Abstract

We propose a DSP scheme with soft-output maximum likelihood sequence equalizer (sMLSE) and low-overhead (8.51%) low density parity check (LDPC) code for C-band PAM-4 transmission. In order to apply LDPC code in conjunction with MLSE, the conventional hard-output MLSE is modified to have a soft-output value by using the Max-log BCJR algorithm. The feasibility of this approach is experimentally investigated in a 56 Gb/s C-band PAM-4 system. In order to investigate the advantages of the proposed scheme, we compare the performance of the sMLSE-LDPC code to that of MLSE-RS code. Relatively, additional OSNR gain of 0.6 dB ~2.1 dB is achieved. The variation of the relative OSNR gain depends on the burst errors, which originate from the power fading effect. By using an interleaver that spreads burst errors in time, one can see that the relative OSNR gain is improved as 1.6 dB ~2.1 dB. Using the proposed scheme with the interleaver, one can see that the 30 km transmission of 56 Gb/s PAM-4 in the C-band was experimentally demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental study of non-binary LDPC coding for long-haul coherent optical QPSK transmissions

Shaoliang Zhang, Murat Arabaci, Fatih Yaman, Ivan B. Djordjevic, Lei Xu, Ting Wang, Yoshihisa Inada, Takaaki Ogata, and Yasuhiro Aoki
Opt. Express 19(20) 19042-19049 (2011)

45 Gb/s low complexity optical front-end for soft-decision LDPC decoders

Meer Nazmus Sakib, Monireh Moayedi, Warren J. Gross, and Odile Liboiron-Ladouceur
Opt. Express 20(16) 18336-18347 (2012)

C-band 56-Gb/s PAM4 transmission over 80-km SSMF with electrical equalization at receiver

Xizi Tang, Shuangyue Liu, Zhongliang Sun, Han Cui, Xuekai Xu, Jia Qi, Mengqi Guo, Yueming Lu, and Yaojun Qiao
Opt. Express 27(18) 25708-25717 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Kikuchi and R. Hirai, “Intensity-modulated / direct-detecion (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbits/s/λ optical short-reach transmission,” In Proc. of European Conference on Optical Communication (ECOC), (2014).
  2. J. Y. Huh and J. K. Lee, “Pseudo optical PAM‐N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
    [Crossref]
  3. J. Huo, X. Zhou, K. P. Zhong, J. Tu, J. Yuan, C. Guo, K. Long, C. Yu, A. P. T. Lau, and C. Lu, “Transmitter and receiver DSP for 112 Gbit/s PAM-4 amplifier-less transmissions using 25G-class EML and APD,” Opt. Express 26(18), 22673–22686 (2018).
    [Crossref] [PubMed]
  4. N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Proc. of optical fiber conference (OFC), (2016).
    [Crossref]
  5. J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
    [Crossref]
  6. H. Li, R. Hu, Q. Yang, M. Luo, Z. He, P. Jiang, Y. Liu, X. Li, and S. Yu, “Improving performance of mobile fronthaul architecture employing high order delta-sigma modulator with PAM-4 format,” Opt. Express 25(1), 1–9 (2017).
    [Crossref] [PubMed]
  7. F. Karinou, C. Prodaniuc, N. Stojanovic, and M. Ortsiefer, “A. daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
    [Crossref]
  8. S.-R. Moon, H.-S. Kang, H. Y. Rha, and J. K. Lee, “58.125 Gb/s 80 km transmission of PAM-4 signal with improved dispersion tolerance,” in Proc. of Optoelectronics and communications conference (OECC), (2018).
  9. Q. Zhang, N. Stojanovic, J. Wei, and C. Xie, “Single-lane 180 Gb/s DB-PAM-4-signal transmission over an 80 km DCF-free SSMF link,” Opt. Lett. 42(4), 883–886 (2017).
    [Crossref] [PubMed]
  10. A. Agata and Y. Horiuchi, “ROSA-based 10G WDM PON using FEC and MLSE Equalizers,” in Proc. of optical fiber conference (OFC), (2010).
  11. I. B. Djordjevic and B. Vasic, “Nonlinear BCJR equalizer for suppression of intrachannel nonlinearities in 40 Gb/s optical communications systems,” Opt. Express 14(11), 4625–4635 (2006).
    [Crossref] [PubMed]
  12. G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms for “Turbo-Detection,” in Proc.Intern. Conf. on Telecomm., (1994)
  13. IEEE Standard for Ethernet Amendment 2: Physical Layer Specifications and Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables, IEEE Standard 802.3bj-2014 (Amendment to IEEE Standard 802.3–2012 as amended by IEEE Standard 802.3bk-2013), IEEE Computer Society, (2014).
  14. Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
    [Crossref]
  15. P. Poggiolini, G. Bosco, Y. Benlachtar, S. J. Savory, P. Bayvel, R. I. Killey, and J. Prat, “Long-haul 10 Gbit/s linear and non-linear IMDD transmission over uncompensated standard fiber using a SQRT-metric MLSE receiver,” Opt. Express 16(17), 12919–12936 (2008).
    [Crossref] [PubMed]
  16. J. Poirrier, “FEC operation in combination with electronic dispersion compensation,” in Proc. of Optical Fiber Conference (OFC), (2008).
    [Crossref]
  17. F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
    [Crossref]

2018 (2)

J. Huo, X. Zhou, K. P. Zhong, J. Tu, J. Yuan, C. Guo, K. Long, C. Yu, A. P. T. Lau, and C. Lu, “Transmitter and receiver DSP for 112 Gbit/s PAM-4 amplifier-less transmissions using 25G-class EML and APD,” Opt. Express 26(18), 22673–22686 (2018).
[Crossref] [PubMed]

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

2017 (2)

2015 (2)

J. Y. Huh and J. K. Lee, “Pseudo optical PAM‐N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

F. Karinou, C. Prodaniuc, N. Stojanovic, and M. Ortsiefer, “A. daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

2008 (1)

2007 (1)

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

2006 (1)

1993 (1)

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Abdel-Ghaffar, K.

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

Bauch, G.

G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms for “Turbo-Detection,” in Proc.Intern. Conf. on Telecomm., (1994)

Bayvel, P.

Benlachtar, Y.

Bosco, G.

Chang, S. H.

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

Devaux, F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Djordjevic, I. B.

Franz, V.

G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms for “Turbo-Detection,” in Proc.Intern. Conf. on Telecomm., (1994)

Guo, C.

He, Z.

Hu, R.

Huh, J. Y.

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

J. Y. Huh and J. K. Lee, “Pseudo optical PAM‐N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

Huo, J.

Jiang, P.

Kang, S.-K.

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

Karinou, F.

F. Karinou, C. Prodaniuc, N. Stojanovic, and M. Ortsiefer, “A. daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Kerdiles, J. F.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Killey, R. I.

Kim, K.

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

Lan Lan,

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

Lau, A. P. T.

Lee, J. H.

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

Lee, J. K.

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

J. Y. Huh and J. K. Lee, “Pseudo optical PAM‐N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

Lei Chen,

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

Li, H.

Li, X.

Lingqi Zeng, Y. Y.

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

Liu, Y.

Long, K.

Lu, C.

Luo, M.

Ortsiefer, M.

F. Karinou, C. Prodaniuc, N. Stojanovic, and M. Ortsiefer, “A. daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Poggiolini, P.

Prat, J.

Prodaniuc, C.

F. Karinou, C. Prodaniuc, N. Stojanovic, and M. Ortsiefer, “A. daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Savory, S. J.

Shu Lin,

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

Sorel, Y.

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Stojanovic, N.

Q. Zhang, N. Stojanovic, J. Wei, and C. Xie, “Single-lane 180 Gb/s DB-PAM-4-signal transmission over an 80 km DCF-free SSMF link,” Opt. Lett. 42(4), 883–886 (2017).
[Crossref] [PubMed]

F. Karinou, C. Prodaniuc, N. Stojanovic, and M. Ortsiefer, “A. daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

Tai,

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

Tu, J.

Vasic, B.

Wei, J.

Xie, C.

Yang, Q.

Yu, C.

Yu, S.

Yuan, J.

Zhang, Q.

Zhong, K. P.

Zhou, X.

ETRI J. (1)

J. Y. Huh and J. K. Lee, “Pseudo optical PAM‐N signal using externally modulated lasers,” ETRI J. 37(6), 1120–1128 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Karinou, C. Prodaniuc, N. Stojanovic, and M. Ortsiefer, “A. daly, R. Hohenleitner, B. Kogel, and C. Neumeyr, “Directly PAM-4 modulated 1530-nm VCSEL enabling 56 Gb/s/λ data-center interconnects,” IEEE Photonics Technol. Lett. 27(17), 1872–1875 (2015).
[Crossref]

IEEE Trans. Inf. Theory (1)

Lan Lan, Y. Y. Lingqi Zeng, Tai, Lei Chen, Shu Lin, and K. Abdel-Ghaffar, “Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: a finite field approach,” IEEE Trans. Inf. Theory 53(7), 2429–2458 (2007).
[Crossref]

J. Lightwave Technol. (1)

F. Devaux, Y. Sorel, and J. F. Kerdiles, “Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter,” J. Lightwave Technol. 11(12), 1937–1940 (1993).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

J. H. Lee, S. H. Chang, J. Y. Huh, S.-K. Kang, K. Kim, and J. K. Lee, “EML based real-time 112 Gbit/s (2 × 56.25 Gbit/s) PAM-4 signal transmission in C-band over 80 km SSMF for inter DCI applications,” Opt. Fiber Technol. 45, 141–145 (2018).
[Crossref]

Opt. Lett. (1)

Other (7)

A. Agata and Y. Horiuchi, “ROSA-based 10G WDM PON using FEC and MLSE Equalizers,” in Proc. of optical fiber conference (OFC), (2010).

S.-R. Moon, H.-S. Kang, H. Y. Rha, and J. K. Lee, “58.125 Gb/s 80 km transmission of PAM-4 signal with improved dispersion tolerance,” in Proc. of Optoelectronics and communications conference (OECC), (2018).

N. Kikuchi and R. Hirai, “Intensity-modulated / direct-detecion (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbits/s/λ optical short-reach transmission,” In Proc. of European Conference on Optical Communication (ECOC), (2014).

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Proc. of optical fiber conference (OFC), (2016).
[Crossref]

G. Bauch and V. Franz, “A comparison of soft-in/soft-out algorithms for “Turbo-Detection,” in Proc.Intern. Conf. on Telecomm., (1994)

IEEE Standard for Ethernet Amendment 2: Physical Layer Specifications and Management Parameters for 100 Gb/s Operation Over Backplanes and Copper Cables, IEEE Standard 802.3bj-2014 (Amendment to IEEE Standard 802.3–2012 as amended by IEEE Standard 802.3bk-2013), IEEE Computer Society, (2014).

J. Poirrier, “FEC operation in combination with electronic dispersion compensation,” in Proc. of Optical Fiber Conference (OFC), (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Trellis diagram to calculate probability of states. (a): α k (s), (b): β k (s). Only part of the whole diagram is depicted for simplicity.
Fig. 2
Fig. 2 (a): Decoding performance of low-overhead LDPC decoder. (b): Performance comparison between LDPC code and RS code with similar overhead.
Fig. 3
Fig. 3 Experiment schematics. (a): DSP structure, (b): Transmission setup.
Fig. 4
Fig. 4 Experimental results in back-to-back configuration. (a): Coded BER vs. OSNR. (b): Coded BER vs. Uncoded BER.
Fig. 5
Fig. 5 Experimental results with transmission. (a): Coded BER vs. OSNR. (b): Coded BER vs. Uncoded BER for LDPC code. (c): Coded BER vs. Uncoded BER for RS code.
Fig. 6
Fig. 6 Number of errors and relative OSNR gain as a function of transmission distance.
Fig. 7
Fig. 7 Number of errors with frequency filtering.
Fig. 8
Fig. 8 Structure of de-interleaver.
Fig. 9
Fig. 9 Coded BER vs. uncoded BER with various interleaver size.
Fig. 10
Fig. 10 Experimental results with and without interleaver. (a): Coded BER vs. OSNR at 20 km transmission. (b): Relative OSNR gain vs. transmission distance.
Fig. 11
Fig. 11 (a): Uncoded and coded BER curves vs. OSNR at 30 km transmission. (b): Coded BER vs. uncoded BER at 30 km transmission.

Tables (1)

Tables Icon

Table 1 Comparison of complexities between sMLSE and conventional MLSE

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

LL R msb (k|r)=ln P( u k =3|r)+P( u k =2|r) P( u k =1|r)+P( u k =0|r) LL R lsb (k|r)=ln P( u k =2|r)+P( u k =1|r) P( u k =3|r)+P( u k =0|r) ,
lnP( u k |r)= max s{state with u k } {ln α k (s)+ln β k (s)}
lnγ(s,s,k)= y k y s,s ¯ 2 σ s,s
α k+1 (s)= max s {ln α k (s)+lnγ(s,s,k)}
β k1 (s)= max s {ln β k (s)+lnγ(s,s,k1)}
f null = c 2D λ 2 L (1+2u 2 π arctan(α)) .
L null = 2c D λ 2 B 2 (1+2u 2 π arctan(α)).

Metrics