Abstract

This paper introduces the concept of electromagnetically induced transparency (EIT) into the permittivity extraction of an anisotropic material—nematic liquid crystal (NLC). A novel two-step strategy is presented to extract the complex permittivity of the NLC at the THz band, which evaluates the relative permittivity tensor from the resonant frequencies and then determines the loss tangent from the quality factor Q of the EIT sensor. The proposed method features high accuracy due to the sharp resonance of the EIT sensor and also high robustness to the thickness of the NLC layer because only amplitude rather than phase information of the transmission coefficients is required. The NLC filled EIT sensor shows a sensitivity of 56.8 μm/RIU (the resonance wavelength shift over the refractive index change unit (RIU)) and Figure of Merit (FoM) of 6.92. The uncertainty of the proposed technique in the relative permittivity and loss tangent is 3% and 8.2%, respectively.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal

Ci-Ling Pan, Cho-Fan Hsieh, Ru-Pin Pan, Masaki Tanaka, Fumiaki Miyamaru, Masahiko Tani, and Masanori Hangyo
Opt. Express 13(11) 3921-3930 (2005)

Numerical investigation of metamaterials infiltrated by liquid crystal

Fuli Zhang, Qian Zhao, Davy P. Gaillot, Xiaopeng Zhao, and Didier Lippens
J. Opt. Soc. Am. B 25(11) 1920-1925 (2008)

Reconfigurable coupler-based metallic photonic crystal lens and nematic liquid crystal

Nihal F. F. Areed, Marwa Hussien, and Salah S. A. Obayya
J. Opt. Soc. Am. B 35(10) 2459-2466 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
    [Crossref]
  2. A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
    [Crossref]
  3. C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
    [Crossref]
  4. G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
    [Crossref]
  5. G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
    [Crossref]
  6. W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
    [Crossref]
  7. S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
    [Crossref]
  8. S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
    [Crossref]
  9. B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
    [Crossref]
  10. W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
    [Crossref]
  11. A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
    [Crossref]
  12. S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).
  13. O. Trushkevych, H. Xu, T. Lu, J. A. Zeitler, R. Rungsawang, F. Gölden, N. Collings, and W. A. Crossland, “Broad spectrum measurement of the birefringence of an isothiocyanate based liquid crystal,” Appl. Opt. 49(28), 5212–5216 (2010).
    [Crossref] [PubMed]
  14. O. H. Karabey, Electronic Beam Steering and Polarization Agile Planar Antennas in Liquid Crystal Technology: Chap. I (Springer, 2014).
  15. L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
    [Crossref] [PubMed]
  16. D. C. Zografopoulos, K. P. Prokopidis, R. Dąbrowski, and R. Beccherelli, “Time-domain modeling of dispersive and lossy liquid-crystals for terahertz applications,” Opt. Mater. Express 4(3), 449–457 (2014).
    [Crossref]
  17. K. P. Prokopidis and D. C. Zografopoulos, “Time-domain numerical scheme based on low-order partial-fraction models for the broadband study of frequency-dispersive liquid crystals,” J. Opt. Soc. Am. B 33(4), 622–629 (2016).
    [Crossref]
  18. S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
    [Crossref]
  19. Q. F. Liu, D. Luo, S. X. Li, and Z. Tian, “The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range,” Liq. Cryst. 43(6), 796–802 (2016).
    [Crossref]
  20. L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
    [Crossref]
  21. R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
    [Crossref]
  22. F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
    [Crossref]
  23. F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
    [Crossref]
  24. X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
    [Crossref]
  25. Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
    [Crossref]
  26. “Workflow and Solver Overview-CST Microwave Studio,” CST Corp. Germany. https://www.rose-hulman.edu/class/ee/HTML/ECE340/PDFs/MWS_Tutorials.pdf .
  27. N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
    [Crossref]
  28. Y. Utsumi, T. Kamei, and R. Naito, “Dielectric properties of microstrip-line adaptive liquid crystal devices,” Electron. Commun. Jpn. Part II Electron. 87(10), 13–24 (2004).
    [Crossref]
  29. U. Chodorow, J. Parka, and K. Garbat, “Spectral and photorefractive properties of nematic liquid crystals from the CHBT family in the terahertz range,” Liq. Cryst. 40(8), 1089–1094 (2013).
    [Crossref]
  30. L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 2(3), 739–746 (1996).
    [Crossref]
  31. L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).
  32. C.-Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
    [Crossref] [PubMed]
  33. D. E. Schaub and D. R. Oliver, “A Circular Patch Resonator for the Measurement of Microwave Permittivity of Nematic Liquid Crystal,” IEEE Trans. Microw. Theory Tech. 59(7), 1855–1862 (2011).
    [Crossref]

2017 (3)

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

2016 (4)

K. P. Prokopidis and D. C. Zografopoulos, “Time-domain numerical scheme based on low-order partial-fraction models for the broadband study of frequency-dispersive liquid crystals,” J. Opt. Soc. Am. B 33(4), 622–629 (2016).
[Crossref]

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Q. F. Liu, D. Luo, S. X. Li, and Z. Tian, “The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range,” Liq. Cryst. 43(6), 796–802 (2016).
[Crossref]

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

2015 (2)

S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
[Crossref]

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

2014 (2)

D. C. Zografopoulos, K. P. Prokopidis, R. Dąbrowski, and R. Beccherelli, “Time-domain modeling of dispersive and lossy liquid-crystals for terahertz applications,” Opt. Mater. Express 4(3), 449–457 (2014).
[Crossref]

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

2013 (4)

U. Chodorow, J. Parka, and K. Garbat, “Spectral and photorefractive properties of nematic liquid crystals from the CHBT family in the terahertz range,” Liq. Cryst. 40(8), 1089–1094 (2013).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

2012 (2)

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

2011 (1)

D. E. Schaub and D. R. Oliver, “A Circular Patch Resonator for the Measurement of Microwave Permittivity of Nematic Liquid Crystal,” IEEE Trans. Microw. Theory Tech. 59(7), 1855–1862 (2011).
[Crossref]

2010 (3)

O. Trushkevych, H. Xu, T. Lu, J. A. Zeitler, R. Rungsawang, F. Gölden, N. Collings, and W. A. Crossland, “Broad spectrum measurement of the birefringence of an isothiocyanate based liquid crystal,” Appl. Opt. 49(28), 5212–5216 (2010).
[Crossref] [PubMed]

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

2009 (3)

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

C.-Y. Chen, I. W. Un, N. H. Tai, and T. J. Yen, “Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance,” Opt. Express 17(17), 15372–15380 (2009).
[Crossref] [PubMed]

2008 (1)

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

2007 (1)

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

2005 (1)

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

2004 (1)

Y. Utsumi, T. Kamei, and R. Naito, “Dielectric properties of microstrip-line adaptive liquid crystal devices,” Electron. Commun. Jpn. Part II Electron. 87(10), 13–24 (2004).
[Crossref]

2002 (1)

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

1996 (1)

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Abbott, D.

A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
[Crossref]

Al-Sarawi, S.

A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
[Crossref]

Arrebola, M.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Bai, J.

Bain, M.

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

Baine, P.

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Barba, M.

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

Beccherelli, R.

Bildik, S.

S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
[Crossref]

Bulja, S.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).

Cahill, R.

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Cao, J.-X.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Chang, S.

Che, B. J.

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

Chen, C.-Y.

Chen, M.

Chen, Z.

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

Chen, Z. D.

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

Chodorow, U.

U. Chodorow, J. Parka, and K. Garbat, “Spectral and photorefractive properties of nematic liquid crystals from the CHBT family in the terahertz range,” Liq. Cryst. 40(8), 1089–1094 (2013).
[Crossref]

Christie, S.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Collings, N.

Coutaz, J. L.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Crossland, W. A.

Dabrowski, R.

Damm, C.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Day, S. E.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).

Dickie, R.

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Dieter, S.

S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
[Crossref]

Ding, X. M.

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

Dong, L.

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

Dong, Z.-G.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Doumanis, E.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Dudley, R.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Duvillaret, L.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Ebrahimi, A.

A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
[Crossref]

Encinar, J.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Encinar, J. A.

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

Erni, D.

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Fan, F.

Fedotov, V. A.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Fernandez, F. A.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).

Ferrari, P.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Franc, A. L.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Fritzsch, C.

S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
[Crossref]

Fu, J. H.

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

Fu, Y. H.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Fumeaux, C.

A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
[Crossref]

Fusco, V.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Gaebler, A.

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Gamble, H.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Garbat, K.

U. Chodorow, J. Parka, and K. Garbat, “Spectral and photorefractive properties of nematic liquid crystals from the CHBT family in the terahertz range,” Liq. Cryst. 40(8), 1089–1094 (2013).
[Crossref]

Garet, F.

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

Ge, S.

Gehring, R.

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

Goebel, M.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Goelden, F.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Gölden, F.

Goussetis, G.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Grant, N.

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Hu, W.

L. Wang, S. Ge, W. Hu, M. Nakajima, and Y. Lu, “Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber,” Opt. Express 25(20), 23873–23879 (2017).
[Crossref] [PubMed]

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Ismail, Y.

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Jakoby, R.

S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
[Crossref]

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

James, R.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).

Jin, T.

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

Jost, M.

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

Kamei, T.

Y. Utsumi, T. Kamei, and R. Naito, “Dielectric properties of microstrip-line adaptive liquid crystal devices,” Electron. Commun. Jpn. Part II Electron. 87(10), 13–24 (2004).
[Crossref]

Karabey, O. H.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Lee, J. C.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Li, P. F.

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

Li, S. X.

Q. F. Liu, D. Luo, S. X. Li, and Z. Tian, “The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range,” Liq. Cryst. 43(6), 796–802 (2016).
[Crossref]

Li, T.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Lin, X. Q.

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

Linton, D.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Liu, H.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Liu, P. Q.

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

Liu, Q. F.

Q. F. Liu, D. Luo, S. X. Li, and Z. Tian, “The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range,” Liq. Cryst. 43(6), 796–802 (2016).
[Crossref]

Lu, T.

Lu, Y.

Luo, D.

Q. F. Liu, D. Luo, S. X. Li, and Z. Tian, “The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range,” Liq. Cryst. 43(6), 796–802 (2016).
[Crossref]

Lyu, Y. L.

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

Ma, S.

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

Manabe, A.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

Meng, F. Y.

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Menzel, W.

S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
[Crossref]

Mirshekar-Syahkal, D.

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).

Mitchell, N.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Mueller, S.

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Naftaly, M.

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Naito, R.

Y. Utsumi, T. Kamei, and R. Naito, “Dielectric properties of microstrip-line adaptive liquid crystal devices,” Electron. Commun. Jpn. Part II Electron. 87(10), 13–24 (2004).
[Crossref]

Nakajima, M.

Nathrath, N.

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

Oliver, D. R.

D. E. Schaub and D. R. Oliver, “A Circular Patch Resonator for the Measurement of Microwave Permittivity of Nematic Liquid Crystal,” IEEE Trans. Microw. Theory Tech. 59(7), 1855–1862 (2011).
[Crossref]

Papasimakis, N.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Parka, J.

U. Chodorow, J. Parka, and K. Garbat, “Spectral and photorefractive properties of nematic liquid crystals from the CHBT family in the terahertz range,” Liq. Cryst. 40(8), 1089–1094 (2013).
[Crossref]

Penirschke, A.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Perez-Palomino, G.

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

Pistono, E.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Prokopidis, K. P.

Prosvirnin, S. L.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Rea, S.

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

Rehder, G.

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

Rungsawang, R.

Sambles, J. R.

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

Schaub, D. E.

D. E. Schaub and D. R. Oliver, “A Circular Patch Resonator for the Measurement of Microwave Permittivity of Nematic Liquid Crystal,” IEEE Trans. Microw. Theory Tech. 59(7), 1855–1862 (2011).
[Crossref]

Scheele, P.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Tai, N. H.

Tian, Z.

Q. F. Liu, D. Luo, S. X. Li, and Z. Tian, “The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range,” Liq. Cryst. 43(6), 796–802 (2016).
[Crossref]

Toso, G.

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

Trushkevych, O.

Tsai, D. P.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Un, I. W.

Utsumi, Y.

Y. Utsumi, T. Kamei, and R. Naito, “Dielectric properties of microstrip-line adaptive liquid crystal devices,” Electron. Commun. Jpn. Part II Electron. 87(10), 13–24 (2004).
[Crossref]

Wang, L.

Wang, S.-M.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Weickhmann, C.

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

Weil, C.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Withayachumnankul, W.

A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
[Crossref]

Wittek, M.

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

Wu, K.

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Wu, Q.

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

Xu, H.

Yaghmaee, P.

A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
[Crossref]

Yang, F.

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

Yang, G. H.

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

Yang, L.

Yen, T. J.

Yu, J. W.

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

Zeitler, J. A.

Zhang, X.

L. Yang, F. Fan, M. Chen, X. Zhang, J. Bai, and S. Chang, “Magnetically induced birefringence of randomly aligned liquid crystals in the terahertz regime under a weak magnetic field,” Opt. Mater. Express 6(9), 2803–2811 (2016).
[Crossref]

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Zheludev, N. I.

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Zhu, L.

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

Zhu, S.-N.

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

Zografopoulos, D. C.

Appl. Opt. (1)

Appl. Phys. Lett. (3)

F. Yang and J. R. Sambles, “Determination of the microwave permittivities of nematic liquid crystals using a single-metallic slit technique,” Appl. Phys. Lett. 81(11), 2047–2049 (2002).
[Crossref]

Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, S.-N. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[Crossref]

N. Papasimakis, Y. H. Fu, V. A. Fedotov, S. L. Prosvirnin, D. P. Tsai, and N. I. Zheludev, “Metamaterial with polarization and direction insensitive resonant transmission response mimicking electromagnetically induced transparency,” Appl. Phys. Lett. 94(21), 211902 (2009).
[Crossref]

Electron. Commun. Jpn. Part II Electron. (1)

Y. Utsumi, T. Kamei, and R. Naito, “Dielectric properties of microstrip-line adaptive liquid crystal devices,” Electron. Commun. Jpn. Part II Electron. 87(10), 13–24 (2004).
[Crossref]

Electron. Lett. (3)

R. Dickie, P. Baine, R. Cahill, E. Doumanis, G. Goussetis, S. Christie, N. Mitchell, V. Fusco, D. Linton, J. Encinar, R. Dudley, M. Naftaly, M. Arrebola, and G. Toso, “Electrical characterisation of liquid crystals at millimetre wavelengths using frequency selective surfaces,” Electron. Lett. 48(11), 611–612 (2012).
[Crossref]

C. Weickhmann, N. Nathrath, R. Gehring, A. Gaebler, M. Jost, and R. Jakoby, “Recent measurements of compact electronically tunable liquid crystal phase shifter in rectangular waveguide topology,” Electron. Lett. 49(21), 1345–1347 (2013).
[Crossref]

F. Goelden, A. Gaebler, M. Goebel, A. Manabe, S. Mueller, and R. Jakoby, “Tunable liquid crystal phase shifter for microwave frequencies,” Electron. Lett. 45(13), 686–687 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Duvillaret, F. Garet, and J. L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy,” IEEE J. Quantum Electron. 2(3), 739–746 (1996).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

W. Hu, R. Dickie, R. Cahill, H. Gamble, Y. Ismail, V. Fusco, D. Linton, N. Grant, and S. Rea, “Liquid Crystal Tunable mm Wave Frequency Selective Surface,” IEEE Microw. Wirel. Compon. Lett. 17(9), 667–669 (2007).
[Crossref]

IEEE Sens. J. (1)

X. Q. Lin, Z. Chen, J. W. Yu, P. Q. Liu, P. F. Li, and Z. D. Chen, “An EIT-Based Compact Microwave Sensor With Double Sensing Functions,” IEEE Sens. J. 16(2), 293–298 (2016).
[Crossref]

IEEE Trans. Antenn. Propag. (4)

G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, and M. Bain, “Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100 GHz Using Multiresonant Cells Based on Liquid Crystals,” IEEE Trans. Antenn. Propag. 63(8), 3722–3727 (2015).
[Crossref]

G. Perez-Palomino, P. Baine, R. Dickie, M. Bain, J. A. Encinar, R. Cahill, M. Barba, and G. Toso, “Design and Experimental Validation of Liquid Crystal-Based Reconfigurable Reflectarray Elements With Improved Bandwidth in F-Band,” IEEE Trans. Antenn. Propag. 61(4), 1704–1713 (2013).
[Crossref]

W. Hu, R. Cahill, J. A. Encinar, R. Dickie, H. Gamble, V. Fusco, and N. Grant, “Design and Measurement of Reconfigurable Millimeter Wave Reflectarray Cells With Nematic Liquid Crystal,” IEEE Trans. Antenn. Propag. 56(10), 3112–3117 (2008).
[Crossref]

S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, “Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology,” IEEE Trans. Antenn. Propag. 63(1), 122–132 (2015).
[Crossref]

IEEE Trans. Compon. Packaging Manuf. Technol. (2)

S. Ma, G. H. Yang, D. Erni, F. Y. Meng, L. Zhu, Q. Wu, and J. H. Fu, “Liquid Crystal Leaky-Wave Antennas With Dispersion Sensitivity Enhancement,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(5), 792–801 (2017).
[Crossref]

B. J. Che, T. Jin, D. Erni, F. Y. Meng, Y. L. Lyu, and Q. Wu, “Electrically Controllable Composite Right/Left-Handed Leaky-Wave Antenna Using Liquid Crystals in PCB Technology,” IEEE Trans. Compon. Packaging Manuf. Technol. 7(8), 1331–1342 (2017).
[Crossref]

IEEE Trans. Magn. (1)

L. Zhu, J. H. Fu, F. Y. Meng, X. M. Ding, L. Dong, and Q. Wu, “Detuned magnetic dipoles induced transparency in microstrip line for sensing,” IEEE Trans. Magn. 50(1), 1–4 (2014).

IEEE Trans. Microw. Theory Tech. (5)

D. E. Schaub and D. R. Oliver, “A Circular Patch Resonator for the Measurement of Microwave Permittivity of Nematic Liquid Crystal,” IEEE Trans. Microw. Theory Tech. 59(7), 1855–1862 (2011).
[Crossref]

F. Y. Meng, Q. Wu, D. Erni, K. Wu, and J. C. Lee, “Polarization-Independent Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor,” IEEE Trans. Microw. Theory Tech. 60(10), 3013–3022 (2012).
[Crossref]

A. L. Franc, O. H. Karabey, G. Rehder, E. Pistono, R. Jakoby, and P. Ferrari, “Compact and Broadband Millimeter-Wave Electrically Tunable Phase Shifter Combining Slow-Wave Effect With Liquid Crystal Technology,” IEEE Trans. Microw. Theory Tech. 61(11), 3905–3915 (2013).
[Crossref]

S. Bulja, D. Mirshekar-Syahkal, R. James, S. E. Day, and F. A. Fernandez, “Measurement of Dielectric Properties of Nematic Liquid Crystals at Millimeter Wavelength,” IEEE Trans. Microw. Theory Tech. 58(12), 3493–3501 (2010).

S. Mueller, A. Penirschke, C. Damm, P. Scheele, M. Wittek, C. Weil, and R. Jakoby, “Broad-band microwave characterization of liquid crystals using a temperature-controlled coaxial transmission line,” IEEE Trans. Microw. Theory Tech. 53(6), 1937–1945 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Liq. Cryst. (2)

Q. F. Liu, D. Luo, S. X. Li, and Z. Tian, “The birefringence and extinction coefficient of positive and negative liquid crystals in the terahertz range,” Liq. Cryst. 43(6), 796–802 (2016).
[Crossref]

U. Chodorow, J. Parka, and K. Garbat, “Spectral and photorefractive properties of nematic liquid crystals from the CHBT family in the terahertz range,” Liq. Cryst. 40(8), 1089–1094 (2013).
[Crossref]

Opt. Express (2)

Opt. Mater. Express (2)

Other (3)

O. H. Karabey, Electronic Beam Steering and Polarization Agile Planar Antennas in Liquid Crystal Technology: Chap. I (Springer, 2014).

A. Ebrahimi, P. Yaghmaee, W. Withayachumnankul, C. Fumeaux, S. Al-Sarawi, and D. Abbott, “Interlayer tuning of X-band frequency-selective surface using liquid crystal,” in 2013 Asia-Pacific Microwave Conference Proceedings (IEEE, 2013), pp. 1118–1120.
[Crossref]

“Workflow and Solver Overview-CST Microwave Studio,” CST Corp. Germany. https://www.rose-hulman.edu/class/ee/HTML/ECE340/PDFs/MWS_Tutorials.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic layout of (a) the EIT sensor and (b) the EIT sensor based NLC cell.
Fig. 2
Fig. 2 Transmission coefficient of the sensor.
Fig. 3
Fig. 3 Current distributions of the EIT sensor at (a) f1 = 304.50 GHz, (b) f2 = 309.46 GHz and (c) f3 = 312.35 GHz, respectively.
Fig. 4
Fig. 4 Schematics of the two configurations with the orientation of the NLC molecules parallel (a) and perpendicular (b) to the incident (E) field denoted as Case 1 (extraordinary transmission) and Case 2 (ordinary transmission), respectively. The two cases can be switched by rotating the sample with 90 degree; (c) (E)-field distribution in the NLC layer.
Fig. 5
Fig. 5 Frequency response to the NLCs with the identical relative permittivity (εr = 2, εr|| = 4) and different loss-tangent combinations (tanδ|| = 0.015, tanδ = 0.02 and tanδ|| = 0.024, tanδ = 0.035) in Case 1 and Case 2.
Fig. 6
Fig. 6 Numerical results of resonant frequencies fC1, fC2 versus relative permittivities εr||, εr.
Fig. 7
Fig. 7 Error function δ versus εr||, εr with assumption: fC1m = 306.1 GHz and fC2m = 310.3 GHz.
Fig. 8
Fig. 8 Numerical results of quality factors QC1, QC2 versus loss tangents tanδ||, tanδ under the condition of εr = 2.48, εr|| = 3.27.
Fig. 9
Fig. 9 Error function δ versus tanδ||, tanδ under the condition of QC1m = 104.72, QC2m = 74.21, fC1m = 306.1 GHz and fC2m = 310.3 GHz.
Fig. 10
Fig. 10 Deviations in the relative permittivity (a) and loss tangent (b) brought by the inherent error of the proposed technique (the results with and without deviations are marked as stars and crosses, respectively).
Fig. 11
Fig. 11 Transmission coefficients of the proposed EIT sensor with different thickness of the NLC layer.

Tables (2)

Tables Icon

Table 1 Polynomial Coefficients of the Fitting Function

Tables Icon

Table 2 Comparison Between FoM Values of Different Methods

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

2 <  ε r  <  ε r  < 4.
  f C1 ( ε r )= m=0 m=3 n=0 n=5 P mn ε r m ε r n
  f C2 ( ε r )= m=0 m=3 n=0 n=5 P mn ε r m ε r n
ε r =( ε r ε r )
δ( ε r ) =  δ C1 2  +  δ C2 2
δ C1 ( ε r )= f C1 ( ε r ) f C1m
δ C2 ( ε r )= f C2 ( ε r ) f C2m .
  ε r  (k+1) = ε r  (k) H δ  1 ( ε r  (k) ) δ( ε r  (k) )
m NLC = λ C1 λ C2 ε r ε r =56.8μm/RIU
FoM= m LC (μm/RIU) FWHM =6.92.
f 0 = f 1   f 2
Q= f 0 f 2 f 1
Q C1 ( α )= m=0 m=3 n=0 n=3 P mn C1 tan m δ tan n δ
Q C2 ( α )= m=0 m=3 n=0 n=3 P mn C2 tan m δ tan n δ
α =( tan δ tan δ )
δ( α  ) =  δ C1 2  +  δ C2 2
δ C1 ( α )=ln( Q C1 ( α ) )ln( Q C1m )
δ C2 ( α )=ln( Q C2 ( α ) )ln( Q C2m ).
α  ( k+1 ) = α  ( k ) H δ  1 ( α  ( k ) ) δ( α  ( k ) ).

Metrics