Abstract

The self-absorption effect seriously affects the accuracy of determination in laser-induced breakdown spectroscopy (LIBS). In this work, we proposed to reduce multielemental self-absorption within a wide spectral range (200-900 nm) by using microwave-assisted excitation in LIBS (MAE-LIBS). Self-absorption reduction of sodium (Na), potassium (K), aluminum (Al), silicon (Si), and calcium (Ca) in potassium feldspar using MAE-LIBS was investigated. The mechanisms of self-absorption reduction in MAE-LIBS were also investigated. The results show that the serious self-absorption of spectral lines (Na and K) was reduced. The full widths at half maximum (FWHMs) of Na I 589.0 nm, Na I 589.6 nm, K I 766.5 nm, and K I 769.9 nm in potassium feldspar were reduced by 43%, 43%, 53%, and 47%, respectively. MAE-LIBS also has a little FWHM reduction for spectral lines with weak self-absorption. The results demonstrate that MAE-LIBS can simultaneously reduce multielemental self-absorption.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of potassium in ceramic raw materials using laser-induced breakdown spectroscopy combined with profile fitting

Yun Tang, Lianbo Guo, Shisong Tang, Yanwu Chu, Qingdong Zeng, Xiaoyan Zeng, Jun Duan, and Yongfeng Lu
Appl. Opt. 57(22) 6451-6455 (2018)

Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption

Jia-Ming Li, Lian-Bo Guo, Chang-Mao Li, Nan Zhao, Xin-Yan Yang, Zhong-Qi Hao, Xiang-You Li, Xiao-Yan Zeng, and Yong-Feng Lu
Opt. Lett. 40(22) 5224-5226 (2015)

Rapid detection of drought stress in plants using femtosecond laser-induced breakdown spectroscopy

Jeremy N. Kunz, Dmitri V. Voronine, Ho Wai Howard Lee, Alexei V. Sokolov, and Marlan O. Scully
Opt. Express 25(7) 7251-7262 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
    [Crossref] [PubMed]
  2. M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, and M. Liu, “Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy,” Appl. Opt. 56(14), 4070–4075 (2017).
    [Crossref] [PubMed]
  3. S. Eto, J. Tani, K. Shirai, and T. Fujii, “Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 74–80 (2013).
    [Crossref]
  4. G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
    [Crossref] [PubMed]
  5. G. Kim, J. Kwak, J. Choi, and K. Park, “Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” J. Agric. Food Chem. 60(3), 718–724 (2012).
    [Crossref] [PubMed]
  6. R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
    [Crossref]
  7. O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
    [Crossref]
  8. Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
    [Crossref]
  9. Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
    [Crossref] [PubMed]
  10. V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
    [Crossref]
  11. G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
    [Crossref]
  12. J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
    [Crossref]
  13. L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
    [Crossref] [PubMed]
  14. F. O. Bredice, H. O. Di Rocco, H. M. Sobral, M. Villagrán-Muniz, and V. Palleschi, “A New Method for Determination of Self-Absorption Coefficients of Emission Lines in Laser-Induced Breakdown Spectroscopy Experiments,” Appl. Spectrosc. 64(3), 320–323 (2010).
    [Crossref] [PubMed]
  15. J. Ben Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
    [Crossref]
  16. H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
    [Crossref]
  17. E. Gudimenko, V. Milosavljević, and S. Daniels, “Influence of self-absorption on plasma diagnostics by emission spectral lines,” Opt. Express 20(12), 12699–12709 (2012).
    [Crossref] [PubMed]
  18. F. Rezaei, P. Karimi, and S. H. Tavassoli, “Estimation of self-absorption effect on aluminum emission in the presence of different noble gases: comparison between thin and thick plasma emission,” Appl. Opt. 52(21), 5088–5096 (2013).
    [Crossref] [PubMed]
  19. R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
    [Crossref]
  20. J. M. Li, L. B. Guo, C. M. Li, N. Zhao, X. Y. Yang, Z. Q. Hao, X. Y. Li, X. Y. Zeng, and Y. F. Lu, “Self-absorption reduction in laser-induced breakdown spectroscopy using laser-stimulated absorption,” Opt. Lett. 40(22), 5224–5226 (2015).
    [Crossref] [PubMed]
  21. Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
    [Crossref]
  22. Y. Ikeda and R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt. 51(7), B183–B191 (2012).
    [Crossref] [PubMed]
  23. Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
    [Crossref]
  24. J. Viljanen, Z. W. Sun, and Z. T. Alwahabi, “Microwave-assisted laser-induced breakdown spectroscopy at ambient conditions,” Spectrochim. Acta B At. Spectrosc. 118, 29–36 (2016).
    [Crossref]
  25. H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).
  26. A. Khumaeni, K. Akaoka, M. Miyabe, and I. Wakaida, “The role of microwaves in the enhancement of laser-induced plasma emission,” Front. Phys. 11(4), 114209 (2016).
    [Crossref]
  27. B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy - Sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
    [Crossref]
  28. S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
    [Crossref]
  29. M. Wall, Z. Sun, and Z. T. Alwahabi, “Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy,” Opt. Express 24(2), 1507–1517 (2016).
    [Crossref] [PubMed]
  30. A. Iqbal, Z. W. Sun, M. Wall, and Z. T. Alwahabi, “Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging,” Spectrochim. Acta B At. Spectrosc. 136, 16–22 (2017).
    [Crossref]
  31. J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
    [Crossref]
  32. B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
    [Crossref]
  33. J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
    [Crossref]
  34. Z. Ramezanian, S. M. R. Darbani, and A. E. Majd, “Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS,” Appl. Opt. 56(24), 6917–6922 (2017).
    [Crossref] [PubMed]
  35. A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
    [Crossref]

2017 (7)

S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
[Crossref]

A. Iqbal, Z. W. Sun, M. Wall, and Z. T. Alwahabi, “Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging,” Spectrochim. Acta B At. Spectrosc. 136, 16–22 (2017).
[Crossref]

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, and M. Liu, “Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy,” Appl. Opt. 56(14), 4070–4075 (2017).
[Crossref] [PubMed]

Z. Ramezanian, S. M. R. Darbani, and A. E. Majd, “Effect of self-absorption correction on surface hardness estimation of Fe-Cr-Ni alloys via LIBS,” Appl. Opt. 56(24), 6917–6922 (2017).
[Crossref] [PubMed]

2016 (6)

M. Wall, Z. Sun, and Z. T. Alwahabi, “Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy,” Opt. Express 24(2), 1507–1517 (2016).
[Crossref] [PubMed]

Z. Q. Hao, L. Liu, M. Shen, X. Y. Yang, K. H. Li, L. B. Guo, X. Y. Li, Y. F. Lu, and X. Y. Zeng, “Investigation on self-absorption at reduced air pressure in quantitative analysis using laser-induced breakdown spectroscopy,” Opt. Express 24(23), 26521–26528 (2016).
[Crossref] [PubMed]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

J. Viljanen, Z. W. Sun, and Z. T. Alwahabi, “Microwave-assisted laser-induced breakdown spectroscopy at ambient conditions,” Spectrochim. Acta B At. Spectrosc. 118, 29–36 (2016).
[Crossref]

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

A. Khumaeni, K. Akaoka, M. Miyabe, and I. Wakaida, “The role of microwaves in the enhancement of laser-induced plasma emission,” Front. Phys. 11(4), 114209 (2016).
[Crossref]

2015 (1)

2014 (2)

J. Ben Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

2013 (3)

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

S. Eto, J. Tani, K. Shirai, and T. Fujii, “Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 74–80 (2013).
[Crossref]

F. Rezaei, P. Karimi, and S. H. Tavassoli, “Estimation of self-absorption effect on aluminum emission in the presence of different noble gases: comparison between thin and thick plasma emission,” Appl. Opt. 52(21), 5088–5096 (2013).
[Crossref] [PubMed]

2012 (4)

Y. Ikeda and R. Tsuruoka, “Characteristics of microwave plasma induced by lasers and sparks,” Appl. Opt. 51(7), B183–B191 (2012).
[Crossref] [PubMed]

E. Gudimenko, V. Milosavljević, and S. Daniels, “Influence of self-absorption on plasma diagnostics by emission spectral lines,” Opt. Express 20(12), 12699–12709 (2012).
[Crossref] [PubMed]

G. Kim, J. Kwak, J. Choi, and K. Park, “Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” J. Agric. Food Chem. 60(3), 718–724 (2012).
[Crossref] [PubMed]

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

2010 (2)

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

F. O. Bredice, H. O. Di Rocco, H. M. Sobral, M. Villagrán-Muniz, and V. Palleschi, “A New Method for Determination of Self-Absorption Coefficients of Emission Lines in Laser-Induced Breakdown Spectroscopy Experiments,” Appl. Spectrosc. 64(3), 320–323 (2010).
[Crossref] [PubMed]

2009 (3)

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

2008 (2)

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy - Sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

2005 (1)

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

2004 (1)

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

2001 (3)

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Aguilera, J. A.

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

Akaoka, K.

A. Khumaeni, K. Akaoka, M. Miyabe, and I. Wakaida, “The role of microwaves in the enhancement of laser-induced plasma emission,” Front. Phys. 11(4), 114209 (2016).
[Crossref]

Alwahabi, Z. T.

S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
[Crossref]

A. Iqbal, Z. W. Sun, M. Wall, and Z. T. Alwahabi, “Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging,” Spectrochim. Acta B At. Spectrosc. 136, 16–22 (2017).
[Crossref]

J. Viljanen, Z. W. Sun, and Z. T. Alwahabi, “Microwave-assisted laser-induced breakdown spectroscopy at ambient conditions,” Spectrochim. Acta B At. Spectrosc. 118, 29–36 (2016).
[Crossref]

M. Wall, Z. Sun, and Z. T. Alwahabi, “Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy,” Opt. Express 24(2), 1507–1517 (2016).
[Crossref] [PubMed]

Aragon, C.

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

Barbini, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Baudelet, M.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Ben Ahmed, J.

J. Ben Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

Bette, H.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Bousquet, B.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Bredice, F. O.

Brysch, A.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Caceres, J. O.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Capitelli, M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Chen, J. W.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Chen, S. J.

S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
[Crossref]

Chen, T.

Chen, T. B.

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

Choi, J.

G. Kim, J. Kwak, J. Choi, and K. Park, “Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” J. Agric. Food Chem. 60(3), 718–724 (2012).
[Crossref] [PubMed]

Colao, F.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Cristoforetti, G.

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Daniels, S.

Darbani, S. M. R.

De Giacomo, A.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

De Pascale, O.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Dell’Aglio, M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Di Rocco, H. O.

Dong, L.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Dong, Q. L.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

El Sherbini, A. M.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

El Sherbini, T. M.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Eto, S.

S. Eto, J. Tani, K. Shirai, and T. Fujii, “Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 74–80 (2013).
[Crossref]

Fantoni, R.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Fouad, F.

J. Ben Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

Fujii, T.

S. Eto, J. Tani, K. Shirai, and T. Fujii, “Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 74–80 (2013).
[Crossref]

Fumeaux, C.

S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
[Crossref]

Gaudiuso, R.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Gudimenko, E.

Guo, L.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Guo, L. B.

Han, P. C.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Hao, Z.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

Hao, Z. Q.

He, J. L.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

Hegazy, H.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Herrera, K. K.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Hou, J. J.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Hu, H. Q.

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

Huang, L.

M. Yao, H. Yang, L. Huang, T. Chen, G. Rao, and M. Liu, “Detection of heavy metal Cd in polluted fresh leafy vegetables by laser-induced breakdown spectroscopy,” Appl. Opt. 56(14), 4070–4075 (2017).
[Crossref] [PubMed]

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

Ikeda, Y.

Iqbal, A.

A. Iqbal, Z. W. Sun, M. Wall, and Z. T. Alwahabi, “Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging,” Spectrochim. Acta B At. Spectrosc. 136, 16–22 (2017).
[Crossref]

S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
[Crossref]

Jia, S. T.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Jia, Y. H.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Kaiser, J.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Karimi, P.

Kearton, B.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy - Sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

Khumaeni, A.

A. Khumaeni, K. Akaoka, M. Miyabe, and I. Wakaida, “The role of microwaves in the enhancement of laser-induced plasma emission,” Front. Phys. 11(4), 114209 (2016).
[Crossref]

Kim, G.

G. Kim, J. Kwak, J. Choi, and K. Park, “Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” J. Agric. Food Chem. 60(3), 718–724 (2012).
[Crossref] [PubMed]

Kraushaar, M.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Kwak, J.

G. Kim, J. Kwak, J. Choi, and K. Park, “Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” J. Agric. Food Chem. 60(3), 718–724 (2012).
[Crossref] [PubMed]

Lazic, V.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Legnaioli, S.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Li, C.

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Li, C. M.

Li, D. L.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Li, J.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Li, J. M.

Li, K. H.

Li, X.

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Li, X. Y.

Liska, M.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Liu, A. H.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

Liu, L.

Liu, M.

Liu, M. H.

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

Liu, Y.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Liu, Y. A.

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Lu, Y.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Lu, Y. F.

Ma, H. Q.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Ma, W. G.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Majd, A. E.

Man, B. Y.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

Mattley, Y.

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy - Sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

Miano, T. M.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Milosavljevic, V.

Miyabe, M.

A. Khumaeni, K. Akaoka, M. Miyabe, and I. Wakaida, “The role of microwaves in the enhancement of laser-induced plasma emission,” Front. Phys. 11(4), 114209 (2016).
[Crossref]

Monch, I.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Moon, H. Y.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Noll, R.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Omenetto, N.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Palleschi, V.

F. O. Bredice, H. O. Di Rocco, H. M. Sobral, M. Villagrán-Muniz, and V. Palleschi, “A New Method for Determination of Self-Absorption Coefficients of Emission Lines in Laser-Induced Breakdown Spectroscopy Experiments,” Appl. Spectrosc. 64(3), 320–323 (2010).
[Crossref] [PubMed]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Palucci, A.

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

Pardini, L.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Park, K.

G. Kim, J. Kwak, J. Choi, and K. Park, “Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” J. Agric. Food Chem. 60(3), 718–724 (2012).
[Crossref] [PubMed]

Peter, L.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Ramezanian, Z.

Rao, G.

Rezaei, F.

Richardson, M.

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

Salvetti, A.

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Samek, O.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Senesi, G. S.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Shen, M.

Shen, X. J.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Shirai, K.

S. Eto, J. Tani, K. Shirai, and T. Fujii, “Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 74–80 (2013).
[Crossref]

Smith, B. W.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Sobral, H. M.

Sturm, V.

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

Sun, L.

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Sun, Z.

Sun, Z. W.

A. Iqbal, Z. W. Sun, M. Wall, and Z. T. Alwahabi, “Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging,” Spectrochim. Acta B At. Spectrosc. 136, 16–22 (2017).
[Crossref]

J. Viljanen, Z. W. Sun, and Z. T. Alwahabi, “Microwave-assisted laser-induced breakdown spectroscopy at ambient conditions,” Spectrochim. Acta B At. Spectrosc. 118, 29–36 (2016).
[Crossref]

Tang, S.

Tang, Y.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

Tani, J.

S. Eto, J. Tani, K. Shirai, and T. Fujii, “Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 74–80 (2013).
[Crossref]

Tavassoli, S. H.

Telle, H. H.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Tognoni, E.

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Tsuruoka, R.

Urena, A. G.

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

Viljanen, J.

J. Viljanen, Z. W. Sun, and Z. T. Alwahabi, “Microwave-assisted laser-induced breakdown spectroscopy at ambient conditions,” Spectrochim. Acta B At. Spectrosc. 118, 29–36 (2016).
[Crossref]

Villagrán-Muniz, M.

Wakaida, I.

A. Khumaeni, K. Akaoka, M. Miyabe, and I. Wakaida, “The role of microwaves in the enhancement of laser-induced plasma emission,” Front. Phys. 11(4), 114209 (2016).
[Crossref]

Wall, M.

S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
[Crossref]

A. Iqbal, Z. W. Sun, M. Wall, and Z. T. Alwahabi, “Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging,” Spectrochim. Acta B At. Spectrosc. 136, 16–22 (2017).
[Crossref]

M. Wall, Z. Sun, and Z. T. Alwahabi, “Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy,” Opt. Express 24(2), 1507–1517 (2016).
[Crossref] [PubMed]

Wang, C. H.

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

Wang, X. T.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

Wei, X. Q.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

Winefordner, J. D.

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

Xiao, L. T.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Xiao, Z. L.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Xu, X. H.

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

Yang, G. Y.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Yang, H.

Yang, X.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Yang, X. Y.

Yao, M.

Yao, M. Y.

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

Yi, R.

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Yin, W. B.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Yu, H.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Zaccone, C.

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Zeng, X.

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Li, Z. Hao, N. Zhao, R. Zhou, R. Yi, S. Tang, L. Guo, X. Li, X. Zeng, and Y. Lu, “Spatially selective excitation in laser-induced breakdown spectroscopy combined with laser-induced fluorescence,” Opt. Express 25(5), 4945–4951 (2017).
[Crossref] [PubMed]

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Zeng, X. Y.

Zhang, L.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Zhang, Q. G.

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

Zhang, Y.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Zhao, L.

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

Zhao, N.

Zhao, Y.

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

Zhou, R.

Appl. Opt. (4)

Appl. Spectrosc. (1)

Environ. Res. (1)

G. S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. M. Miano, and M. Capitelli, “Heavy metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium,” Environ. Res. 109(4), 413–420 (2009).
[Crossref] [PubMed]

Front. Phys. (1)

A. Khumaeni, K. Akaoka, M. Miyabe, and I. Wakaida, “The role of microwaves in the enhancement of laser-induced plasma emission,” Front. Phys. 11(4), 114209 (2016).
[Crossref]

Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis (1)

H. Q. Hu, X. H. Xu, L. Huang, M. Y. Yao, T. B. Chen, M. H. Liu, and C. H. Wang, “Study on the enhancement intensity of Cd in rice with microwave-assisted laser-induced breakdown spectroscopy,” Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis 36(4), 1180–1185 (2016).

IEEE Trans. Plasma Sci. (1)

J. Ben Ahmed and F. Fouad, “Effect of Spectral Line Self-Absorption on the Laser-Induced Plasma Diagnostics,” IEEE Trans. Plasma Sci. 42(8), 2073–2078 (2014).
[Crossref]

ISIJ Int. (1)

Y. Zhang, Y. H. Jia, J. W. Chen, X. J. Shen, Y. Liu, L. Zhao, D. L. Li, P. C. Han, Z. L. Xiao, and H. Q. Ma, “Comparison of the Analytical Performances of Laser-Induced Breakdown Spectroscopy and Spark-OES,” ISIJ Int. 54(1), 136–140 (2014).
[Crossref]

J. Agric. Food Chem. (1)

G. Kim, J. Kwak, J. Choi, and K. Park, “Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS),” J. Agric. Food Chem. 60(3), 718–724 (2012).
[Crossref] [PubMed]

J. Anal. At. Spectrom. (5)

R. Yi, L. Guo, C. Li, X. Yang, J. Li, X. Li, X. Zeng, and Y. Lu, “Investigation of the self-absorption effect using spatially resolved laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(4), 961–967 (2016).
[Crossref]

Y. A. Liu, M. Baudelet, and M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010).
[Crossref]

S. J. Chen, A. Iqbal, M. Wall, C. Fumeaux, and Z. T. Alwahabi, “Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 32(8), 1508–1518 (2017).
[Crossref]

J. J. Hou, L. Zhang, W. B. Yin, Y. Zhao, W. G. Ma, L. Dong, G. Y. Yang, L. T. Xiao, and S. T. Jia, “Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics,” J. Anal. At. Spectrom. 32(8), 1519–1526 (2017).
[Crossref]

J. Li, Y. Tang, Z. Hao, N. Zhao, X. Yang, H. Yu, L. Guo, X. Li, X. Zeng, and Y. Lu, “Evaluation of the self-absorption reduction of minor elements in laser-induced breakdown spectroscopy assisted with laser-stimulated absorption,” J. Anal. At. Spectrom. 32(11), 2189–2193 (2017).
[Crossref]

J. Opt. A (1)

B. Y. Man, Q. L. Dong, A. H. Liu, X. Q. Wei, Q. G. Zhang, J. L. He, and X. T. Wang, “Line-broadening analysis of plasma emission produced by laser ablation of metal Cu,” J. Opt. A 6(1), 17–21 (2004).
[Crossref]

Nat. Photonics (1)

B. Kearton and Y. Mattley, “Laser-induced breakdown spectroscopy - Sparking new applications,” Nat. Photonics 2(9), 537–540 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Spectrochim. Acta B At. Spectrosc. (11)

H. Y. Moon, K. K. Herrera, N. Omenetto, B. W. Smith, and J. D. Winefordner, “On the usefulness of a duplicating mirror to evaluate self-absorption effects in laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 64(7), 702–713 (2009).
[Crossref]

S. Eto, J. Tani, K. Shirai, and T. Fujii, “Measurement of concentration of chlorine attached to a stainless-steel canister material using laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 87, 74–80 (2013).
[Crossref]

V. Lazic, R. Barbini, F. Colao, R. Fantoni, and A. Palucci, “Self-absorption model in quantitative laser-induced breakdown spectroscopy measurements on soils and sediments,” Spectrochim. Acta B At. Spectrosc. 56(6), 807–820 (2001).
[Crossref]

G. Cristoforetti and E. Tognoni, “Calculation of elemental columnar density from self-absorbed lines in laser-induced breakdown spectroscopy: A resource for quantitative analysis,” Spectrochim. Acta B At. Spectrosc. 79–80, 63–71 (2013).
[Crossref]

J. A. Aguilera and C. Aragon, “Characterization of laser-induced plasmas by emission spectroscopy with curve-of-growth measurements. Part I: Temporal evolution of plasma parameters and self-absorption,” Spectrochim. Acta B At. Spectrosc. 63(7), 784–792 (2008).
[Crossref]

R. Noll, H. Bette, A. Brysch, M. Kraushaar, I. Monch, L. Peter, and V. Sturm, “Laser-induced breakdown spectrometry - applications for production control and quality assurance in the steel industry,” Spectrochim. Acta B At. Spectrosc. 56(6), 637–649 (2001).
[Crossref]

O. Samek, D. C. S. Beddows, H. H. Telle, J. Kaiser, M. Liska, J. O. Caceres, and A. G. Urena, “Quantitative laser-induced breakdown spectroscopy analysis of calcified tissue samples,” Spectrochim. Acta B At. Spectrosc. 56(6), 865–875 (2001).
[Crossref]

A. Iqbal, Z. W. Sun, M. Wall, and Z. T. Alwahabi, “Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging,” Spectrochim. Acta B At. Spectrosc. 136, 16–22 (2017).
[Crossref]

Y. Liu, B. Bousquet, M. Baudelet, and M. Richardson, “Improvement of the sensitivity for the measurement of copper concentrations in soil by microwave-assisted laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 73, 89–92 (2012).
[Crossref]

J. Viljanen, Z. W. Sun, and Z. T. Alwahabi, “Microwave-assisted laser-induced breakdown spectroscopy at ambient conditions,” Spectrochim. Acta B At. Spectrosc. 118, 29–36 (2016).
[Crossref]

A. M. El Sherbini, T. M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements,” Spectrochim. Acta B At. Spectrosc. 60(12), 1573–1579 (2005).
[Crossref]

Talanta (1)

L. Sun and H. Yu, “Correction of self-absorption effect in calibration-free laser-induced breakdown spectroscopy by an internal reference method,” Talanta 79(2), 388–395 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup.
Fig. 2
Fig. 2 Schematic presentation of two different microwave radiator locations related to the laser plasma and the sample in measurements: the two needles of a microwave radiator located about 2 mm above the sample surface and (a) 0.5 mm horizontally away from the ablation spot and (b) a 5 mm horizontal pass away from the ablation spot.
Fig. 3
Fig. 3 Emission spectra of K I 766.5 and 769.9 nm with different microwave radiator positions.
Fig. 4
Fig. 4 FWHMs of K I 766.5 nm as a function of microwave power under different delay time (from 2 to 30 μs) at a laser energy of 60 mJ per pulse.
Fig. 5
Fig. 5 LIBS and MAE-LIBS spectra from 200 nm to 900 nm in potassium feldspar pellets.
Fig. 6
Fig. 6 LIBS and MAE-LIBS spectra of (a) Na (b), K (c), Al and Si and (d) Ca in potassium feldspar pellets.
Fig. 7
Fig. 7 A simple description of the self-absorption reduction mechanism in MAE-LIBS.

Tables (3)

Tables Icon

Table 1 The certified concentration of potassium feldspar sample (wt.%)

Tables Icon

Table 2 The FWHMs of LIBS and MAE-LIBS.

Tables Icon

Table 3 Spectroscopic parameters of the spectral lines and calculated value of K .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

SA=Δλ 1 e K/Δ λ 0 K ,
K=2 e 2 m c 2 n i f λ 0 2 l,
n i = N g i U(T) e E i kT
f= g k g i mc 8 π 2 e 2 λ 0 2 A ki ,
K= 1 4 π 2 c N g k U(T) e E i kT λ 0 4 A ki l.
K=A K ,

Metrics