Abstract

With the rapid development of the modern communication systems, radar and wireless services, microwave signal with high-frequency, high-spectral-purity and frequency tunability as well as microwave generator with light weight, compact size, power-efficient and low cost are increasingly demanded. Integrated microwave photonics (IMWP) is regarded as a prospective way to meet these demands by hybridizing the microwave circuits and the photonics circuits on chip. In this article, we propose and experimentally demonstrate an integrated optoelectronic oscillator (IOEO). All of the devices needed in the optoelectronic oscillation loop circuit are monolithically integrated on chip within size of 5×6cm2. By tuning the injection current to 44 mA, the output frequency of the proposed IOEO is located at 7.30 GHz with phase noise value of −91 dBc/Hz@1MHz. When the injection current is increased to 65 mA, the output frequency can be changed to 8.87 GHz with phase noise value of −92 dBc/Hz@1MHz. Both of the oscillation frequency can be slightly tuned within 20 MHz around the center oscillation frequency by tuning the injection current. The method about improving the performance of IOEO is carefully discussed at the end of in this article.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wideband frequency-tunable optoelectronic oscillator with a directly modulated AlGaInAs/InP integrated twin-square microlaser

Jun-Yuan Han, Yong-Tao Huang, You-Zeng Hao, Min Tang, Fu-Li Wang, Jin-Long Xiao, Yue-De Yang, and Yong-Zhen Huang
Opt. Express 26(24) 31784-31793 (2018)

Tunable low-drift spurious-free optoelectronic oscillator based on injection locking and time delay compensation

Zhiqiang Fan, Qi Qiu, Jun Su, and Tianhang Zhang
Opt. Lett. 44(3) 534-537 (2019)

Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback

Xiu-Wen Ma, Yong-Zhen Huang, Ling-Xiu Zou, Bo-Wen Liu, Heng Long, Hai-Zhong Weng, Yue-De Yang, and Jin-Long Xiao
Opt. Express 23(16) 20321-20331 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  3. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  4. D. Dolfi, “New trends in optoelectronics for radar, E.W. and communication systems,” in IEEE International Topical Meeting on Microwave Photonics (MWP, 2011).
  5. M. H. Alsharif and R. Nordin, “Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimeter wave, massive MIMO, and small cells,” Telecomm. Syst. 64(4), 617–637 (2017).
    [Crossref]
  6. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  7. L. Yu, W. Zou, G. Yang, X. Li, and J. Chen, “Electro-optical switching based demultiplexing in high-speed photonic analog-to-digital converter based on actively mode-lock laser,” in 2017 International Topical Meeting on Microwave Photonics (2017), paper THP.29.
    [Crossref]
  8. X. Li and J. Yu, “Generation and heterodyne detection of >100-Gb/s Q-band PDM-64QAM mm-wave signal,” IEEE Photonics Technol. Lett. 29(1), 27–30 (2017).
    [Crossref]
  9. A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
    [Crossref]
  10. S. Poinsot, H. Porte, J. P. Goedgebuer, W. T. Rhodes, and B. Boussert, “Continuous radio-frequency tuning of an optoelectronic oscillator with dispersive feedback,” Opt. Lett. 27(15), 1300–1302 (2002).
    [Crossref] [PubMed]
  11. L. Maleki, “The opto-electronic oscillator (OEO): Review and recent progress,” in European Frequency and Time Forum (EFTF, 2012), pp. 497–500.
    [Crossref]
  12. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave Photonic Signal Processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  13. M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
    [Crossref]
  14. J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
    [Crossref]
  15. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
    [Crossref]
  16. H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express 25(9), 10287–10305 (2017).
    [Crossref] [PubMed]
  17. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  18. X. S. Yao and L. Maleki, “Opto-electronic oscillator and its applications,” in Microwave Photonics Conference (1996), pp. 265–268.
  19. S. García and I. Gasulla, “Multi-cavity optoelectronic oscillators using multicore fibers,” Opt. Express 23(3), 2403–2415 (2015).
    [Crossref] [PubMed]
  20. W. Li and J. Yao, “An Optically Tunable Optoelectronic Oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
    [Crossref]
  21. K. H. Lee, J. Y. Kim, and W. Y. Choi, “Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation,” IEEE Photonics Technol. Lett. 20, 1645–1647 (2008).
    [Crossref]
  22. E. Salik, N. Yu, and L. Maleki, “An Ultralow Phase Noise Coupled Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
    [Crossref]
  23. K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
    [Crossref] [PubMed]
  24. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
    [Crossref] [PubMed]
  25. M. Merklein, B. Stiller, I. V. Kabakova, U. S. Mutugala, K. Vu, S. J. Madden, B. J. Eggleton, and R. Slavík, “Widely tunable, low phase noise microwave source based on a photonic chip,” Opt. Lett. 41(20), 4633–4636 (2016).
    [Crossref] [PubMed]
  26. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  27. https://www.hhi.fraunhofer.de/en/departments/pc/researchgroups/foundry-services-for-inp-based-photonic-integrated-circuits.html .
  28. http://www.rogerscorp.com/acs/producttypes/9/RO4000-Laminates.aspx
  29. L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
    [Crossref]
  30. J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
    [Crossref] [PubMed]
  31. K. Volyanskiy, Y. K. Chembo, L. Larger, and E. Rubiola, “Contribution of laser frequency and power fluctuations to the microwave phase noise of optoelectronic oscillators,” J. Lightwave Technol. 28(18), 2730–2735 (2010).
    [Crossref]
  32. M. Ahmed, “Spectral lineshape and noise of semiconductor lasers under analog intensity modulation,” J. Phys. D Appl. Phys. 41(17), 175104 (2008).
    [Crossref]
  33. C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photonics Technol. Lett. 18(18), 1542–1544 (2008).
    [Crossref]
  34. Y. Zhang, D. Hou, and J. Zhao, “Long-term frequency stabilization of an optoelectronic oscillator using phase-locked loop,” J. Lightwave Technol. 32(13), 2408–2414 (2014).
    [Crossref]

2017 (4)

M. H. Alsharif and R. Nordin, “Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimeter wave, massive MIMO, and small cells,” Telecomm. Syst. 64(4), 617–637 (2017).
[Crossref]

X. Li and J. Yu, “Generation and heterodyne detection of >100-Gb/s Q-band PDM-64QAM mm-wave signal,” IEEE Photonics Technol. Lett. 29(1), 27–30 (2017).
[Crossref]

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

H. Peng, Y. Xu, X. Peng, X. Zhu, R. Guo, F. Chen, H. Du, Y. Chen, C. Zhang, L. Zhu, W. Hu, and Z. Chen, “Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering,” Opt. Express 25(9), 10287–10305 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (1)

2014 (4)

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Y. Zhang, D. Hou, and J. Zhao, “Long-term frequency stabilization of an optoelectronic oscillator using phase-locked loop,” J. Lightwave Technol. 32(13), 2408–2414 (2014).
[Crossref]

K. Saleh, R. Henriet, S. Diallo, G. Lin, R. Martinenghi, I. V. Balakireva, P. Salzenstein, A. Coillet, and Y. K. Chembo, “Phase noise performance comparison between optoelectronic oscillators based on optical delay lines and whispering gallery mode resonators,” Opt. Express 22(26), 32158–32173 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (1)

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

2011 (1)

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

2010 (2)

2008 (3)

M. Ahmed, “Spectral lineshape and noise of semiconductor lasers under analog intensity modulation,” J. Phys. D Appl. Phys. 41(17), 175104 (2008).
[Crossref]

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photonics Technol. Lett. 18(18), 1542–1544 (2008).
[Crossref]

K. H. Lee, J. Y. Kim, and W. Y. Choi, “Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation,” IEEE Photonics Technol. Lett. 20, 1645–1647 (2008).
[Crossref]

2007 (2)

E. Salik, N. Yu, and L. Maleki, “An Ultralow Phase Noise Coupled Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2002 (1)

1996 (2)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

Agiwal, M.

M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

Ahmed, M.

M. Ahmed, “Spectral lineshape and noise of semiconductor lasers under analog intensity modulation,” J. Phys. D Appl. Phys. 41(17), 175104 (2008).
[Crossref]

Alsharif, M. H.

M. H. Alsharif and R. Nordin, “Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimeter wave, massive MIMO, and small cells,” Telecomm. Syst. 64(4), 617–637 (2017).
[Crossref]

Balakireva, I. V.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Boccardi, F.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Boussert, B.

Byrd, J.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Capmany, J.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave Photonic Signal Processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chembo, Y. K.

Chen, D.

Chen, F.

Chen, Y.

Chen, Z.

Choi, W. Y.

K. H. Lee, J. Y. Kim, and W. Y. Choi, “Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation,” IEEE Photonics Technol. Lett. 20, 1645–1647 (2008).
[Crossref]

Coillet, A.

Diallo, S.

Doménech, D.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

Du, H.

Eggleton, B. J.

Eliyahu, D.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Fandiño, J. S.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

Fang, T.

García, S.

Gasulla, I.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Goedgebuer, J. P.

Guo, R.

Hati, A.

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photonics Technol. Lett. 18(18), 1542–1544 (2008).
[Crossref]

Heath, R. W.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Henriet, R.

Hou, D.

Howe, D. A.

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photonics Technol. Lett. 18(18), 1542–1544 (2008).
[Crossref]

Hu, W.

Ilchenko, V. S.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Kabakova, I. V.

Kim, J. Y.

K. H. Lee, J. Y. Kim, and W. Y. Choi, “Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation,” IEEE Photonics Technol. Lett. 20, 1645–1647 (2008).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Larger, L.

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lee, H.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref] [PubMed]

Lee, K. H.

K. H. Lee, J. Y. Kim, and W. Y. Choi, “Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation,” IEEE Photonics Technol. Lett. 20, 1645–1647 (2008).
[Crossref]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Li, J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref] [PubMed]

Li, W.

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

W. Li and J. Yao, “An Optically Tunable Optoelectronic Oscillator,” J. Lightwave Technol. 28(18), 2640–2645 (2010).
[Crossref]

Li, X.

X. Li and J. Yu, “Generation and heterodyne detection of >100-Gb/s Q-band PDM-64QAM mm-wave signal,” IEEE Photonics Technol. Lett. 29(1), 27–30 (2017).
[Crossref]

Liang, W.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Lin, G.

Liu, J.

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

Lloret, J.

Lozano, A.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Lu, L.

Madden, S. J.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Maleki, L.

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

E. Salik, N. Yu, and L. Maleki, “An Ultralow Phase Noise Coupled Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Opto-electronic oscillator and its applications,” in Microwave Photonics Conference (1996), pp. 265–268.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Martinenghi, R.

Marzetta, T. L.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Matsko, A. B.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Merklein, M.

Mora, J.

Muñoz, P.

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

Mutugala, U. S.

Nelson, C. W.

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photonics Technol. Lett. 18(18), 1542–1544 (2008).
[Crossref]

Nordin, R.

M. H. Alsharif and R. Nordin, “Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimeter wave, massive MIMO, and small cells,” Telecomm. Syst. 64(4), 617–637 (2017).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Peng, H.

Peng, X.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Poinsot, S.

Popovski, P.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Porte, H.

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pu, T.

Rhodes, W. T.

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Roy, A.

M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

Rubiola, E.

Saleh, K.

Sales, S.

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave Photonic Signal Processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Salik, E.

E. Salik, N. Yu, and L. Maleki, “An Ultralow Phase Noise Coupled Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

Salzenstein, P.

Sancho, J.

Savchenkov, A. A.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Saxena, N.

M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Seidel, D.

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Slavík, R.

Stiller, B.

Vahala, K. J.

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref] [PubMed]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Volyanskiy, K.

Vu, K.

Wang, L.

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

Wang, R.

Wang, W.

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

Xiang, P.

Xiong, J.

Xu, Y.

Yao, J.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Opto-electronic oscillator and its applications,” in Microwave Photonics Conference (1996), pp. 265–268.

Yu, J.

X. Li and J. Yu, “Generation and heterodyne detection of >100-Gb/s Q-band PDM-64QAM mm-wave signal,” IEEE Photonics Technol. Lett. 29(1), 27–30 (2017).
[Crossref]

Yu, N.

E. Salik, N. Yu, and L. Maleki, “An Ultralow Phase Noise Coupled Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

Zhang, C.

Zhang, Y.

Zhao, J.

Zheng, J.

Zhu, H.

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

Zhu, L.

Zhu, N.

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

Zhu, X.

Chin. Sci. Bull. (1)

L. Wang, N. Zhu, J. Liu, W. Li, H. Zhu, and W. Wang, “Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser,” Chin. Sci. Bull. 57(31), 4087–4090 (2012).
[Crossref]

Commun. Surv. Tutorials (1)

M. Agiwal, A. Roy, and N. Saxena, “Next Generation 5G Wireless Networks: A Comprehensive Survey,” Commun. Surv. Tutorials 18(3), 1617–1655 (2016).
[Crossref]

IEEE Commun. Mag. (1)

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. W. Nelson, A. Hati, and D. A. Howe, “Relative intensity noise suppression for RF photonic links,” IEEE Photonics Technol. Lett. 18(18), 1542–1544 (2008).
[Crossref]

K. H. Lee, J. Y. Kim, and W. Y. Choi, “Injection-Locked Hybrid Optoelectronic Oscillators for Single-Mode Oscillation,” IEEE Photonics Technol. Lett. 20, 1645–1647 (2008).
[Crossref]

E. Salik, N. Yu, and L. Maleki, “An Ultralow Phase Noise Coupled Optoelectronic Oscillator,” IEEE Photonics Technol. Lett. 19(6), 444–446 (2007).
[Crossref]

X. Li and J. Yu, “Generation and heterodyne detection of >100-Gb/s Q-band PDM-64QAM mm-wave signal,” IEEE Photonics Technol. Lett. 29(1), 27–30 (2017).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

M. Ahmed, “Spectral lineshape and noise of semiconductor lasers under analog intensity modulation,” J. Phys. D Appl. Phys. 41(17), 175104 (2008).
[Crossref]

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Nat. Commun. (1)

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref] [PubMed]

Nat. Photonics (3)

J. S. Fandiño, P. Muñoz, D. Doménech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

L. Maleki, “Sources: The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Telecomm. Syst. (1)

M. H. Alsharif and R. Nordin, “Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimeter wave, massive MIMO, and small cells,” Telecomm. Syst. 64(4), 617–637 (2017).
[Crossref]

Other (7)

X. S. Yao and L. Maleki, “Opto-electronic oscillator and its applications,” in Microwave Photonics Conference (1996), pp. 265–268.

L. Yu, W. Zou, G. Yang, X. Li, and J. Chen, “Electro-optical switching based demultiplexing in high-speed photonic analog-to-digital converter based on actively mode-lock laser,” in 2017 International Topical Meeting on Microwave Photonics (2017), paper THP.29.
[Crossref]

A. A. Savchenkov, V. S. Ilchenko, J. Byrd, W. Liang, D. Eliyahu, A. B. Matsko, D. Seidel, and L. Maleki, “Whispering-gallery mode based opto-electronic oscillators,” in 2010 IEEE International Frequency Control Symposium (2010), pp. 554–557.
[Crossref]

D. Dolfi, “New trends in optoelectronics for radar, E.W. and communication systems,” in IEEE International Topical Meeting on Microwave Photonics (MWP, 2011).

L. Maleki, “The opto-electronic oscillator (OEO): Review and recent progress,” in European Frequency and Time Forum (EFTF, 2012), pp. 497–500.
[Crossref]

https://www.hhi.fraunhofer.de/en/departments/pc/researchgroups/foundry-services-for-inp-based-photonic-integrated-circuits.html .

http://www.rogerscorp.com/acs/producttypes/9/RO4000-Laminates.aspx

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic and photograph of the IOEO. (a). Schematic of the proposed IOEO, (b) Photograph of the fabricated IOEO, (c) The photonic part of the IOEO. DML: directly modulated laser; ODL: optical delay line; PD: photo detector; EA: electrical amplifier; ATT: attenuator.
Fig. 2
Fig. 2 Frequency response of the IOEO. (a) and (d) represents multimode oscillation spectrum for an injection current of 44 mA and 60 mA, respectively. The solid (empty) triangle represents the primary resonance (second harmonic). (b) Frequency spectrum of the stable output RF signal with the injection current of 44.1 mA. (c) Frequency fluctuation of the primary oscillation frequency shown in (b) during 1 minute time window. (e) Frequency spectrum of the generated stable RF signal with the injection current of 65 mA. (f) Frequency fluctuation of the primary oscillation frequency shown in (e) during 1 minute time window. The spectrum in (a), (b), (d) and (e) was measured under resolution bandwidth of 10 MHz while (c) and (f) was measured under resolution bandwidth of 1 KHz. The cyan dashed line in (a), (b), (d) and (e) represents the response of the RF filter.
Fig. 3
Fig. 3 Oscillation frequency tunability and phase noise response of the IOEO. (a), (d), The oscillation frequency tunability around 7.3 GHz and 8.8 GHz. (b) Dependence of the oscillation frequency around 7.3 GHz with the injection current. (e) Similar to (b) dependence of the oscillation frequency around 8.8 GHz with the injection current. (c), (f), Measured phase noise of the oscillation frequency at 7.30 GHz and 8.87 GHz, respectively. (a) is measured under resolution bandwidth of 1 KHz while (d) was measured under resolution bandwidth of 100 KHz.

Tables (1)

Tables Icon

Table 1 Selected Ways to Reduce the Footprint of OEO.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Q= f 0 Δ f FWHM = Q D τ P o G A 2 ρ N
L φ (f)=[1+ ( f L /f) 2 ] L ψ (f)
S ψ (ω)= ω o 2 4 Q RF 2 | χ ˜ FN (ω) | 2 + | ρ ˜ rin (ω) | 2 + | η ˜ m (ω) | 2 4 Q RF 2 + 2 Γ a | ν o | 2 | iω+ ω o 2 Q RF [ 1 e iωT ] | 2

Metrics