Abstract

We present an end-to-end full color Fourier holographic imaging approach, which involves standard holographic recording with three wavelengths and an improved LED-driven display. It provides almost undistorted orthoscopic reconstruction of large objects in full color, which can be viewed with a naked eye. High quality reconstruction is preserved across large object depths, measured in meters, as shown theoretically and experimentally. Our imaging approach is based on capture, processing and display of the object wave fields without spherical phase factors. This efficient convention combined with a novel numerical propagator for confocal fields enables complete axial decoupling of both ends of the imaging chain, and consequently, free manipulation of axial position as well as size of the image without visible deformations and with minimal computation effort.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fourier digital holography of real scenes for 360° tabletop holographic displays

Hyon-Gon Choo, Tomasz Kozacki, Weronika Zaperty, Maksymilian Chlipala, Yongjun Lim, and Jinwoong Kim
Appl. Opt. 58(34) G96-G103 (2019)

Digital hologram transformations for RGB color holographic display with independent image magnification and translation in 3D

Piotr L. Makowski, Weronika Zaperty, and Tomasz Kozacki
Appl. Opt. 57(1) A76-A85 (2018)

Color holographic display with white light LED source and single phase only SLM

Tomasz Kozacki and Maksymilian Chlipala
Opt. Express 24(3) 2189-2199 (2016)

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  2. J. S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
    [Crossref] [PubMed]
  3. A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23(17), 22149–22161 (2015).
    [Crossref] [PubMed]
  4. H. Kang, E. Stoykova, and H. Yoshikawa, “Fast phase-added stereogram algorithm for generation of photorealistic 3D content,” Appl. Opt. 55(3), A135–A143 (2016).
    [Crossref] [PubMed]
  5. H. Araki, N. Takada, S. Ikawa, H. Niwase, Y. Maeda, M. Fujiwara, H. Nakayama, M. Oikawa, T. Kakue, T. Shimobaba, and T. Ito, “Fast time-division color electroholography using a multiple-graphics processing unit cluster system with a single spatial light modulator,” Chin. Opt. Lett. 15(12), 120902 (2017).
    [Crossref]
  6. Y. Sando, D. Barada, and T. Yatagai, “Holographic 3D display observable for multiple simultaneous viewers from all horizontal directions by using a time division method,” Opt. Lett. 39(19), 5555–5557 (2014).
    [Crossref] [PubMed]
  7. G. Li, D. Lee, Y. Jeong, and B. Lee, “Holographic display for augmented reality using holographic optical element,” Proc. SPIE 9770, 97700D (2016).
    [Crossref] [PubMed]
  8. J. S. Chen, Q. Y. Smithwick, and D. P. Chu, “Coarse integral holography approach for real 3D color video displays,” Opt. Express 24(6), 6705–6718 (2016).
    [Crossref] [PubMed]
  9. Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24(22), 24999–25009 (2016).
    [Crossref] [PubMed]
  10. S. F. Lin and E. S. Kim, “Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
    [Crossref] [PubMed]
  11. T. Kreis, “3-D Display by Referenceless Phase Holography,” IEEE Trans. Industr. Inform. 12(2), 685–693 (2016).
    [Crossref]
  12. H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2014).
    [Crossref] [PubMed]
  13. H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
    [Crossref] [PubMed]
  14. M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
    [Crossref] [PubMed]
  15. P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Encoding multiple holograms for speckle-noise reduction in optical display,” Opt. Express 22(21), 25768–25775 (2014).
    [Crossref] [PubMed]
  16. D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
    [Crossref]
  17. R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012).
    [Crossref] [PubMed]
  18. M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22(3), 2324–2336 (2014).
    [Crossref] [PubMed]
  19. P. Makowski, T. Kozacki, P. Zdankowski, and W. Zaperty, “Synthetic aperture Fourier holography for wide-angle holographic display of real scenes,” Appl. Opt. 54(12), 3658–3665 (2015).
    [Crossref]
  20. T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic Capture and Display Systems in Circular Configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
    [Crossref]
  21. E. Stoykova, F. Yaraş, H. Kang, L. Onural, A. Geltrude, M. Locatelli, M. Paturzo, A. Pelagotti, R. Meucci, and P. Ferraro, “Visible reconstruction by a circular holographic display from digital holograms recorded under infrared illumination,” Opt. Lett. 37(15), 3120–3122 (2012).
    [Crossref] [PubMed]
  22. J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
    [Crossref] [PubMed]
  23. A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display and recording of 3D images,” Proc. SPIE 5742, 130–139 (2005).
    [Crossref]
  24. P. L. Makowski, T. Kozacki, and W. Zaperty, “Orthoscopic real-image display of digital holograms,” Opt. Lett. 42(19), 3932–3935 (2017).
    [Crossref] [PubMed]
  25. G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
    [Crossref]
  26. R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
    [Crossref] [PubMed]
  27. T. Kozacki and K. Falaggis, “Angular spectrum method with compact space-bandwidth: generalization and full-field accuracy,” Appl. Opt. 55(19), 5014–5024 (2016).
    [Crossref] [PubMed]
  28. D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50(34), H116–H127 (2011).
    [Crossref] [PubMed]
  29. F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
    [Crossref] [PubMed]
  30. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]
  31. T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
    [Crossref] [PubMed]
  32. H. Araki, N. Takada, H. Niwase, S. Ikawa, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time time-division color electroholography using a single GPU and a USB module for synchronizing reference light,” Appl. Opt. 54(34), 10029–10034 (2015).
    [Crossref] [PubMed]
  33. Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T. C. Poon, and C. Zhou, “Digital holographic recording of a diffusely reflecting object without speckle noise,” in Fringe 2013 (Springer, 2014), pp. 803–808.
  34. W. Singer, M. Totzeck, and H. Gross, in Handbook of Optical Systems (Wiley, 2005), pp. 340.
  35. X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
    [Crossref] [PubMed]
  36. R. Meier, “Magnification and Third-Order Aberrations in Holography,” J. Opt. Soc. Am. 55(8), 987–992 (1965).
    [Crossref]
  37. H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
    [Crossref] [PubMed]

2017 (4)

2016 (7)

2015 (4)

2014 (6)

2013 (2)

2012 (3)

2011 (1)

2010 (2)

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

2009 (1)

2008 (2)

2005 (1)

A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display and recording of 3D images,” Proc. SPIE 5742, 130–139 (2005).
[Crossref]

1965 (2)

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
[Crossref]

R. Meier, “Magnification and Third-Order Aberrations in Holography,” J. Opt. Soc. Am. 55(8), 987–992 (1965).
[Crossref]

Araki, H.

Barada, D.

Bianco, V.

Blinder, D.

Bryanston-Cross, P.

Chang, E. Y.

Chen, J. S.

Chlipala, M.

Choo, H. G.

Chu, D. P.

Claus, D.

Falaggis, K.

Falldorf, C.

Ferraro, P.

Finizio, A.

Finke, G.

M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22(3), 2324–2336 (2014).
[Crossref] [PubMed]

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic Capture and Display Systems in Circular Configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

Fujii, K.

A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display and recording of 3D images,” Proc. SPIE 5742, 130–139 (2005).
[Crossref]

Fujiwara, M.

Garbat, P.

Geltrude, A.

Gritsai, Y.

Hahn, J.

Häussler, R.

Hennelly, B.

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic Capture and Display Systems in Circular Configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

Hennelly, B. M.

M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22(3), 2324–2336 (2014).
[Crossref] [PubMed]

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

Hong, K.

Ichihashi, Y.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2014).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Ikawa, S.

Iliescu, D.

Ito, T.

Javidi, B.

Jeong, Y.

G. Li, D. Lee, Y. Jeong, and B. Lee, “Holographic display for augmented reality using holographic optical element,” Proc. SPIE 9770, 97700D (2016).
[Crossref] [PubMed]

Jia, J.

Kakue, T.

Kang, H.

Kelly, D. P.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

Kelner, R.

Kim, E. S.

Kim, H.

Kim, H. E.

Kim, J.

Kim, M.

Kim, T.

Kowiel, M.

Kozacki, T.

Kreis, T.

T. Kreis, “3-D Display by Referenceless Phase Holography,” IEEE Trans. Industr. Inform. 12(2), 685–693 (2016).
[Crossref]

Kujawinska, M.

M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22(3), 2324–2336 (2014).
[Crossref] [PubMed]

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic Capture and Display Systems in Circular Configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

Lee, B.

G. Li, D. Lee, Y. Jeong, and B. Lee, “Holographic display for augmented reality using holographic optical element,” Proc. SPIE 9770, 97700D (2016).
[Crossref] [PubMed]

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref] [PubMed]

Lee, D.

G. Li, D. Lee, Y. Jeong, and B. Lee, “Holographic display for augmented reality using holographic optical element,” Proc. SPIE 9770, 97700D (2016).
[Crossref] [PubMed]

Lee, S.

Li, G.

G. Li, D. Lee, Y. Jeong, and B. Lee, “Holographic display for augmented reality using holographic optical element,” Proc. SPIE 9770, 97700D (2016).
[Crossref] [PubMed]

Li, X.

Lim, Y.

Lin, S. F.

Liu, J.

Locatelli, M.

Maeda, Y.

Makowski, P.

Makowski, P. L.

Meeser, T.

Meier, R.

Memmolo, P.

Meucci, R.

Michalkiewicz, A.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

Missbach, R.

Monaghan, D. S.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

Moon, E.

Morimoto, M.

A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display and recording of 3D images,” Proc. SPIE 5742, 130–139 (2005).
[Crossref]

Munteanu, A.

Nakayama, H.

Nam, J.

Näsänen, R.

Naughton, T.

Naughton, T. J.

Netti, P. A.

Niemelä, M.

Niwase, H.

Oi, R.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Oikawa, M.

Onural, L.

Pan, Y.

Pandey, N.

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

Park, G.

Paturzo, M.

Pelagotti, A.

Roh, J.

Rosen, J.

Sahm, H.

Sando, Y.

Sasaki, H.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2014).
[Crossref] [PubMed]

Sato, K.

A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display and recording of 3D images,” Proc. SPIE 5742, 130–139 (2005).
[Crossref]

Schelkens, P.

Senoh, T.

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2014).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Shimobaba, T.

Smithwick, Q. Y.

Stock, M.

Stolle, H.

Stoykova, E.

Stroke, G. W.

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
[Crossref]

Sugita, A.

A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display and recording of 3D images,” Proc. SPIE 5742, 130–139 (2005).
[Crossref]

Symeonidou, A.

Takada, N.

Wakunami, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Wang, Y.

Yamaguchi, T.

Yamamoto, K.

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2014).
[Crossref] [PubMed]

Yaras, F.

Yatagai, T.

Yoshikawa, H.

Zaperty, W.

Zdankowski, P.

Zschau, E.

Appl. Opt. (8)

H. Kang, E. Stoykova, and H. Yoshikawa, “Fast phase-added stereogram algorithm for generation of photorealistic 3D content,” Appl. Opt. 55(3), A135–A143 (2016).
[Crossref] [PubMed]

P. Makowski, T. Kozacki, P. Zdankowski, and W. Zaperty, “Synthetic aperture Fourier holography for wide-angle holographic display of real scenes,” Appl. Opt. 54(12), 3658–3665 (2015).
[Crossref]

R. Häussler, Y. Gritsai, E. Zschau, R. Missbach, H. Sahm, M. Stock, and H. Stolle, “Large real-time holographic 3D displays: enabling components and results,” Appl. Opt. 56(13), F45–F52 (2017).
[Crossref] [PubMed]

T. Kozacki and K. Falaggis, “Angular spectrum method with compact space-bandwidth: generalization and full-field accuracy,” Appl. Opt. 55(19), 5014–5024 (2016).
[Crossref] [PubMed]

D. Claus, D. Iliescu, and P. Bryanston-Cross, “Quantitative space-bandwidth product analysis in digital holography,” Appl. Opt. 50(34), H116–H127 (2011).
[Crossref] [PubMed]

F. Yaraş, H. Kang, and L. Onural, “Real-time phase-only color holographic video display system using LED illumination,” Appl. Opt. 48(34), H48–H53 (2009).
[Crossref] [PubMed]

H. Araki, N. Takada, H. Niwase, S. Ikawa, M. Fujiwara, H. Nakayama, T. Kakue, T. Shimobaba, and T. Ito, “Real-time time-division color electroholography using a single GPU and a USB module for synchronizing reference light,” Appl. Opt. 54(34), 10029–10034 (2015).
[Crossref] [PubMed]

H. Kang, T. Yamaguchi, and H. Yoshikawa, “Accurate phase-added stereogram to improve the coherent stereogram,” Appl. Opt. 47(19), D44–D54 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. W. Stroke, “Lensless Fourier-transform method for optical holography,” Appl. Phys. Lett. 6(10), 201–203 (1965).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Trans. Industr. Inform. (1)

T. Kreis, “3-D Display by Referenceless Phase Holography,” IEEE Trans. Industr. Inform. 12(2), 685–693 (2016).
[Crossref]

Int. J. Digit. Multimed. Broadcast. (1)

D. P. Kelly, D. S. Monaghan, N. Pandey, T. Kozacki, A. Michałkiewicz, G. Finke, B. M. Hennelly, and M. Kujawinska, “Digital holographic capture and optoelectronic reconstruction for 3-D displays,” Int. J. Digit. Multimed. Broadcast. 2010, 759329 (2010).
[Crossref]

J. Disp. Technol. (1)

T. Kozacki, M. Kujawińska, G. Finke, W. Zaperty, and B. Hennelly, “Holographic Capture and Display Systems in Circular Configurations,” J. Disp. Technol. 8(4), 225–232 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Express (12)

X. Li, J. Liu, J. Jia, Y. Pan, and Y. Wang, “3D dynamic holographic display by modulating complex amplitude experimentally,” Opt. Express 21(18), 20577–20587 (2013).
[Crossref] [PubMed]

J. Hahn, H. Kim, Y. Lim, G. Park, and B. Lee, “Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators,” Opt. Express 16(16), 12372–12386 (2008).
[Crossref] [PubMed]

E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
[Crossref] [PubMed]

T. Kozacki and M. Chlipala, “Color holographic display with white light LED source and single phase only SLM,” Opt. Express 24(3), 2189–2199 (2016).
[Crossref] [PubMed]

M. Kujawinska, T. Kozacki, C. Falldorf, T. Meeser, B. M. Hennelly, P. Garbat, W. Zaperty, M. Niemelä, G. Finke, M. Kowiel, and T. Naughton, “Multiwavefront digital holographic television,” Opt. Express 22(3), 2324–2336 (2014).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, A. Finizio, R. Näsänen, T. J. Naughton, and P. Ferraro, “Synthesis and display of dynamic holographic 3D scenes with real-world objects,” Opt. Express 18(9), 8806–8815 (2010).
[Crossref] [PubMed]

P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, “Encoding multiple holograms for speckle-noise reduction in optical display,” Opt. Express 22(21), 25768–25775 (2014).
[Crossref] [PubMed]

J. S. Chen and D. P. Chu, “Improved layer-based method for rapid hologram generation and real-time interactive holographic display applications,” Opt. Express 23(14), 18143–18155 (2015).
[Crossref] [PubMed]

A. Symeonidou, D. Blinder, A. Munteanu, and P. Schelkens, “Computer-generated holograms by multiple wavefront recording plane method with occlusion culling,” Opt. Express 23(17), 22149–22161 (2015).
[Crossref] [PubMed]

J. S. Chen, Q. Y. Smithwick, and D. P. Chu, “Coarse integral holography approach for real 3D color video displays,” Opt. Express 24(6), 6705–6718 (2016).
[Crossref] [PubMed]

Y. Lim, K. Hong, H. Kim, H. E. Kim, E. Y. Chang, S. Lee, T. Kim, J. Nam, H. G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24(22), 24999–25009 (2016).
[Crossref] [PubMed]

S. F. Lin and E. S. Kim, “Single SLM full-color holographic 3-D display based on sampling and selective frequency-filtering methods,” Opt. Express 25(10), 11389–11404 (2017).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Proc. SPIE (2)

G. Li, D. Lee, Y. Jeong, and B. Lee, “Holographic display for augmented reality using holographic optical element,” Proc. SPIE 9770, 97700D (2016).
[Crossref] [PubMed]

A. Sugita, K. Sato, M. Morimoto, and K. Fujii, “Full-color holographic display and recording of 3D images,” Proc. SPIE 5742, 130–139 (2005).
[Crossref]

Sci. Rep. (2)

H. Sasaki, K. Yamamoto, Y. Ichihashi, and T. Senoh, “Image size Scalable Full-parallax Coloured Three-dimensional Video by Electronic Holography,” Sci. Rep. 4(1), 4000 (2014).
[Crossref] [PubMed]

H. Sasaki, K. Yamamoto, K. Wakunami, Y. Ichihashi, R. Oi, and T. Senoh, “Large size three-dimensional video by electronic holography using multiple spatial light modulators,” Sci. Rep. 4(1), 6177 (2014).
[Crossref] [PubMed]

Other (2)

Y. S. Kim, T. Kim, S. S. Woo, H. Kang, T. C. Poon, and C. Zhou, “Digital holographic recording of a diffusely reflecting object without speckle noise,” in Fringe 2013 (Springer, 2014), pp. 803–808.

W. Singer, M. Totzeck, and H. Gross, in Handbook of Optical Systems (Wiley, 2005), pp. 340.

Supplementary Material (2)

NameDescription
» Visualization 1       Optical holographic reconstruction of real 3D scene. High quality reconstruction of rotated object.
» Visualization 2       Optical holographic reconstruction of real 3D scene. Visualization of the large reconstructed depth.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Imaging principle of Fourier a) DH capture and b) display geometry.
Fig. 2
Fig. 2 Axial deformation Dz and transverse magnification M for three cases of imaging: a), b) R2 = R1, mD = 1, c), d) axial shift to R2 = 2 × R1, mD = 1, and e), f) axial shift to R2 = 2R1 and magnification mD = 2.
Fig. 3
Fig. 3 a) Synthetic aperture Fourier capture setup, and b) Fourier holographic display based on VW and LED source.
Fig. 4
Fig. 4 a) Geometrical interpretation of the effect of partially coherent imaging as an effect of source coherence area Ac; b) limits of reconstruction depth for partially coherent imaging at maximum resolution; c) resolution drop as a function of d for C = 0.15, 0.4 (blue curve indicates experimental setup); the parameters for calculations: λ = 0.515 μm, Ff = 600 mm.
Fig. 5
Fig. 5 a) Photo of 3D “Lowiczanka” figurine and its optical reconstruction with time multiplexing method in two focus positions b) jacket, and c) skirt. See Visualization 1 illustrating rotating figurine.
Fig. 6
Fig. 6 Optical reconstruction of synthesized DH including a pair of 3D scenes with “Rooster” and “Lowiczanka” figurine captured in different focus positions a) “Lowiczanka” 1.06 m b) “Rooster” 0.5 m, c) “Lowiczanka” 2 m (“Rooster” 0.5 m), d) “Lowiczanka” 2 m (“Rooster” 0.5 m) digitally magnified by factor mD = 4. See Visualization 2 illustrating change of focus between “Rooster” and “Lowiczanka”.
Fig. 7
Fig. 7 Optical reconstruction of CGH calculated from 3D cloud of points with enlarged in-focus position captured at different reconstruction distance a) 600 mm b) 1 m, c) 2 m d) 10 m.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

O R * ( u 1 )= O c ( u 1 , R 1 )=O( u 1 )exp[ i k n1 u 1 2 2 R 1 ],
FT[ O c ( u 1 , R 1 ) ]= O c ( x 1 , R 1 )=O( x 1 )exp[ i k n1 x 1 2 2 R 1 ].
aFo V 1 = λ 1 Δ u1 = B x1 R 1 and aFo V 2 = B ξ2 F f = B x2 R 2 ,
B VW = λ 2 F f Δ ξ2 = λ 2 R 2 B CCD m D λ 1 R 1 ,
O( ξ 2 )= O( x 2 )exp{ iπ ( x 2 ξ 2 ) 2 λ n ( R 2 F f ) }d x 2
O ˜ c ξ ( f ξ )exp{ iπ λ n F f f ξ 2 }=[ O ˜ c x ( f ξ )exp{ iπ λ n R 2 f ξ 2 } ]exp{ iπ λ n ( R 2 F f ) f ξ 2 },
O ˜ c x ( f ξ )= O c ( x 2 , R 2 )exp{ i2π x 2 f ξ }d x 2 ,
O ˜ c ξ ( f ξ )= O c ( ξ 2 , F f )exp{ i2π ξ 2 f ξ }d ξ 2 ,
O ˜ c ξ ( f ξ )=exp{iπλ F f f ξ 2 } O ˜ c x ( f x )exp{iπλ R 2 f x 2 i2πλ R 2 f f x } d f x exp{i2πλ F f f f ξ }df.
O ˜ c ξ ( f ξ )= O ˜ c x ( F f R 2 1 f ξ )×exp{ iπλ F f f f ξ 2 ( F f R 2 1 1 ) } .
Δ ξ2 = F f R 2 1 Δ x2 ,
O 2 ( x 2 , z 2 )= O 1 ( M 1 x 2 , D z 1 z 2 )exp{ iπκ m D x 2 2 λ 2 D z } ,
κ= 1 m D 2 R 1 λ 1 λ 2 R 2 ,
M= m D [ 1+ z 1 m D 2 κ ] 1 ,
D z = z 2 z 1 = λ 1 λ 2 m D M.
I( x 2 )= J( ξ ¯ 2 m , ξ 2 ' m )exp{ i2π ξ ¯ 2 ξ 2 ' λ ( 1 z 2 1 F f ) }exp{ i2π x 2 ξ 2 ' λ z 2 } d ξ ¯ 2 d ξ 2 ' .
I( x 2 )= g( ξ 2 ' m ) O( ξ _ 2 ξ 2 ' 2 ) O * ( ξ _ 2 + ξ 2 ' 2 )×exp{ i2π ξ ¯ 2 ξ 2 ' λ z 2 }exp{ i2π x 2 ξ 2 ' λ z 2 }d ξ ¯ 2 d ξ 2 ' .
I( x 2 )= g( ξ 2 ' m ) I ˜ coh ( ξ 2 ' λ z 2 )exp{ i2π x 2 ξ 2 ' λ z 2 }d ξ 2 ' = g ˜ ( m x 2 λ z 2 ) I coh ( x 2 ) ,
d clim ± = F f C 1±C ,

Metrics