Abstract

An all-fiber Mach–Zehnder interferometer (MZI) for two quasi-continuous points’ temperature sensing in seawater is proposed. Based on the beam propagation theory, transmission spectrum is designed to present two sets of clear and independent interferences. Following this design, MZI is fabricated and two points’ temperature sensing in seawater are demonstrated with sensitivities of 42.69pm/°C and 39.17pm/°C, respectively. By further optimization, sensitivity of 80.91pm/°C can be obtained, which is 3-10 times higher than fiber Bragg gratings and microfiber resonator, and higher than almost all similar MZI based temperature sensors. In addition, factors affecting sensitivities are also discussed and verified in experiment. The two points’ temperature sensing demonstrated here show advantages of simple and compact construction, robust structure, easy fabrication, high sensitivity, immunity to salinity and tunable distance of 1-20 centimeters between two points, which may provide references for macroscopic oceanic research and other sensing applications based on MZIs.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers

Shanshan Wang, Yipeng Liao, Hongjuan Yang, Xin Wang, and Jing Wang
Appl. Opt. 54(34) 10283-10289 (2015)

All-fiber seawater salinity sensor based on fiber laser intracavity loss modulation with low detection limit

Wei Xu, Xiang Yang, Chao Zhang, Jia Shi, Degang Xu, Kai Zhong, Ke Yang, Xujin Li, Weiling Fu, Tiegen Liu, and Jianquan Yao
Opt. Express 27(2) 1529-1537 (2019)

Ultrasensitive optical sensing in aqueous solution based on microfiber modal interferometer

Jing Wang, Yipeng Liao, Shanshan Wang, and Xin Wang
Opt. Express 26(19) 24843-24853 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Bruneau, J. Zika, and R. Toumi, “Can the ocean’s heat engine control horizontal circulation? Insights from the caspian sea,” Geophys. Res. Lett. 44(19), 9893–9900 (2017).
    [Crossref]
  2. D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
    [Crossref]
  3. A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
    [Crossref] [PubMed]
  4. X. H. Fang, F. M. Boland, and G. R. Cresswell, “Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales,” Mar. Freshw. Res. 35(6), 611–618 (1984).
    [Crossref]
  5. A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
    [Crossref]
  6. X. Shu, D. Zhao, L. Zhang, and I. Bennion, “Use of dual-grating sensors formed by different types of fiber Bragg gratings for simultaneous temperature and strain measurements,” Appl. Opt. 43(10), 2006–2012 (2004).
    [Crossref] [PubMed]
  7. L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
    [Crossref]
  8. L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
    [Crossref]
  9. H. Yang, S. Wang, X. Wang, J. Wang, and Y. Liao, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
    [Crossref] [PubMed]
  10. H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
    [Crossref]
  11. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  12. J. Shi, S. Xiao, M. Bi, L. Yi, and P. Yang, “Discrimination between strain and temperature by cascading single-mode thin-core diameter fibers,” Appl. Opt. 51(14), 2733–2738 (2012).
    [Crossref] [PubMed]
  13. J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
    [Crossref] [PubMed]
  14. C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
    [Crossref]
  15. C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
    [Crossref]
  16. B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
    [Crossref] [PubMed]
  17. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref] [PubMed]
  18. L. Li, L. Xia, Z. Xie, and D. Liu, “All-fiber Mach-Zehnder interferometers for sensing applications,” Opt. Express 20(10), 11109–11120 (2012).
    [Crossref] [PubMed]
  19. J. Villatoro and D. Monzón-Hernández, “Low-cost optical fiber refractive-index sensor based on core diameter mismatch,” J. Lightwave Technol. 24(3), 1409–1413 (2006).
    [Crossref]
  20. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  21. D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
    [Crossref]
  22. F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach–Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 28(18), 1968–1971 (2016).
    [Crossref]
  23. Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
    [Crossref]
  24. Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
    [Crossref]
  25. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  26. N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
    [Crossref]
  27. Z. B. Tian and S. S.-H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
    [Crossref]
  28. “Optiwave,” Opti BPM [Online]. Available: http://optiwave.com .

2017 (5)

N. Bruneau, J. Zika, and R. Toumi, “Can the ocean’s heat engine control horizontal circulation? Insights from the caspian sea,” Geophys. Res. Lett. 44(19), 9893–9900 (2017).
[Crossref]

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
[Crossref]

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

2016 (4)

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach–Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

2015 (1)

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

2014 (2)

2013 (1)

A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
[Crossref]

2012 (3)

2011 (3)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

2009 (2)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Z. B. Tian and S. S.-H. Yam, “In-line single-mode optical fiber interferometric refractive index sensors,” J. Lightwave Technol. 27(13), 2296–2306 (2009).
[Crossref]

2008 (2)

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
[Crossref] [PubMed]

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (1)

1984 (1)

X. H. Fang, F. M. Boland, and G. R. Cresswell, “Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales,” Mar. Freshw. Res. 35(6), 611–618 (1984).
[Crossref]

Ahmed, F.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach–Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

Ahsani, V.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach–Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

Alameh, K.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

Alappattu, D. P.

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

Bennion, I.

Bi, M.

Boland, F. M.

X. H. Fang, F. M. Boland, and G. R. Cresswell, “Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales,” Mar. Freshw. Res. 35(6), 611–618 (1984).
[Crossref]

Bruneau, N.

N. Bruneau, J. Zika, and R. Toumi, “Can the ocean’s heat engine control horizontal circulation? Insights from the caspian sea,” Geophys. Res. Lett. 44(19), 9893–9900 (2017).
[Crossref]

Cai, L.

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Chen, Q. Y.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

Choi, H. Y.

Christman, A. J.

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

Chung, Y.

Cresswell, G. R.

X. H. Fang, F. M. Boland, and G. R. Cresswell, “Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales,” Mar. Freshw. Res. 35(6), 611–618 (1984).
[Crossref]

Dang, Y. L.

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Duan, D. W.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

Fang, X. H.

X. H. Fang, F. M. Boland, and G. R. Cresswell, “Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales,” Mar. Freshw. Res. 35(6), 611–618 (1984).
[Crossref]

Ferrari, R.

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

Gao, S.

Garabato, A. N.

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

Geng, P.

Ho, C. R.

A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
[Crossref]

Hsu, M. K.

A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
[Crossref]

Hu, H. F.

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Hwang, D.

Jiang, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

Jiang, Z.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Jing, W.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Jun, M. B. G.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach–Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

Kim, M. J.

Kong, L. X.

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Kuo, N. J.

A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
[Crossref]

Ledwell, J. R.

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

Lee, B. H.

Li, B.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

Li, C.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

Li, J.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Li, L.

Li, X.

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Li, Z.

Liao, C.

Liao, Y.

H. Yang, S. Wang, X. Wang, J. Wang, and Y. Liao, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Liao, Y. P.

H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
[Crossref]

Lin, H.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

Lin, Q.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Lind, R. J.

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

Liu, A. K.

A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
[Crossref]

Liu, D.

Lu, P.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

Mashayek, A.

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

Men, L. Q.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

Merrifield, S.

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

Monzón-Hernández, D.

Moon, D. S.

Moon, S.

Nguyen, L. V.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
[Crossref] [PubMed]

Ning, T. G.

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Pei, L.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

Rao, Y. J.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

Reynolds, M.

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

Saad, A.

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach–Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

Shi, J.

Shi, P.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Shu, X.

Sooley, K.

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

St Laurent, L.

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

Su, F. C.

A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
[Crossref]

Sun, B.

Tian, B.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Tian, Z. B.

Toumi, R.

N. Bruneau, J. Zika, and R. Toumi, “Can the ocean’s heat engine control horizontal circulation? Insights from the caspian sea,” Geophys. Res. Lett. 44(19), 9893–9900 (2017).
[Crossref]

Tsai, H.-L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

Vasiliev, M.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

Villatoro, J.

Wang, G.

Wang, J.

H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
[Crossref]

H. Yang, S. Wang, X. Wang, J. Wang, and Y. Liao, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Wang, Q.

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Wang, S.

H. Yang, S. Wang, X. Wang, J. Wang, and Y. Liao, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

Wang, S. S.

H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
[Crossref]

Wang, X.

H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
[Crossref]

H. Yang, S. Wang, X. Wang, J. Wang, and Y. Liao, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Wang, Y.

Wen, X. D.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Wu, D.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

Wu, Z.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Xia, F.

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Xia, L.

Xiao, H.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

Xiao, S.

Xie, Z.

Xu, L. C.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

Xue, X.

Yam, S. S.-H.

Yamaguchi, R.

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

Yang, H.

H. Yang, S. Wang, X. Wang, J. Wang, and Y. Liao, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Yang, H. J.

H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
[Crossref]

Yang, K.

Yang, P.

Yang, Y.

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Yao, J.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

Yao, K.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Yi, L.

Yin, G.

Zhang, C.

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

Zhang, C. B.

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

Zhang, L.

Zhang, S.

Zhang, W.

Zhang, Y. W.

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Zhang, Z.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Zhao, D.

Zhao, N.

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Zhao, Y.

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Zhong, X.

Zhou, J.

Zhou, L.

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

Zhu, T.

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

Zika, J.

N. Bruneau, J. Zika, and R. Toumi, “Can the ocean’s heat engine control horizontal circulation? Insights from the caspian sea,” Geophys. Res. Lett. 44(19), 9893–9900 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, “Tapered fiber Mach–Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Cont. Shelf Res. (1)

A. K. Liu, F. C. Su, M. K. Hsu, N. J. Kuo, and C. R. Ho, “Generation and evolution of mode-two internal waves in the South China Sea,” Cont. Shelf Res. 59(59), 18–27 (2013).
[Crossref]

Geophys. Res. Lett. (1)

N. Bruneau, J. Zika, and R. Toumi, “Can the ocean’s heat engine control horizontal circulation? Insights from the caspian sea,” Geophys. Res. Lett. 44(19), 9893–9900 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Three-wave fiber Fabry–Pérot interferometer for simultaneous measurement of temperature and water salinity of seawater,” IEEE Photonics Technol. Lett. 23(7), 450–452 (2011).
[Crossref]

C. Li, T. G. Ning, J. Li, C. Zhang, C. B. Zhang, H. Lin, and L. Pei, “Fiber-optic laser sensor based on all-fiber multipath Mach–Zehnder interferometer,” IEEE Photonics Technol. Lett. 28(18), 1908–1911 (2016).
[Crossref]

F. Ahmed, V. Ahsani, A. Saad, and M. B. G. Jun, “Bragg grating embedded in Mach–Zehnder interferometer for refractive index and temperature sensing,” IEEE Photonics Technol. Lett. 28(18), 1968–1971 (2016).
[Crossref]

IEEE Sens. J. (1)

H. J. Yang, J. Wang, Y. P. Liao, S. S. Wang, and X. Wang, “Dual-point seawater temperature simultaneous sensing based on microfiber double knot resonators,” IEEE Sens. J. 17(8), 2398–2403 (2017).
[Crossref]

J. Appl. Phys. (1)

L. Q. Men, P. Lu, and Q. Y. Chen, “A multiplexed fiber Bragg grating sensor for simultaneous salinity and temperature measurement,” J. Appl. Phys. 103(5), 053107 (2008).
[Crossref]

J. Geophys. Res. Oceans (1)

D. P. Alappattu, Q. Wang, R. Yamaguchi, R. J. Lind, M. Reynolds, and A. J. Christman, “Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies,” J. Geophys. Res. Oceans 122(8), 6470–6481 (2017).
[Crossref]

J. Lightwave Technol. (2)

Mar. Freshw. Res. (1)

X. H. Fang, F. M. Boland, and G. R. Cresswell, “Further observations of high-frequency current variations on the continental shelf near Sydney, New South Wales,” Mar. Freshw. Res. 35(6), 611–618 (1984).
[Crossref]

Nat. Commun. (1)

A. Mashayek, R. Ferrari, S. Merrifield, J. R. Ledwell, L. St Laurent, and A. N. Garabato, “Topographic enhancement of vertical turbulent mixing in the Southern Ocean,” Nat. Commun. 8, 14197 (2017).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Sens. Actuators A Phys. (2)

C. Li, T. G. Ning, C. Zhang, J. Li, C. B. Zhang, X. D. Wen, H. Lin, and L. Pei, “All-fiber multipath Mach–Zehnder interferometer based on a four-core fiber for sensing applications,” Sens. Actuators A Phys. 248, 148–154 (2016).
[Crossref]

N. Zhao, Q. Lin, W. Jing, Z. Jiang, Z. Wu, K. Yao, B. Tian, Z. Zhang, and P. Shi, “High temperature high sensitivity Mach–Zehnder interferometer based on waist-enlarged fiber bitapers,” Sens. Actuators A Phys. 267, 491–495 (2017).
[Crossref]

Sens. Actuators B Chem. (3)

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Q. Wang, L. X. Kong, Y. L. Dang, F. Xia, Y. W. Zhang, Y. Zhao, H. F. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach–Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

D. W. Duan, Y. J. Rao, L. C. Xu, T. Zhu, D. Wu, and J. Yao, “In-fiber Mach–Zehnder interferometer formed by large lateral offset fusion splicing for gases refractive index measurement with high sensitivity,” Sens. Actuators B Chem. 160(1), 1198–1202 (2011).
[Crossref]

Sensors (Basel) (2)

B. Li, L. Jiang, S. Wang, L. Zhou, H. Xiao, and H.-L. Tsai, “Ultra-abrupt tapered fiber Mach-Zehnder interferometer sensors,” Sensors (Basel) 11(6), 5729–5739 (2011).
[Crossref] [PubMed]

H. Yang, S. Wang, X. Wang, J. Wang, and Y. Liao, “Temperature sensing in seawater based on microfiber knot resonator,” Sensors (Basel) 14(10), 18515–18525 (2014).
[Crossref] [PubMed]

Other (1)

“Optiwave,” Opti BPM [Online]. Available: http://optiwave.com .

Supplementary Material (1)

NameDescription
» Visualization 1       Movie of the evolvement of power evolution process as the light propagates through the MZI with the wavelength scanning from 1100-1700 nm.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 (a) Schematic of the proposed all-fiber in-line MZI structure; (b) Transmission spectra of structure assembled by single-mode fiber and 0.35cm 780-HP or 980-HP fiber. (c) Transmission spectra of MZI with structure of SMF1-0.85-cm TCF1-endless SMF2 with different offsets. (d) Transmission spectra of MZIs with and without PDMS.
Fig. 2
Fig. 2 (a) The plane schematic of the proposed all-fiber in-line MZI structure; (b) The power evolution process as the light propagates through the MZI with structure of SMF1-0.85cmTCF1-6.45cmSMF2-0.35cmTCF2-SMF3 under typical wavelengths of 1230nm and 1600nm; (c) Movie of the evolvement of power evolution process as the light propagates through the MZI with the wavelength scanning from 1100 to 1700 nm (see Visualization 1).
Fig. 3
Fig. 3 (a) The whole transmission spectrum of the fabricated MZI; (b) The Fourier transform of the IMI-A and IMI-B dominant band spectrum.
Fig. 4
Fig. 4 (a) Degeneration of the cladding mode in SMF2 with the increasing length of SMF2. (b) Transmission spectrum of the sensor with structure of SMF1-0.85cmTCF1-2.1cmSMF2-0.35cmTCF2-SMF3.
Fig. 5
Fig. 5 (a) The schematic of the sensing system. (b) Peak A and (c) Peak B shift with the increasing point A’s temperature; (d) Schematic diagram of the contrasting structure and its transmission spectrum. (e) Peak A and (f) Peak B shift with the increasing point B’s temperature; Insets in (b), (c), (e) and (f): Linear fittings of the wavelength of the sensing peak at different temperatures.
Fig. 6
Fig. 6 (a) Transmission spectrum of another MZI with structure of SMF1-0.85cmTCF1-6.45cm SMF2-0.4cm TCF2-SMF3; (b) Dependence of sensitivity on wavelength of sensing peaks.
Fig. 7
Fig. 7 Dependence of sensitivity on fiber length immersed in seawater.
Fig. 8
Fig. 8 (a) Three different positions of point B, denoted by B1, B2 and B3; (b)-(d) Shifts of peaks B1, B2 and B3 under different temperatures.
Fig. 9
Fig. 9 The peak shifts with the increasing temperature and linear fittings of the peak wavelength at different temperatures for (a) IMI-A and (b) IMI-B.
Fig. 10
Fig. 10 The peak shifts with the increasing salinity and linear fittings of the peak wavelength at different salinities for (a) IMI-A and (b) IMI-B.
Fig. 11
Fig. 11 (a) The comparison between the original spectrum and the duplicated one. (b) The spectrum of the MZI with the structure of SMF1-0.85cmTCF1-6.45cmSMF2-0.35cmTCF2-SMF3, in which the 980-HP fiber is selected as TCF2.

Tables (1)

Tables Icon

Table 1 Comparisons of two tests on temperatures of point A and point B

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ξ= 1 λ 0 2 Δ n eff L
Δ λ dip,m = 4 n eff L ( 2m+1 )( 2m1 ) λ dip,m 2 Δ n eff L ,
[ Δ λ A Δ λ B ]=[ 42.69pm/°C 9.67pm/°C 8.37pm/°C 39.17pm/°C ][ Δ T A Δ T B ].
[ λ A 1244.62nm λ B 1547.38nm ]=[ 42.69pm/°C 9.67pm/°C 8.37pm/°C 39.17pm/°C ][ T A 12.8°C T B 14.4°C ].
λ dip,T = 2 n eff,T L 2m+1 = n eff,T Δ n eff λ dip ,
λ dip,T = n eff,T Δ n eff λ dip L immersed L total .

Metrics