Abstract

This article presents new spectroscopic results in standoff chemical detection that are enabled by monolithic arrays of Distributed Feedback (DFB) Quantum Cascade Lasers (QCLs), with each array element at a slightly different wavelength than its neighbor. The standoff analysis of analyte/substrate pairs requires a laser source with characteristics offered uniquely by a QCL Array. This is particularly true for time-evolving liquid chemical warfare agent (CWA) analysis. In addition to describing the QCL array source developed for long wave infrared coverage, a description of an integrated prototype standoff detection system is provided. Experimental standoff detection results using the man-portable system for droplet examination from 1.3 meters are presented using the CWAs VX and T-mustard as test cases. Finally, we consider three significant challenges to working with droplets and liquid films in standoff spectroscopy: substrate uptake of the analyte, time-dependent droplet spread of the analyte, and variable substrate contributions to retrieved signals.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Passive standoff detection of chemical warfare agents on surfaces

Jean-Marc Thériault, Eldon Puckrin, Jim Hancock, Pierre Lecavalier, Carmela Jackson Lepage, and James O. Jensen
Appl. Opt. 43(31) 5870-5885 (2004)

Thermal luminescence spectroscopy chemical imaging sensor

Arthur H. Carrieri, Tudor N. Buican, Erik S. Roese, James Sutter, and Alan C. Samuels
Appl. Opt. 51(28) 6765-6780 (2012)

Active hyperspectral imaging using a quantum cascade laser (QCL) array and digital-pixel focal plane array (DFPA) camera

Anish Goyal, Travis Myers, Christine A. Wang, Michael Kelly, Brian Tyrrell, B. Gokden, Antonio Sanchez, George Turner, and Federico Capasso
Opt. Express 22(12) 14392-14401 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
    [Crossref] [PubMed]
  2. M. Gaft and L. Nagli, “Standoff laser-based spectroscopy for explosives detection,” in G. W. Kamerman, O. K. Steinvall, K. L. Lewis, K. A. Krapels, J. C. Carrano, and A. Zukauskas, eds. (International Society for Optics and Photonics, 2007), Vol. 6739, p. 673903.
  3. B. Hinkov, F. Fuchs, J. M. Kaster, Q. Yang, W. Bronner, R. Aidam, and K. Köhler, “Broad band tunable quantum cascade lasers for stand-off detection of explosives,” in J. C. Carrano and C. J. Collins, eds. (International Society for Optics and Photonics, 2009), Vol. 7484, p. 748406.
  4. P. M. Pellegrino, E. L. Holthoff, and M. E. Farrell, Laser-Based Optical Detection of Explosives (CRC Press, 2017).
  5. J.-M. Thériault, E. Puckrin, J. Hancock, P. Lecavalier, C. J. Lepage, and J. O. Jensen, “Passive standoff detection of chemical warfare agents on surfaces,” Appl. Opt. 43(31), 5870–5885 (2004).
    [Crossref] [PubMed]
  6. B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
    [Crossref] [PubMed]
  7. B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
    [Crossref]
  8. L. Diehl, B. G. Lee, H. A. Zhang, C. Pflügl, M. Belkin, M. Fisher, A. Wittman, J. Faist, and F. Capasso, “Broadband Distributed Feedback Quantum Cascade Laser Array Using a Heterogeneous Cascade,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (OSA, 2009), p. CThT1.
    [Crossref]
  9. K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” in M. Razeghi, R. Sudharsanan, and G. J. Brown, eds. (2011), p. 79450P.
  10. F. Fuchs, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
    [Crossref]
  11. G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
    [Crossref]
  12. I. Freund, “Joseph W. Goodman: Speckle Phenomena in Optics: Theory and Applications,” J. Stat. Phys. 130(2), 413–414 (2007).
    [Crossref]
  13. M. B. Mitchell, “Fundamentals and Applications of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy,” Adv. Chem. 236, 351–375 (1993).
  14. T. Armaroli, T. Bécue, and S. Gautier, “Diffuse Reflection Infrared Spectroscopy (Drifts): Application to the in Situ Analysis of Catalysts,” Oil Gas Sci. Technol. 59(2), 215–237 (2004).
    [Crossref]
  15. R. Harig, R. Braun, C. Dyer, C. Howle, and B. Truscott, “Short-range remote detection of liquid surface contamination by active imaging Fourier transform spectrometry,” Opt. Express 16(8), 5708–5714 (2008).
    [Crossref] [PubMed]

2013 (1)

G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
[Crossref]

2010 (1)

F. Fuchs, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[Crossref]

2009 (3)

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[Crossref] [PubMed]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[Crossref] [PubMed]

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

2008 (1)

2007 (1)

I. Freund, “Joseph W. Goodman: Speckle Phenomena in Optics: Theory and Applications,” J. Stat. Phys. 130(2), 413–414 (2007).
[Crossref]

2004 (2)

T. Armaroli, T. Bécue, and S. Gautier, “Diffuse Reflection Infrared Spectroscopy (Drifts): Application to the in Situ Analysis of Catalysts,” Oil Gas Sci. Technol. 59(2), 215–237 (2004).
[Crossref]

J.-M. Thériault, E. Puckrin, J. Hancock, P. Lecavalier, C. J. Lepage, and J. O. Jensen, “Passive standoff detection of chemical warfare agents on surfaces,” Appl. Opt. 43(31), 5870–5885 (2004).
[Crossref] [PubMed]

1993 (1)

M. B. Mitchell, “Fundamentals and Applications of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy,” Adv. Chem. 236, 351–375 (1993).

Akram, M. N.

G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
[Crossref]

Armaroli, T.

T. Armaroli, T. Bécue, and S. Gautier, “Diffuse Reflection Infrared Spectroscopy (Drifts): Application to the in Situ Analysis of Catalysts,” Oil Gas Sci. Technol. 59(2), 215–237 (2004).
[Crossref]

Audet, R. M.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Bécue, T.

T. Armaroli, T. Bécue, and S. Gautier, “Diffuse Reflection Infrared Spectroscopy (Drifts): Application to the in Situ Analysis of Catalysts,” Oil Gas Sci. Technol. 59(2), 215–237 (2004).
[Crossref]

Belkin, M. A.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[Crossref] [PubMed]

Bour, D. P.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Braun, R.

Capasso, F.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Capasso, F. A.

Chen, X. Y.

G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
[Crossref]

Corzine, S. W.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Diehl, L.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[Crossref] [PubMed]

Dyer, C.

Freund, I.

I. Freund, “Joseph W. Goodman: Speckle Phenomena in Optics: Theory and Applications,” J. Stat. Phys. 130(2), 413–414 (2007).
[Crossref]

Fuchs, F.

F. Fuchs, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[Crossref]

Gautier, S.

T. Armaroli, T. Bécue, and S. Gautier, “Diffuse Reflection Infrared Spectroscopy (Drifts): Application to the in Situ Analysis of Catalysts,” Oil Gas Sci. Technol. 59(2), 215–237 (2004).
[Crossref]

Goyal, A. K.

Hancock, J.

Harig, R.

Hobro, A.

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[Crossref] [PubMed]

Howle, C.

Hufler, G. E.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Jensen, J. O.

Kansky, J.

Lecavalier, P.

Lee, B. G.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

B. G. Lee, J. Kansky, A. K. Goyal, C. Pflügl, L. Diehl, M. A. Belkin, A. Sanchez, and F. A. Capasso, “Beam combining of quantum cascade laser arrays,” Opt. Express 17(18), 16216–16224 (2009).
[Crossref] [PubMed]

Lepage, C. J.

MacArthur, J.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Mitchell, M. B.

M. B. Mitchell, “Fundamentals and Applications of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy,” Adv. Chem. 236, 351–375 (1993).

Östmark, H.

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[Crossref] [PubMed]

Ouyang, G.

G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
[Crossref]

Pettersson, A.

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[Crossref] [PubMed]

Pflugl, C.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Pflügl, C.

Puckrin, E.

Sanchez, A.

Thériault, J.-M.

Tong, Z.

G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
[Crossref]

Truscott, B.

Wallin, S.

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[Crossref] [PubMed]

Wang, K.

G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
[Crossref]

Zhang, H. A.

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

Adv. Chem. (1)

M. B. Mitchell, “Fundamentals and Applications of Diffuse Reflectance Infrared Fourier Transform (DRIFT) Spectroscopy,” Adv. Chem. 236, 351–375 (1993).

Anal. Bioanal. Chem. (1)

S. Wallin, A. Pettersson, H. Östmark, and A. Hobro, “Laser-based standoff detection of explosives: a critical review,” Anal. Bioanal. Chem. 395(2), 259–274 (2009).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

B. G. Lee, M. A. Belkin, C. Pflugl, L. Diehl, H. A. Zhang, R. M. Audet, J. MacArthur, D. P. Bour, S. W. Corzine, G. E. Hufler, and F. Capasso, “DFB Quantum Cascade Laser Arrays,” IEEE J. Quantum Electron. 45(5), 554–565 (2009).
[Crossref]

J. Eur. Opt. Soc. (1)

G. Ouyang, M. N. Akram, K. Wang, Z. Tong, and X. Y. Chen, “Laser speckle reduction based on angular diversity induced by Piezoelectric Benders,” J. Eur. Opt. Soc. 8, 13025 (2013).
[Crossref]

J. Stat. Phys. (1)

I. Freund, “Joseph W. Goodman: Speckle Phenomena in Optics: Theory and Applications,” J. Stat. Phys. 130(2), 413–414 (2007).
[Crossref]

Oil Gas Sci. Technol. (1)

T. Armaroli, T. Bécue, and S. Gautier, “Diffuse Reflection Infrared Spectroscopy (Drifts): Application to the in Situ Analysis of Catalysts,” Oil Gas Sci. Technol. 59(2), 215–237 (2004).
[Crossref]

Opt. Eng. (1)

F. Fuchs, “Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers,” Opt. Eng. 49(11), 111127 (2010).
[Crossref]

Opt. Express (2)

Other (5)

L. Diehl, B. G. Lee, H. A. Zhang, C. Pflügl, M. Belkin, M. Fisher, A. Wittman, J. Faist, and F. Capasso, “Broadband Distributed Feedback Quantum Cascade Laser Array Using a Heterogeneous Cascade,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (OSA, 2009), p. CThT1.
[Crossref]

K. Degreif, S. Rademacher, P. Dasheva, F. Fuchs, S. Hugger, F. Schnürer, and W. Schweikert, “Stand-off explosive detection on surfaces using multispectral MIR-imaging,” in M. Razeghi, R. Sudharsanan, and G. J. Brown, eds. (2011), p. 79450P.

M. Gaft and L. Nagli, “Standoff laser-based spectroscopy for explosives detection,” in G. W. Kamerman, O. K. Steinvall, K. L. Lewis, K. A. Krapels, J. C. Carrano, and A. Zukauskas, eds. (International Society for Optics and Photonics, 2007), Vol. 6739, p. 673903.

B. Hinkov, F. Fuchs, J. M. Kaster, Q. Yang, W. Bronner, R. Aidam, and K. Köhler, “Broad band tunable quantum cascade lasers for stand-off detection of explosives,” in J. C. Carrano and C. J. Collins, eds. (International Society for Optics and Photonics, 2009), Vol. 7484, p. 748406.

P. M. Pellegrino, E. L. Holthoff, and M. E. Farrell, Laser-Based Optical Detection of Explosives (CRC Press, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Allan deviation plot for a typical element of a QCLA. The data is obtained by acquiring the time trace of the laser pulses with an uncooled MCT detector (1 mm x 1 mm) located directly in front of the diverging laser beam. The distance between the laser and the detector was set to obtain a signal that was one third of the saturation signal of the detector. The signal output was amplified, low-passed at 20MHz, and digitized at 125 MS/s with 12-bits vertical resolution. The measurement for each pulse is defined as the integrated signal over a full pulse. Note that these values represent a high bound of the QCLA noise, and that the noise characterization setup used here is limited by the dynamic range of the detector as well as timing jitter between the laser pulse driver and the analog to digital converter.
Fig. 2
Fig. 2 (left) Block Diagram of spectrometer showing optical and electronic components and their interconnects. (right) An integrated system based on the 4-array laser and commercially available circuits for \ operation and high-speed data acquisition. It weighs 8 kg and measures 35 cm × 22 cm × 12 cm in L × W × H, respectively.
Fig. 3
Fig. 3 Infrared images of the dithered and non-dithered beams. Images were obtained 1.3 m from the instrument.
Fig. 4
Fig. 4 Two representative comparisons between the DRS-based spectrometer scans of bulk powders (blue) and the DRIFTS spectra of same samples (orange).
Fig. 5
Fig. 5 (left) DRS at increments after deposition of 60 µL of VX onto sand plotted along with the DRS spectrum of sand alone, shown in black. (right) DRS spectra of VX on sand divided by DRS spectrum of sand alone. The black line on right plot is k of VX. The colors indicating time after deposition are the same for both plots.
Fig. 6
Fig. 6 (left) Time lapse DRS signal from a single 1 µL drop of VX on sandblasted stainless steel. Also shown is the air/analyte interface Fresnel reflectance spectrum of VX. (right) Photographs of the droplet immediately after deposition (a) and 840 sec later (b). The green sighting laser overlapping the combined QCLA outputs has a diameter of 2 mm.
Fig. 7
Fig. 7 (left) Standoff spectrum of a single 15 µL drop of T-mustard deposited onto borosilicate glass obtained at 1.3 m standoff. Dither is turned off such that the beam hits the apex of the hemisphere (blue) and then turned on such that the system is scanning around and through the small droplet, spending most of the time on glass (green). (right) Photographs of the droplet immediately after deposition on borosilicate glass (a) and on roughened stainless steel (b).
Fig. 8
Fig. 8 Spectrum obtained from a single 15 µL drop of T-mustard after spreading the drop into a thin film on roughened stainless steel (Pictured in Fig. 7(b)).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A=αCL
R= ( n1 ) 2 + k 2 (n+1) 2 + k 2

Metrics