADMs Free from Optical Filters and O-E-O Conversions

Wei Jin, Chongfu Zhang, Xiao Duan, Mohammad R. Kadhum, Yi X. Dong, Roger P. Giddings, Ning Jiang, Kun Qiu, and J. M. Tang
J. Opt. Commun. Netw. 8(8) 521-529 (2016)

Real-time experimental demonstrations of software reconfigurable optical OFDM transceivers utilizing DSP-based digital orthogonal filters for SDN PONs

X. Duan, R.P. Giddings, M. Bolea, Y. Ling, B. Cao, S. Mansoor, and J.M. Tang
Opt. Express 22(16) 19674-19685 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Senior, P. Kourtessis, and M. Milosavljevic, andW. Lim, “OFDMA-PON for future generation metro-access networks,” in Proc. Photon. Global Conf., Dec. 2012, pp. 1–5.
  2. M. Xia, Y. Owada, M. Inoue, and H. Harai, “Multiple-gateway deployment for wired/wireless converged access networks,” in Proc. IEEE 4th Int. Symp. Adv. Netw. Telecommun. Syst., Dec. 2010, pp. 79–81.
  3. J. I. Kani, S. Kuwano, and J. Terada, “Options for future mobile backhaul and fronthaul,” Opt. Fiber Technol. 26, 42–49 (2015).
    [Crossref]
  4. T. Watanabe, K. Suzuki, T. Goh, K. Hattori, A. Mori, T. Takahashi, T. Sakamoto, K. Morita, S. Sohma, and S. Kamei, “Compact PLCbased transponder aggregator for colorless and directionless ROADM,” presented at the Optical Fiber Communication Conf. Expo., Nat. Fiber Optic Engineers Conf., Los Angeles, CA, USA, Mar. 2011, Paper OTuD3.
    [Crossref]
  5. W. I. Way, “Optimum architecture for M×N multicast switch-based colorless directionless, contentionless, and flexible-grid ROADM,” presented at the Optical Fiber Communication Conf. Expo.,Nat. FiberOptic Engineers Conf., Los Angeles, CA, USA, Mar. 2012, Paper NW3F.5.
    [Crossref]
  6. R. A. Jensen, “Optical switch architectures for emerging colorless/directionless/contentionless ROADM Networks,” presented at the Optical Fiber Communication Conf. Expo., Nat. Fiber Optic Engineers Conf., Los Angeles, CA, USA, Mar. 2011, Paper OThR3.
    [Crossref]
  7. W. I. Way, “Next generation ROADMarchitectures,” presented at the Asia Communications Photonics Conf., Guangzhou, China, Nov. 2012, Paper AS1G.3.
    [Crossref]
  8. M. D. Feuer, S. L. Woodward, P. Palacharla, X. Wang, I. Kim, and D. Bihon, “Intra-node contention in dynamic photonic networks,” J. Lightwave Technol. 29(4), 529–535 (2011).
    [Crossref]
  9. W. I. Way, P. N. Ji, and A. N. Patel, “Wavelength contention-free via optical bypass within a colorless and directionless ROADM [Invited],” J. Opt. Commun. Netw. 5(10), A220–A229 (2013).
    [Crossref]
  10. Z. Shen, H. Hasegawa, K. Sato, T. Tanaka, and A. Hirano, “A novel semi-flexible grid optical path network that utilizes aligned frequency slot arrangement,” presented at the 39th European Conf. Optical Communication, London, U.K., Sep. 2013, Paper We.2.E.2.
  11. S. L. Woodward and M. D. Feuer, “Benefits and requirements of flexiblegrid ROADMs and networks [Invited],” J. Opt. Commun. Netw. 5(10), A19–A27 (2013).
    [Crossref]
  12. W. Jin, X. Duan, M. Bolea, R. Giddings, N. Jiang, C. Zhang, K. Qiu, and J. Tang, “New ROADMs with DSP-Enabled Dynamic and Flexible Operations for Elastic Optical Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.50.
    [Crossref]
  13. W. Jin, X. Duan, Y. Dong, B. Cao, R. P. Giddings, C. Zhang, K. Qiu, and J. M. Tang, “DSP-Enabled Flexible ROADMs Without Optical Filters and O-E-O Conversions,” J. Lightwave Technol. 33(19), 4124–4131 (2015).
    [Crossref]
  14. W. Jin, C. Zhang, X. Duan, M. R. Kadhum, Y. X. Dong, R. P. Giddings, N. Jiang, K. Qiu, and J. M. Tang, “Improved Performance Robustness of DSP-Enabled Flexible ROADMs Free from Optical Filters and O-E-O Conversions,” J. Opt. Commun. Netw. 8(8), 521–529 (2016).
    [Crossref]
  15. X. Duan, M. L. Deng, W. Jin, R. P. Giddings, S. Mansoor, and J. M. Tang, “Experimental Demonstration of DSP-enabled Drop Operations of Flexible ROADMs Excluding Optical Filters and O-E-O Conversions,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper M3E.4.
    [Crossref]
  16. E. Al-Rawachy, R. P. Giddings, and J. M. Tang, “Experimental Demonstration of Real-Time Add/Drop Operations in DSP-enabled Flexible ROADMs for Converging Fixed and Mobile Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W2A.33.
    [Crossref]
  17. M. Bolea, R. P. Giddings, and J. M. Tang, “Digital orthogonal filter-enabled optical OFDM channel multiplexing for software-reconfigurable elastic PONs,” J. Lightwave Technol. 32(6), 1200–1206 (2014).
    [Crossref]
  18. M. Bolea, R. P. Giddings, M. Bouich, C. Aupetit-Berthelemot, and J. M. Tang, “Digital Filter Multiple Access PONs With DSP-Enabled Software Reconfigurability,” J. Opt. Commun. Netw. 7(4), 215–222 (2015).
    [Crossref]
  19. Y. Li, W. Mo, S. Zhu, Y. Shen, J. Yu, P. Samadi, K. Bergman, and D. C. Kilper, “tSDX: enabling impairment-aware all-optical inter-domain exchange,” J. Lightwave Technol. 36(1), 142–154 (2017).
    [Crossref]
  20. Y. Li, et al., “Transparent software-defined exchange (tSDX) with real-time OSNR-based impairment-aware wavelength path provisioning across multi-domain optical networks,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.2.
  21. R. M. Dorward, M.J. Anderson, R. P. Giddings, “Technical and market feasibility of high-speed software-reconfigurable OOFDM/DFMA-based Optical transceivers for Next Generation Access Network PONs,” ICTON 2016; Paper Th.B1.4.
  22. X. Duan, R. P. Giddings, M. Bolea, Y. Ling, B. Cao, S. Mansoor, and J. M. Tang, “Real-time experimental demonstrations of software reconfigurable optical OFDM transceivers utilizing DSP-based digital orthogonal filters for SDN PONs,” Opt. Express 22(16), 19674–19685 (2014).
    [Crossref] [PubMed]
  23. X. Q. Jin and J. M. Tang, “Experimental Investigations of Wavelength Spacing and Colorlessness of RSOA-Based ONUs in Real-Time Optical OFDMA PONs,” J. Lightwave Technol. 30(16), 2603–2609 (2012).
    [Crossref]
  24. X. Duan, R. P. Giddings, S. Mansoor, and J. M. Tang, “Performance Tolerance of IMDD DFMA PONs to Channel Frequency Response Roll-Off,” IEEE Photonics Technol. Lett. 29(19), 1655–1658 (2017).
    [Crossref]
  25. E. Al-Rawachy, R. P. Giddings, and J. M. Tang, “Experimental demonstration of a DSP-based cross-channel interference cancellation technique for application in digital filter multiple access PONs,” Opt. Express 25(4), 3850–3862 (2017).
    [Crossref] [PubMed]
  26. A. J. Lowery, “Improving Sensitivity and Spectral Efficiency in Direct-Detection Optical OFDM Systems,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMM4.
    [Crossref]

2017 (3)

2016 (1)

2015 (3)

2014 (2)

2013 (2)

2012 (1)

2011 (1)

Al-Rawachy, E.

Aupetit-Berthelemot, C.

Bergman, K.

Bihon, D.

Bolea, M.

Bouich, M.

Cao, B.

Dong, Y.

Dong, Y. X.

Duan, X.

Feuer, M. D.

Giddings, R. P.

X. Duan, R. P. Giddings, S. Mansoor, and J. M. Tang, “Performance Tolerance of IMDD DFMA PONs to Channel Frequency Response Roll-Off,” IEEE Photonics Technol. Lett. 29(19), 1655–1658 (2017).
[Crossref]

E. Al-Rawachy, R. P. Giddings, and J. M. Tang, “Experimental demonstration of a DSP-based cross-channel interference cancellation technique for application in digital filter multiple access PONs,” Opt. Express 25(4), 3850–3862 (2017).
[Crossref] [PubMed]

W. Jin, C. Zhang, X. Duan, M. R. Kadhum, Y. X. Dong, R. P. Giddings, N. Jiang, K. Qiu, and J. M. Tang, “Improved Performance Robustness of DSP-Enabled Flexible ROADMs Free from Optical Filters and O-E-O Conversions,” J. Opt. Commun. Netw. 8(8), 521–529 (2016).
[Crossref]

W. Jin, X. Duan, Y. Dong, B. Cao, R. P. Giddings, C. Zhang, K. Qiu, and J. M. Tang, “DSP-Enabled Flexible ROADMs Without Optical Filters and O-E-O Conversions,” J. Lightwave Technol. 33(19), 4124–4131 (2015).
[Crossref]

M. Bolea, R. P. Giddings, M. Bouich, C. Aupetit-Berthelemot, and J. M. Tang, “Digital Filter Multiple Access PONs With DSP-Enabled Software Reconfigurability,” J. Opt. Commun. Netw. 7(4), 215–222 (2015).
[Crossref]

X. Duan, R. P. Giddings, M. Bolea, Y. Ling, B. Cao, S. Mansoor, and J. M. Tang, “Real-time experimental demonstrations of software reconfigurable optical OFDM transceivers utilizing DSP-based digital orthogonal filters for SDN PONs,” Opt. Express 22(16), 19674–19685 (2014).
[Crossref] [PubMed]

M. Bolea, R. P. Giddings, and J. M. Tang, “Digital orthogonal filter-enabled optical OFDM channel multiplexing for software-reconfigurable elastic PONs,” J. Lightwave Technol. 32(6), 1200–1206 (2014).
[Crossref]

Ji, P. N.

Jiang, N.

Jin, W.

Jin, X. Q.

Kadhum, M. R.

Kani, J. I.

J. I. Kani, S. Kuwano, and J. Terada, “Options for future mobile backhaul and fronthaul,” Opt. Fiber Technol. 26, 42–49 (2015).
[Crossref]

Kilper, D. C.

Kim, I.

Kourtessis, P.

J. M. Senior, P. Kourtessis, and M. Milosavljevic, andW. Lim, “OFDMA-PON for future generation metro-access networks,” in Proc. Photon. Global Conf., Dec. 2012, pp. 1–5.

Kuwano, S.

J. I. Kani, S. Kuwano, and J. Terada, “Options for future mobile backhaul and fronthaul,” Opt. Fiber Technol. 26, 42–49 (2015).
[Crossref]

Li, Y.

Ling, Y.

Mansoor, S.

Milosavljevic, M.

J. M. Senior, P. Kourtessis, and M. Milosavljevic, andW. Lim, “OFDMA-PON for future generation metro-access networks,” in Proc. Photon. Global Conf., Dec. 2012, pp. 1–5.

Mo, W.

Palacharla, P.

Patel, A. N.

Qiu, K.

Samadi, P.

Senior, J. M.

J. M. Senior, P. Kourtessis, and M. Milosavljevic, andW. Lim, “OFDMA-PON for future generation metro-access networks,” in Proc. Photon. Global Conf., Dec. 2012, pp. 1–5.

Shen, Y.

Tang, J. M.

E. Al-Rawachy, R. P. Giddings, and J. M. Tang, “Experimental demonstration of a DSP-based cross-channel interference cancellation technique for application in digital filter multiple access PONs,” Opt. Express 25(4), 3850–3862 (2017).
[Crossref] [PubMed]

X. Duan, R. P. Giddings, S. Mansoor, and J. M. Tang, “Performance Tolerance of IMDD DFMA PONs to Channel Frequency Response Roll-Off,” IEEE Photonics Technol. Lett. 29(19), 1655–1658 (2017).
[Crossref]

W. Jin, C. Zhang, X. Duan, M. R. Kadhum, Y. X. Dong, R. P. Giddings, N. Jiang, K. Qiu, and J. M. Tang, “Improved Performance Robustness of DSP-Enabled Flexible ROADMs Free from Optical Filters and O-E-O Conversions,” J. Opt. Commun. Netw. 8(8), 521–529 (2016).
[Crossref]

W. Jin, X. Duan, Y. Dong, B. Cao, R. P. Giddings, C. Zhang, K. Qiu, and J. M. Tang, “DSP-Enabled Flexible ROADMs Without Optical Filters and O-E-O Conversions,” J. Lightwave Technol. 33(19), 4124–4131 (2015).
[Crossref]

M. Bolea, R. P. Giddings, M. Bouich, C. Aupetit-Berthelemot, and J. M. Tang, “Digital Filter Multiple Access PONs With DSP-Enabled Software Reconfigurability,” J. Opt. Commun. Netw. 7(4), 215–222 (2015).
[Crossref]

M. Bolea, R. P. Giddings, and J. M. Tang, “Digital orthogonal filter-enabled optical OFDM channel multiplexing for software-reconfigurable elastic PONs,” J. Lightwave Technol. 32(6), 1200–1206 (2014).
[Crossref]

X. Duan, R. P. Giddings, M. Bolea, Y. Ling, B. Cao, S. Mansoor, and J. M. Tang, “Real-time experimental demonstrations of software reconfigurable optical OFDM transceivers utilizing DSP-based digital orthogonal filters for SDN PONs,” Opt. Express 22(16), 19674–19685 (2014).
[Crossref] [PubMed]

X. Q. Jin and J. M. Tang, “Experimental Investigations of Wavelength Spacing and Colorlessness of RSOA-Based ONUs in Real-Time Optical OFDMA PONs,” J. Lightwave Technol. 30(16), 2603–2609 (2012).
[Crossref]

Terada, J.

J. I. Kani, S. Kuwano, and J. Terada, “Options for future mobile backhaul and fronthaul,” Opt. Fiber Technol. 26, 42–49 (2015).
[Crossref]

Wang, X.

Way, W. I.

Woodward, S. L.

Yu, J.

Zhang, C.

Zhu, S.

IEEE Photonics Technol. Lett. (1)

X. Duan, R. P. Giddings, S. Mansoor, and J. M. Tang, “Performance Tolerance of IMDD DFMA PONs to Channel Frequency Response Roll-Off,” IEEE Photonics Technol. Lett. 29(19), 1655–1658 (2017).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (4)

Opt. Express (2)

Opt. Fiber Technol. (1)

J. I. Kani, S. Kuwano, and J. Terada, “Options for future mobile backhaul and fronthaul,” Opt. Fiber Technol. 26, 42–49 (2015).
[Crossref]

Other (13)

T. Watanabe, K. Suzuki, T. Goh, K. Hattori, A. Mori, T. Takahashi, T. Sakamoto, K. Morita, S. Sohma, and S. Kamei, “Compact PLCbased transponder aggregator for colorless and directionless ROADM,” presented at the Optical Fiber Communication Conf. Expo., Nat. Fiber Optic Engineers Conf., Los Angeles, CA, USA, Mar. 2011, Paper OTuD3.
[Crossref]

W. I. Way, “Optimum architecture for M×N multicast switch-based colorless directionless, contentionless, and flexible-grid ROADM,” presented at the Optical Fiber Communication Conf. Expo.,Nat. FiberOptic Engineers Conf., Los Angeles, CA, USA, Mar. 2012, Paper NW3F.5.
[Crossref]

R. A. Jensen, “Optical switch architectures for emerging colorless/directionless/contentionless ROADM Networks,” presented at the Optical Fiber Communication Conf. Expo., Nat. Fiber Optic Engineers Conf., Los Angeles, CA, USA, Mar. 2011, Paper OThR3.
[Crossref]

W. I. Way, “Next generation ROADMarchitectures,” presented at the Asia Communications Photonics Conf., Guangzhou, China, Nov. 2012, Paper AS1G.3.
[Crossref]

Z. Shen, H. Hasegawa, K. Sato, T. Tanaka, and A. Hirano, “A novel semi-flexible grid optical path network that utilizes aligned frequency slot arrangement,” presented at the 39th European Conf. Optical Communication, London, U.K., Sep. 2013, Paper We.2.E.2.

J. M. Senior, P. Kourtessis, and M. Milosavljevic, andW. Lim, “OFDMA-PON for future generation metro-access networks,” in Proc. Photon. Global Conf., Dec. 2012, pp. 1–5.

M. Xia, Y. Owada, M. Inoue, and H. Harai, “Multiple-gateway deployment for wired/wireless converged access networks,” in Proc. IEEE 4th Int. Symp. Adv. Netw. Telecommun. Syst., Dec. 2010, pp. 79–81.

X. Duan, M. L. Deng, W. Jin, R. P. Giddings, S. Mansoor, and J. M. Tang, “Experimental Demonstration of DSP-enabled Drop Operations of Flexible ROADMs Excluding Optical Filters and O-E-O Conversions,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper M3E.4.
[Crossref]

E. Al-Rawachy, R. P. Giddings, and J. M. Tang, “Experimental Demonstration of Real-Time Add/Drop Operations in DSP-enabled Flexible ROADMs for Converging Fixed and Mobile Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2018), paper W2A.33.
[Crossref]

W. Jin, X. Duan, M. Bolea, R. Giddings, N. Jiang, C. Zhang, K. Qiu, and J. Tang, “New ROADMs with DSP-Enabled Dynamic and Flexible Operations for Elastic Optical Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Th2A.50.
[Crossref]

A. J. Lowery, “Improving Sensitivity and Spectral Efficiency in Direct-Detection Optical OFDM Systems,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OMM4.
[Crossref]

Y. Li, et al., “Transparent software-defined exchange (tSDX) with real-time OSNR-based impairment-aware wavelength path provisioning across multi-domain optical networks,” in Optical Fiber Communication Conference Postdeadline Papers, OSA Technical Digest (online) (Optical Society of America, 2017), paper Th5A.2.

R. M. Dorward, M.J. Anderson, R. P. Giddings, “Technical and market feasibility of high-speed software-reconfigurable OOFDM/DFMA-based Optical transceivers for Next Generation Access Network PONs,” ICTON 2016; Paper Th.B1.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 DSP enabled soft-ROADMs in a cloud access network.
Fig. 2
Fig. 2 Block diagram of basic soft-ROADM architecture.
Fig. 3
Fig. 3 Add operations with example signal spectra. (a) Sub-B add operation with single add port, (b) Sub-λ add operation with multiple add ports.
Fig. 4
Fig. 4 Soft-ROADM drop element structure with example input and output signal spectra relative to carrier. (TSB: Targeted sub-band. RUSB: Ruined and unrecoverable sub-bands)
Fig. 5
Fig. 5 Shaping and matching filter double-sided amplitude responses (a) BB-I, (b) BB-Q, (c) PB-I, and (d) PB-Q.
Fig. 6
Fig. 6 Soft-ROADM add and drop operations experimental system setup. (a) transmitter system for add operations, (b) transmitter system for drop operation, (c) add element, (d) drop element, and (e) receiver system. DL: Delay line; LPF: low-pass filter; LO: local oscillator; EML: electro-absorption modulated laser; TEC: thermo-electric controller; MZM: Mach-Zehnder modulator; VOA: variable optical attenuator; OBPF: optical bandpass filter; TLS: tunable laser source; PC: polarization controller; PIN + TIA: photodetector with integrated transimpedance amplifier; EDFA: erbium doped fiber amplifier.
Fig. 7
Fig. 7 Representative Sub-λ and Sub-B signal spectra measured before and after the soft-ROADM add/drop operations.
Fig. 8
Fig. 8 BER curves for (a),(b) each Sub-B before/after Sub-λ add, (c),(d) each Sub-B before/after Sub-B add, (d) before/after the drop operation; Example subcarrier constellations at −18dBm for the BB-I (upper) and PB-I (lower) after (f) Sub-λ add, (g) after Sub-B add; Example subcarrier constellations at −14dBm after the drop operation for (h) PB-I (upper) and PB-Q (lower).
Fig. 9
Fig. 9 Differential optical input dynamic range at −10dBm ROP for power variation of: (a) BB Sub-λ (b) PB Sub-λ (c) BB-Q/PB-I Sub-B (d) BB-I/PB-Q Sub-B.
Fig. 10
Fig. 10 Variation in soft-ROADM dropped signal BERs (a) as a function of drop RF signal amplitude (b) as a function of drop RF signal phase offset.

Tables (2)

Tables Icon

Table 1 Transceiver and system parameters

Tables Icon

Table 2 Add operation penalties (dB)

Metrics