Abstract

Secchi disk depth (Zsd), represents water transparency which is an intuitive indicator of water quality and can be used to derive inherent optical properties, chlorophyll-a concentrations, and primary productivity. In this study, the Zsd was derived from the Geostationary Ocean Color Imager (GOCI) data over the Bohai Sea (BHS) and the Yellow Sea (YS) using a regional tuned model. To validate the GOCI derived Zsd observations, in situ data, were collected for the BHS and YS regions. Results showed a good agreement between the GOCI derived Zsd observations and in situ measurements with a determination coefficient of 0.90, root mean square error of 2.17 m and mean absolute percent error of 24.56%. Results for diurnal variations showed an increasing trend of Zsd at the first and then decreasing, and all the maxima of Zsd in the central areas of the BHS and YS were found in the midday. For seasonal variations, higher values of Zsd, both in range and intensity, were observed in summer compared with those in winter. The reasons to explain the variations of Zsd have also been explored. Solar zenith angle (SOLZ) has an impact on the daily dynamics of Zsd, due to the influence of SOLZ on the attenuation of light radiation in water. The influence level of SOLZ on Zsd is largely determined by the water bodies’ composition. The significant seasonal variations are mainly controlled by the stability of the water column stratification, because it can lead to the sediment resuspension and influence the growth and distribution of phytoplankton. Runoff and sediment discharge are not the main factors that impact the seasonal dynamics of Zsd. Tidal currents and mean currents may have influences on the variations of Zsd. However, due to the lack of in situ measurements to support, further studies are still needed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multi-source high-resolution satellite products in Yangtze Estuary: cross-comparisons and impacts of signal-to-noise ratio and spatial resolution

Rugang Tang, Fang Shen, Yanqun Pan, Kevin Ruddick, and Pei Shang
Opt. Express 27(5) 6426-6441 (2019)

Estimation of suspended particulate matter in turbid coastal waters: application to hyperspectral satellite imagery

Jun Zhao, Wenxi Cao, Zhantang Xu, Haibin Ye, Yuezhong Yang, Guifen Wang, Wen Zhou, and Zhaohua Sun
Opt. Express 26(8) 10476-10493 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
    [Crossref]
  2. Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
    [Crossref]
  3. S. Kratzer, B. Håkansson, and C. Sahlin, “Assessing Secchi and Photic Zone Depth in the Baltic Sea from Satellite Data,” Ambio 32(8), 577–585 (2003).
    [Crossref] [PubMed]
  4. I. M. Levin and T. M. Radomyslskaya, “Estimate of water inherent optical properties from Secchi depth,” Izv Atmos. Ocean Phy. 48(2), 214–221 (2012).
    [Crossref]
  5. S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
    [Crossref]
  6. S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
    [Crossref]
  7. P. G. Falkowski and C. Wilson, “Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO 2,” Nature 358(6389), 741–743 (1992).
    [Crossref]
  8. X. He, D. Pan, and Z. Mao, “The study on the inversing model of water transparency using the SeaWiFS data,” Acta Oceanol. Sin. 26, 55 (2004).
  9. H. Taheri Shahraini, H. Sharifi, and M. Sanaeifar, “Development of clarity model for Caspian Sea using MERIS data,” in SPIE Remote Sensing(2011), pp. -.
  10. Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
    [Crossref]
  11. X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
    [Crossref]
  12. J. H. Ryu, J. K. Choi, J. Eom, and J. H. Ahn, “Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager,” J. Coast. Res. SI64, 1731–1735 (2011).
  13. C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Trends in Water Clarity of the Lower Great Lakes from Remotely Sensed Aquatic Color,” J. Great Lakes Res. 33(4), 828–841 (2007).
    [Crossref]
  14. S. Koponen, J. Pulliainen, K. Kallio, and M. Hallikainen, “Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data,” Remote Sens. Environ. 79(1), 51–59 (2002).
    [Crossref]
  15. H. T. Shahraini, H. Sharifi, and M. Sanaeifar, “Development of clarity model for Caspian Sea using MERIS data,” Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2011. Vol. 8175. International Society for Optics and Photonics, (2011).
  16. M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
    [Crossref]
  17. S. Q. Duntley, “The Visibility of Submerged Objects” Visibility Lab., Mass. Inst. Tech. (pp. 74) (San Diego), (1952).
  18. R. W. Preisendorfer, “Secchi Disk Science: Visual Optics of Natural Waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
    [Crossref]
  19. Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
    [Crossref]
  20. Z. Qiu, T. Wu, and Y. Su, “Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance,” Opt. Express 21(13), 15287–15297 (2013).
    [Crossref] [PubMed]
  21. C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
    [Crossref]
  22. Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).
  23. F. Lefèvre, C. L. Provost, and F. H. Lyard, “How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea,” J. Geophys. Res. Oceans 105(C4), 8707–8725 (2000).
    [Crossref]
  24. H. J. Lie, S. Lee, and C. H. Cho, “Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas,” J. Geophys Res: Oceans 107, 22 (2002).
  25. C. L. Provost and F. Lyard, “Energetics of the M 2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model,” Prog. Oceanogr. 40(1-4), 37–52 (1997).
    [Crossref]
  26. H. J. Lee and S. Y. Chao, “A climatological description of circulation in and around the East China Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 50(6-7), 1065–1084 (2003).
    [Crossref]
  27. L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
    [Crossref]
  28. Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).
  29. Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
    [Crossref]
  30. Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
    [Crossref]
  31. T. Rodrigues, E. Alcântara, F. Watanabe, and N. Imai, “Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme,” Remote Sens. Environ. 198, 213–228 (2017).
    [Crossref]
  32. Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).
  33. Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
    [Crossref] [PubMed]
  34. Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
    [Crossref] [PubMed]
  35. G. Verschuur, “Transparency Measurements in Garner Lake, Tennessee: The Relationship between Secchi Depth and Solar Altitude and a Suggestion for Normalization of Secchi Depth Data,” Lake Reserv. Manage. 13(2), 142–153 (1997).
    [Crossref]
  36. J. T. O. Kirk, “Dependence of Relationship Between Inherent and Apparent Optical Properties of Water on Solar Altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
    [Crossref]
  37. J. H. Simpson and J. R. Hunter, “Fronts in the Irish Sea,” Nature 250(5465), 404–406 (1974).
    [Crossref]
  38. G. Guo, Z. Yang, D. Fan, and Y. Pan, “Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area,” Acta Geogr. Sin. 58, 591–597 (2003).
  39. J. Zhang, W. Huang, and M. Liu, “Distribution of Suspended Materials and its Seasonal Change in the Huanghei River Estuary as well as the nearby Sea area,” J. Ocean Univ. China 15, 96–104 (1985).
  40. H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

2017 (2)

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

T. Rodrigues, E. Alcântara, F. Watanabe, and N. Imai, “Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme,” Remote Sens. Environ. 198, 213–228 (2017).
[Crossref]

2016 (4)

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
[Crossref]

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

2015 (2)

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

2014 (1)

2013 (4)

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Z. Qiu, T. Wu, and Y. Su, “Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance,” Opt. Express 21(13), 15287–15297 (2013).
[Crossref] [PubMed]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

2012 (2)

I. M. Levin and T. M. Radomyslskaya, “Estimate of water inherent optical properties from Secchi depth,” Izv Atmos. Ocean Phy. 48(2), 214–221 (2012).
[Crossref]

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

2011 (3)

M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
[Crossref]

J. H. Ryu, J. K. Choi, J. Eom, and J. H. Ahn, “Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager,” J. Coast. Res. SI64, 1731–1735 (2011).

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

2007 (2)

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Trends in Water Clarity of the Lower Great Lakes from Remotely Sensed Aquatic Color,” J. Great Lakes Res. 33(4), 828–841 (2007).
[Crossref]

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

2005 (1)

S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
[Crossref]

2004 (2)

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

X. He, D. Pan, and Z. Mao, “The study on the inversing model of water transparency using the SeaWiFS data,” Acta Oceanol. Sin. 26, 55 (2004).

2003 (3)

H. J. Lee and S. Y. Chao, “A climatological description of circulation in and around the East China Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 50(6-7), 1065–1084 (2003).
[Crossref]

G. Guo, Z. Yang, D. Fan, and Y. Pan, “Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area,” Acta Geogr. Sin. 58, 591–597 (2003).

S. Kratzer, B. Håkansson, and C. Sahlin, “Assessing Secchi and Photic Zone Depth in the Baltic Sea from Satellite Data,” Ambio 32(8), 577–585 (2003).
[Crossref] [PubMed]

2002 (3)

S. Koponen, J. Pulliainen, K. Kallio, and M. Hallikainen, “Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data,” Remote Sens. Environ. 79(1), 51–59 (2002).
[Crossref]

H. J. Lie, S. Lee, and C. H. Cho, “Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas,” J. Geophys Res: Oceans 107, 22 (2002).

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

2000 (1)

F. Lefèvre, C. L. Provost, and F. H. Lyard, “How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea,” J. Geophys. Res. Oceans 105(C4), 8707–8725 (2000).
[Crossref]

1997 (2)

C. L. Provost and F. Lyard, “Energetics of the M 2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model,” Prog. Oceanogr. 40(1-4), 37–52 (1997).
[Crossref]

G. Verschuur, “Transparency Measurements in Garner Lake, Tennessee: The Relationship between Secchi Depth and Solar Altitude and a Suggestion for Normalization of Secchi Depth Data,” Lake Reserv. Manage. 13(2), 142–153 (1997).
[Crossref]

1992 (1)

P. G. Falkowski and C. Wilson, “Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO 2,” Nature 358(6389), 741–743 (1992).
[Crossref]

1986 (1)

R. W. Preisendorfer, “Secchi Disk Science: Visual Optics of Natural Waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
[Crossref]

1985 (1)

J. Zhang, W. Huang, and M. Liu, “Distribution of Suspended Materials and its Seasonal Change in the Huanghei River Estuary as well as the nearby Sea area,” J. Ocean Univ. China 15, 96–104 (1985).

1984 (1)

J. T. O. Kirk, “Dependence of Relationship Between Inherent and Apparent Optical Properties of Water on Solar Altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[Crossref]

1974 (1)

J. H. Simpson and J. R. Hunter, “Fronts in the Irish Sea,” Nature 250(5465), 404–406 (1974).
[Crossref]

Ahn, J. H.

J. H. Ryu, J. K. Choi, J. Eom, and J. H. Ahn, “Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager,” J. Coast. Res. SI64, 1731–1735 (2011).

Alcântara, E.

T. Rodrigues, E. Alcântara, F. Watanabe, and N. Imai, “Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme,” Remote Sens. Environ. 198, 213–228 (2017).
[Crossref]

Arnone, R.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Arnone, R. A.

Babin, M.

M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
[Crossref]

Bai, Y.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Bi, N.

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

Binding, C. E.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Trends in Water Clarity of the Lower Great Lakes from Remotely Sensed Aquatic Color,” J. Great Lakes Res. 33(4), 828–841 (2007).
[Crossref]

Booty, W. G.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Trends in Water Clarity of the Lower Great Lakes from Remotely Sensed Aquatic Color,” J. Great Lakes Res. 33(4), 828–841 (2007).
[Crossref]

Brewin, R.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Brock, J. C.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Bukata, R. P.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Trends in Water Clarity of the Lower Great Lakes from Remotely Sensed Aquatic Color,” J. Great Lakes Res. 33(4), 828–841 (2007).
[Crossref]

Campbell, J.

S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
[Crossref]

Carder, K. L.

Chao, S. Y.

H. J. Lee and S. Y. Chao, “A climatological description of circulation in and around the East China Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 50(6-7), 1065–1084 (2003).
[Crossref]

Chen, C. T. A.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Chen, J.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Chen, Q.

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Chen, Z.

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Cho, C. H.

H. J. Lie, S. Lee, and C. H. Cho, “Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas,” J. Geophys Res: Oceans 107, 22 (2002).

Choi, J. K.

J. H. Ryu, J. K. Choi, J. Eom, and J. H. Ahn, “Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager,” J. Coast. Res. SI64, 1731–1735 (2011).

Clayton, T. D.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Clevers, J. G. P. W.

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

Cui, Q.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Cui, T.

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Dong, L. X.

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Dong, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Doron, M.

M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
[Crossref]

Dowell, M.

S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
[Crossref]

Du, K.

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Eom, J.

J. H. Ryu, J. K. Choi, J. Eom, and J. H. Ahn, “Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager,” J. Coast. Res. SI64, 1731–1735 (2011).

Falkowski, P. G.

P. G. Falkowski and C. Wilson, “Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO 2,” Nature 358(6389), 741–743 (1992).
[Crossref]

Fan, D.

G. Guo, Z. Yang, D. Fan, and Y. Pan, “Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area,” Acta Geogr. Sin. 58, 591–597 (2003).

Garnesson, P.

M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
[Crossref]

Gong, F.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

Guan, W. B.

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Guo, G.

G. Guo, Z. Yang, D. Fan, and Y. Pan, “Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area,” Acta Geogr. Sin. 58, 591–597 (2003).

Håkansson, B.

S. Kratzer, B. Håkansson, and C. Sahlin, “Assessing Secchi and Photic Zone Depth in the Baltic Sea from Satellite Data,” Ambio 32(8), 577–585 (2003).
[Crossref] [PubMed]

Hallikainen, M.

S. Koponen, J. Pulliainen, K. Kallio, and M. Hallikainen, “Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data,” Remote Sens. Environ. 79(1), 51–59 (2002).
[Crossref]

He, X.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

X. He, D. Pan, and Z. Mao, “The study on the inversing model of water transparency using the SeaWiFS data,” Acta Oceanol. Sin. 26, 55 (2004).

He, Y.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Hembise, O.

M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
[Crossref]

Hou, W.

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Hu, C.

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[Crossref] [PubMed]

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Hu, Z.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

Huang, N.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

Huang, W.

J. Zhang, W. Huang, and M. Liu, “Distribution of Suspended Materials and its Seasonal Change in the Huanghei River Estuary as well as the nearby Sea area,” J. Ocean Univ. China 15, 96–104 (1985).

Hunter, J. R.

J. H. Simpson and J. R. Hunter, “Fronts in the Irish Sea,” Nature 250(5465), 404–406 (1974).
[Crossref]

Imai, N.

T. Rodrigues, E. Alcântara, F. Watanabe, and N. Imai, “Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme,” Remote Sens. Environ. 198, 213–228 (2017).
[Crossref]

Jerome, J. H.

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Trends in Water Clarity of the Lower Great Lakes from Remotely Sensed Aquatic Color,” J. Great Lakes Res. 33(4), 828–841 (2007).
[Crossref]

Kallio, K.

S. Koponen, J. Pulliainen, K. Kallio, and M. Hallikainen, “Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data,” Remote Sens. Environ. 79(1), 51–59 (2002).
[Crossref]

Kirk, J. T. O.

J. T. O. Kirk, “Dependence of Relationship Between Inherent and Apparent Optical Properties of Water on Solar Altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[Crossref]

Koponen, S.

S. Koponen, J. Pulliainen, K. Kallio, and M. Hallikainen, “Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data,” Remote Sens. Environ. 79(1), 51–59 (2002).
[Crossref]

Kosten, S.

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

Kratzer, S.

S. Kratzer, B. Håkansson, and C. Sahlin, “Assessing Secchi and Photic Zone Depth in the Baltic Sea from Satellite Data,” Ambio 32(8), 577–585 (2003).
[Crossref] [PubMed]

Lee, H. J.

H. J. Lee and S. Y. Chao, “A climatological description of circulation in and around the East China Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 50(6-7), 1065–1084 (2003).
[Crossref]

Lee, S.

H. J. Lie, S. Lee, and C. H. Cho, “Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas,” J. Geophys Res: Oceans 107, 22 (2002).

Lee, Z.

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
[Crossref]

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[Crossref] [PubMed]

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Z. Lee, K. L. Carder, and R. A. Arnone, “Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41(27), 5755–5772 (2002).
[Crossref] [PubMed]

Lee, Z. P.

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Lefèvre, F.

F. Lefèvre, C. L. Provost, and F. H. Lyard, “How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea,” J. Geophys. Res. Oceans 105(C4), 8707–8725 (2000).
[Crossref]

Levin, I. M.

I. M. Levin and T. M. Radomyslskaya, “Estimate of water inherent optical properties from Secchi depth,” Izv Atmos. Ocean Phy. 48(2), 214–221 (2012).
[Crossref]

Lewis, M.

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Li, X.

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Li, X. H.

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Lie, H. J.

H. J. Lie, S. Lee, and C. H. Cho, “Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas,” J. Geophys Res: Oceans 107, 22 (2002).

Lin, G.

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
[Crossref]

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Lin, J.

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Liu, M.

J. Zhang, W. Huang, and M. Liu, “Distribution of Suspended Materials and its Seasonal Change in the Huanghei River Estuary as well as the nearby Sea area,” J. Ocean Univ. China 15, 96–104 (1985).

Liu, X. H.

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Liu, Y.

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Lu, Y.

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Lyard, F.

C. L. Provost and F. Lyard, “Energetics of the M 2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model,” Prog. Oceanogr. 40(1-4), 37–52 (1997).
[Crossref]

Lyard, F. H.

F. Lefèvre, C. L. Provost, and F. H. Lyard, “How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea,” J. Geophys. Res. Oceans 105(C4), 8707–8725 (2000).
[Crossref]

Mangin, A.

M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
[Crossref]

Mao, Y.

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Mao, Z.

X. He, D. Pan, and Z. Mao, “The study on the inversing model of water transparency using the SeaWiFS data,” Acta Oceanol. Sin. 26, 55 (2004).

Miyazawa, Y.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

Muller-Karger, F. E.

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Noh, J.

S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
[Crossref]

Pan, D.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

X. He, D. Pan, and Z. Mao, “The study on the inversing model of water transparency using the SeaWiFS data,” Acta Oceanol. Sin. 26, 55 (2004).

Pan, Y.

G. Guo, Z. Yang, D. Fan, and Y. Pan, “Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area,” Acta Geogr. Sin. 58, 591–597 (2003).

Perrie, W.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Preisendorfer, R. W.

R. W. Preisendorfer, “Secchi Disk Science: Visual Optics of Natural Waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
[Crossref]

Provost, C. L.

F. Lefèvre, C. L. Provost, and F. H. Lyard, “How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea,” J. Geophys. Res. Oceans 105(C4), 8707–8725 (2000).
[Crossref]

C. L. Provost and F. Lyard, “Energetics of the M 2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model,” Prog. Oceanogr. 40(1-4), 37–52 (1997).
[Crossref]

Pulliainen, J.

S. Koponen, J. Pulliainen, K. Kallio, and M. Hallikainen, “Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data,” Remote Sens. Environ. 79(1), 51–59 (2002).
[Crossref]

Qi, L.

Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
[Crossref]

Qiao, S.

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Qiu, Z.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Z. Qiu, T. Wu, and Y. Su, “Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance,” Opt. Express 21(13), 15287–15297 (2013).
[Crossref] [PubMed]

Radomyslskaya, T. M.

I. M. Levin and T. M. Radomyslskaya, “Estimate of water inherent optical properties from Secchi depth,” Izv Atmos. Ocean Phy. 48(2), 214–221 (2012).
[Crossref]

Ran, X.

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Rodrigues, T.

T. Rodrigues, E. Alcântara, F. Watanabe, and N. Imai, “Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme,” Remote Sens. Environ. 198, 213–228 (2017).
[Crossref]

Ryu, J. H.

J. H. Ryu, J. K. Choi, J. Eom, and J. H. Ahn, “Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager,” J. Coast. Res. SI64, 1731–1735 (2011).

Sagrario, M. D. Á. G.

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

Sahlin, C.

S. Kratzer, B. Håkansson, and C. Sahlin, “Assessing Secchi and Photic Zone Depth in the Baltic Sea from Satellite Data,” Ambio 32(8), 577–585 (2003).
[Crossref] [PubMed]

Scheffer, M.

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

Shang, S.

Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
[Crossref]

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Z. Lee, S. Shang, C. Hu, and G. Zibordi, “Spectral interdependence of remote-sensing reflectance and its implications on the design of ocean color satellite sensors,” Appl. Opt. 53(15), 3301–3310 (2014).
[Crossref] [PubMed]

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

Shen, H.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Shi, L.

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Shi, X.

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Simpson, J. H.

J. H. Simpson and J. R. Hunter, “Fronts in the Irish Sea,” Nature 250(5465), 404–406 (1974).
[Crossref]

Son, S. H.

S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
[Crossref]

Su, Y.

Sun, D.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Swarzenski, P.

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Van Nes, E. H.

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

Vernooij, M.

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

Verschuur, G.

G. Verschuur, “Transparency Measurements in Garner Lake, Tennessee: The Relationship between Secchi Depth and Solar Altitude and a Suggestion for Normalization of Secchi Depth Data,” Lake Reserv. Manage. 13(2), 142–153 (1997).
[Crossref]

Wang, A.

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

Wang, D.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

Wang, D. P.

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

Wang, H.

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Wang, S.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Watanabe, F.

T. Rodrigues, E. Alcântara, F. Watanabe, and N. Imai, “Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme,” Remote Sens. Environ. 198, 213–228 (2017).
[Crossref]

Wei, G.

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Weidemann, A.

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

Wilson, C.

P. G. Falkowski and C. Wilson, “Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO 2,” Nature 358(6389), 741–743 (1992).
[Crossref]

Wu, C.

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Wu, T.

Wu, X.

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

Xiao, C.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Xiao, H.

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

Yan, J.

Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
[Crossref]

Yang, D.

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Yang, Z.

G. Guo, Z. Yang, D. Fan, and Y. Pan, “Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area,” Acta Geogr. Sin. 58, 591–597 (2003).

Ye, Z.

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Yoo, S.

S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
[Crossref]

Yu, Y.

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Yue, X.

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Zeng, X. M.

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Zhang, J.

J. Zhang, W. Huang, and M. Liu, “Distribution of Suspended Materials and its Seasonal Change in the Huanghei River Estuary as well as the nearby Sea area,” J. Ocean Univ. China 15, 96–104 (1985).

Zhang, Y.

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

Zibordi, G.

Acta Geogr. Sin. (1)

G. Guo, Z. Yang, D. Fan, and Y. Pan, “Seasonal Sedimentary Effect on the Changjiang Estuary Mud Area,” Acta Geogr. Sin. 58, 591–597 (2003).

Acta Oceanol. Sin. (1)

X. He, D. Pan, and Z. Mao, “The study on the inversing model of water transparency using the SeaWiFS data,” Acta Oceanol. Sin. 26, 55 (2004).

Ambio (1)

S. Kratzer, B. Håkansson, and C. Sahlin, “Assessing Secchi and Photic Zone Depth in the Baltic Sea from Satellite Data,” Ambio 32(8), 577–585 (2003).
[Crossref] [PubMed]

Appl. Opt. (2)

Cont. Shelf Res. (1)

Y. Yu, H. Wang, X. Shi, X. Ran, T. Cui, S. Qiao, and Y. Liu, “New discharge regime of the Huanghe (Yellow River): Causes and implications,” Cont. Shelf Res. 69, 62–72 (2013).
[Crossref]

Deep Sea Res. Part II Top. Stud. Oceanogr. (1)

H. J. Lee and S. Y. Chao, “A climatological description of circulation in and around the East China Sea,” Deep Sea Res. Part II Top. Stud. Oceanogr. 50(6-7), 1065–1084 (2003).
[Crossref]

Estuar. Coast. Shelf Sci. (1)

L. X. Dong, W. B. Guan, Q. Chen, X. H. Li, X. H. Liu, and X. M. Zeng, “Sediment transport in the Yellow Sea and East China Sea,” Estuar. Coast. Shelf Sci. 93(3), 248–258 (2011).
[Crossref]

Freshwater Biol (1)

S. Kosten, M. Vernooij, E. H. Van Nes, M. D. Á. G. Sagrario, J. G. P. W. Clevers, and M. Scheffer, “Bimodal transparency as an indicator for alternative states in South American lakes,” Freshwater Biol 57(6), 1191–1201 (2012).
[Crossref]

Guangxi Science (1)

Y. Mao, Z. Qiu, D. Sun, S. Wang, Y. Lu, C. Wu, X. Yue, and Z. Ye, “A Novel Remote Sensing Algorithm for Estimating Diffuse Attenuation Coefficient in the BohaiSea and Yellow Sea,” Guangxi Science 23, 513–519 (2016).

Haiyang Dizhi Yu Disiji Dizhi (1)

H. Xiao, H. Wang, N. Bi, X. Wu, A. Wang, and Y. Zhang, “Seasonal Variation of Suspended Sediment in the Bohai and Yellow Sea and the Pathway of Sediment Transport,” Haiyang Dizhi Yu Disiji Dizhi 35, 11–21 (2015).

Izv Atmos. Ocean Phy. (1)

I. M. Levin and T. M. Radomyslskaya, “Estimate of water inherent optical properties from Secchi depth,” Izv Atmos. Ocean Phy. 48(2), 214–221 (2012).
[Crossref]

J. Coast. Res. (1)

J. H. Ryu, J. K. Choi, J. Eom, and J. H. Ahn, “Temporal variation in Korean coastal waters using Geostationary Ocean Color Imager,” J. Coast. Res. SI64, 1731–1735 (2011).

J. Geophys Res: Oceans (1)

H. J. Lie, S. Lee, and C. H. Cho, “Computation methods of major tidal currents from satellite-trackeddrifter positions, with application to the Yellow and East China Seas,” J. Geophys Res: Oceans 107, 22 (2002).

J. Geophys. Res-Oceans (1)

Z. Hu, D. P. Wang, D. Pan, X. He, Y. Miyazawa, Y. Bai, D. Wang, and F. Gong, “Mapping surface tidal currents and Changjiang plume in the East China Sea from Geostationary Ocean Color Imager,” J. Geophys. Res-Oceans 121, 1563 (2016).

J. Geophys. Res. Oceans (3)

F. Lefèvre, C. L. Provost, and F. H. Lyard, “How can we improve a global ocean tide model at a regional scale? A test on the Yellow Sea and the East China Sea,” J. Geophys. Res. Oceans 105(C4), 8707–8725 (2000).
[Crossref]

Z. Qiu, C. Xiao, W. Perrie, D. Sun, S. Wang, H. Shen, D. Yang, and Y. He, “Using Landsat 8 data to estimate suspended particulate matter in the Yellow River estuary,” J. Geophys. Res. Oceans 122, 276 (2017).

Z. Lee, C. Hu, S. Shang, K. Du, M. Lewis, R. Arnone, and R. Brewin, “Penetration of UV‐visible solar radiation in the global oceans: Insights from ocean color remote sensing,” J. Geophys. Res. Oceans 118(9), 4241–4255 (2013).
[Crossref]

J. Great Lakes Res. (1)

C. E. Binding, J. H. Jerome, R. P. Bukata, and W. G. Booty, “Trends in Water Clarity of the Lower Great Lakes from Remotely Sensed Aquatic Color,” J. Great Lakes Res. 33(4), 828–841 (2007).
[Crossref]

J. Ocean Univ. China (1)

J. Zhang, W. Huang, and M. Liu, “Distribution of Suspended Materials and its Seasonal Change in the Huanghei River Estuary as well as the nearby Sea area,” J. Ocean Univ. China 15, 96–104 (1985).

Lake Reserv. Manage. (1)

G. Verschuur, “Transparency Measurements in Garner Lake, Tennessee: The Relationship between Secchi Depth and Solar Altitude and a Suggestion for Normalization of Secchi Depth Data,” Lake Reserv. Manage. 13(2), 142–153 (1997).
[Crossref]

Limnol. Oceanogr. (2)

J. T. O. Kirk, “Dependence of Relationship Between Inherent and Apparent Optical Properties of Water on Solar Altitude,” Limnol. Oceanogr. 29(2), 350–356 (1984).
[Crossref]

R. W. Preisendorfer, “Secchi Disk Science: Visual Optics of Natural Waters,” Limnol. Oceanogr. 31(5), 909–926 (1986).
[Crossref]

Mar. Ecol. Prog. Ser. (1)

S. H. Son, J. Campbell, M. Dowell, S. Yoo, and J. Noh, “Primary production in the Yellow Sea determined by ocean color remote sensing,” Mar. Ecol. Prog. Ser. 303, 91–103 (2005).
[Crossref]

Nature (2)

P. G. Falkowski and C. Wilson, “Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO 2,” Nature 358(6389), 741–743 (1992).
[Crossref]

J. H. Simpson and J. R. Hunter, “Fronts in the Irish Sea,” Nature 250(5465), 404–406 (1974).
[Crossref]

Opt. Express (1)

Prog. Oceanogr. (1)

C. L. Provost and F. Lyard, “Energetics of the M 2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model,” Prog. Oceanogr. 40(1-4), 37–52 (1997).
[Crossref]

Remote Sens. Environ. (9)

C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, and F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL,” Remote Sens. Environ. 93(3), 423–441 (2004).
[Crossref]

Z. P. Lee, S. Shang, C. Hu, K. Du, A. Weidemann, W. Hou, J. Lin, and G. Lin, “Secchi disk depth: A new theory and mechanistic model for underwater visibility,” Remote Sens. Environ. 169, 139–149 (2015).
[Crossref]

T. Rodrigues, E. Alcântara, F. Watanabe, and N. Imai, “Retrieval of Secchi disk depth from a reservoir using a semi-analytical scheme,” Remote Sens. Environ. 198, 213–228 (2017).
[Crossref]

S. Shang, Z. Lee, L. Shi, G. Lin, G. Wei, and X. Li, “Changes in water clarity of the Bohai Sea: Observations from MODIS,” Remote Sens. Environ. 186, 22–31 (2016).
[Crossref]

Z. Chen, F. E. Muller-Karger, and C. Hu, “Remote sensing of water clarity in Tampa Bay,” Remote Sens. Environ. 109(2), 249–259 (2007).
[Crossref]

S. Koponen, J. Pulliainen, K. Kallio, and M. Hallikainen, “Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data,” Remote Sens. Environ. 79(1), 51–59 (2002).
[Crossref]

Z. Lee, S. Shang, L. Qi, J. Yan, and G. Lin, “A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements,” Remote Sens. Environ. 177, 101–106 (2016).
[Crossref]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. T. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ. 133, 225–239 (2013).
[Crossref]

M. Doron, M. Babin, O. Hembise, A. Mangin, and P. Garnesson, “Ocean transparency from space: Validation of algorithms estimating Secchi depth using MERIS, MODIS and SeaWiFS data,” Remote Sens. Environ. 115(12), 2986–3001 (2011).
[Crossref]

Other (3)

S. Q. Duntley, “The Visibility of Submerged Objects” Visibility Lab., Mass. Inst. Tech. (pp. 74) (San Diego), (1952).

H. T. Shahraini, H. Sharifi, and M. Sanaeifar, “Development of clarity model for Caspian Sea using MERIS data,” Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2011. Vol. 8175. International Society for Optics and Photonics, (2011).

H. Taheri Shahraini, H. Sharifi, and M. Sanaeifar, “Development of clarity model for Caspian Sea using MERIS data,” in SPIE Remote Sensing(2011), pp. -.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Map of the BHS, the north of the Yellow Sea (NYS) and the south of the Yellow Sea (SYS), the black rectangular boxes denote the studied regions which represent the coast and central areas of the BHS and YS. (b) Sampling sites for bio-optical properties of the water in BHS and YS, between May 2014 and July 2016, the red triangles represent the satellite-ground synchronous data sets based on this filed measurements and the red asterisks denote the tide stations of Yingkou, Jinzhou, Jingtang, Longkou, Yantai, and Lianyungang, respectively. (c) Map of Yangtze estuary. Based on the diffusion form of the waters in the river mouth, it is divided into three fan-shaped segments from the estuary: Z1, Z2, and Z3, respectively.
Fig. 2
Fig. 2 Measured Kd(490) versus modeled Kd(490) developed by Lee et al. (2015). The red rectangle indicates the obvious deviation at the high-value range of Kd(490).
Fig. 3
Fig. 3 (a) Kd(490) versus Rrs(683) / Rrs(490) . The area of the red lines is the transition between the clear or slightly turbid waters and the highly turbid waters. (b) Measured Kd(490) vs Modeled Kd(490) developed by combined model.
Fig. 4
Fig. 4 The relationship between Kd(490) and other spectral bands of Kd.
Fig. 5
Fig. 5 (a) Modeled Zsd (based on in situ Kd) versus in situ Zsd; (b) GOCI derived Zsd versus in situ Zsd.
Fig. 6
Fig. 6 Hourly spatiotemporal variations of GOIC derived Zsd in the BHS and YS on February 17, 2016. Where white areas represent cloud covers.
Fig. 7
Fig. 7 Diurnal variations in the average values of GOCI derived Zsd, represented by red lines with red points, in the central areas of BHS (Box A), NYS (Box B) and SYS (Box D) as shown in Fig. 1(a) as well as the corresponding SOLZ, represented by blue lines with blue points, observations in September 2015.
Fig. 8
Fig. 8 Diurnal variations in the average values of GOCI derived Zsd, represented by red lines with red spots, and SOLZ, represented by blue lines with blue spots, near the tidal stations at a spatial range of ± 5 km in the BHS and YS and in September 2015 as well as the corresponding field tidal level records, represented by black lines with black spots. Where R1 represents the correlation between Zsd and SOLZ and R2 represents the correlation between Zsd and tidal level.
Fig. 9
Fig. 9 Monthly average observations of GOCI derived Zsd in the BHS and YS from December 2014 to November 2015.
Fig. 10
Fig. 10 The monthly mean GOCI derived Zsd observations, represented by blue lines with blue points, in the central and coastal parts of BHS and YS (Box A, B, C, D, E, F, G, as shown in Fig. 1) versus the monthly average values of the wind speed, represented by black lines with black points, derived from CFSv2 data from December, 2014 to November, 2015. R is the correlation coefficient between Zsd and wind speed, P is the P-value.
Fig. 11
Fig. 11 Monthly SH in the BHS and YS from December 2014 to November 2015.
Fig. 12
Fig. 12 Comparison of the monthly variations (from December 2014 to November 2015) between the records of the runoff in Datong hydrological gauging station and the GOCI-retrieved mean Zsd in the Z1, Z2, and Z3 (as marked in Fig. .1), respectively.

Tables (3)

Tables Icon

Table 1 Location and time of the cruise surveys to measure ocean properties

Tables Icon

Table 2 The contrast between the accuracy of the Kd(490) algorithms before and after regional tuned

Tables Icon

Table 3 The linear regression results between Kd(490) and other bands of Kd.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E d (λ,z)= E d (λ, 0 )exp[ K d (λ)z]
r rs (λ)= L u (λ, 0 )/ E d (λ, 0 )
R rs (λ) 0.518 r rs (λ) 11.562 r rs (λ)
Z sd = 1 2.5Min( K d (443,490,532,555,665)) ln( | 0.14 R rs | 0.013 ).
RMSE= i=1 n ( x i y i ) 2 N
MAPE= 1 N i=1 n | x i - y i x i |×100%
K d (490)=(1+0.005 θ 0 )a(490)+4.18{10.52exp[10.8a(490)]} b b (490)
R(λ)1.89Q R rs (λ)
b b (490)= b bw (490) B a w (665)R(710)f(665) b bw (665) f(710) a w (665)R(665) + B a w (665)R(710) f(710)
a(490)= f(490) b b (490) R(490)
K d Combined = w 1 × K d Clea r + w 2 × K d turbid
w 1 = 1.2 R rs (683)/ R rs (490) 1.20.5
w 2 =1 1.2 R rs (683)/ R rs (490) 1.20.5
SH= log 10 H U ¯ 3

Metrics