Abstract

Design and fabrication of a dual spot-ring Herriott cell (DSR-HC) were proposed. The sealed Herriott cell with a dimensional size of 5.5 cm × 9.2 cm × 32.1 cm, possessed two input/output coupling holes leading to two absorption path lengths of ~20 m and ~6 m, respectively. An acetylene (C2H2) sensor system with a double-range was developed using the DSR-HC and wavelength modulation spectroscopy (WMS) technique. A near-infrared distributed feedback (DFB) laser was employed for targeting a C2H2 absorption line at 6521.2 cm−1. C2H2 concentration measurements were carried out by modulating the laser at a 5 kHz frequency and demodulating the detector signal with LabVIEW software. An Allan-Werle deviation analysis indicated that the limit of detection (LoD) for the two absorption path lengths of 20 m and 6 m are 7.9 parts-per-million in volume (ppmv) and 4.0 ppmv, respectively. The DSR-HC concept can be used to fabricate similar cells for single-gas detection requiring two different detection ranges as well as for dual-gas detection requiring different absorption path lengths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-infrared acetylene sensor system using off-axis integrated-cavity output spectroscopy and two measurement schemes

Kaiyuan Zheng, Chuantao Zheng, Qixin He, Dan Yao, Lien Hu, Yu Zhang, Yiding Wang, and Frank K. Tittel
Opt. Express 26(20) 26205-26216 (2018)

Intensity enhancement in off-axis integrated cavity output spectroscopy

Faisal Nadeem, Julien Mandon, Simona M. Cristescu, and Frans J. M. Harren
Appl. Opt. 57(29) 8536-8542 (2018)

Two-mirror multipass absorption cell

J. Altmann, R. Baumgart, and C. Weitkamp
Appl. Opt. 20(6) 995-999 (1981)

References

  • View by:
  • |
  • |
  • |

  1. J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
    [Crossref]
  2. Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
    [Crossref]
  3. K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
    [Crossref]
  4. G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
    [Crossref] [PubMed]
  5. R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
    [Crossref] [PubMed]
  6. C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
    [Crossref]
  7. C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
    [Crossref]
  8. N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
    [Crossref] [PubMed]
  9. P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
    [Crossref]
  10. F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
    [Crossref] [PubMed]
  11. Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
    [Crossref] [PubMed]
  12. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34(18), 3336–3348 (1995).
    [Crossref] [PubMed]
  13. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
    [Crossref] [PubMed]
  14. H. Moser, A. Genner, J. Ofner, C. Schwarzer, G. Strasser, and B. Lendl, “Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H2S in a CH4 matrix for process analytics,” Opt. Express 24(6), 6572–6585 (2016).
    [Crossref] [PubMed]
  15. W. R. Trutna and R. L. Byer, “Multiple-pass Raman gain cell,” Appl. Opt. 19(2), 301–312 (1980).
    [Crossref] [PubMed]
  16. S. M. Adler-Golden, N. Goldstein, F. Bien, M. W. Matthew, M. E. Gersh, W. K. Cheng, and F. W. Adams, “Laser Raman sensor for measurement of trace-hydrogen gas,” Appl. Opt. 31(6), 831–835 (1992).
    [Crossref] [PubMed]
  17. J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
    [Crossref]
  18. D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
    [Crossref]
  19. A. Pogány, S. Wagner, O. Werhahn, and V. Ebert, “Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor,” Appl. Spectrosc. 69(2), 257–268 (2015).
    [Crossref] [PubMed]
  20. D. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Appl. Opt. 3(4), 523–526 (1964).
    [Crossref]
  21. D. R. Herriott and H. J. Schulte, “Folded Optical Delay Lines,” Appl. Opt. 4(8), 883–889 (1965).
    [Crossref]
  22. J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20(6), 995–999 (1981).
    [Crossref] [PubMed]
  23. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34(18), 3336–3348 (1995).
    [Crossref] [PubMed]
  24. G. S. Engel and E. J. Moyer, “Precise multipass Herriott cell design: derivation of controlling design equations,” Opt. Lett. 32(6), 704–706 (2007).
    [Crossref] [PubMed]
  25. C. G. Tarsitano and C. R. Webster, “Multilaser Herriott cell for planetary tunable laser spectrometers,” Appl. Opt. 46(28), 6923–6935 (2007).
    [Crossref] [PubMed]
  26. http://www.spectraplot.com/
  27. J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
    [Crossref]

2017 (6)

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

R. Ghorbani and F. M. Schmidt, “ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes,” Opt. Express 25(11), 12743–12752 (2017).
[Crossref] [PubMed]

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref] [PubMed]

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

2016 (2)

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

H. Moser, A. Genner, J. Ofner, C. Schwarzer, G. Strasser, and B. Lendl, “Application of a ring cavity surface emitting quantum cascade laser (RCSE-QCL) on the measurement of H2S in a CH4 matrix for process analytics,” Opt. Express 24(6), 6572–6585 (2016).
[Crossref] [PubMed]

2015 (2)

2013 (1)

J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
[Crossref]

2012 (1)

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

2011 (2)

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

2010 (1)

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

2007 (2)

2002 (1)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[Crossref] [PubMed]

1995 (2)

1992 (1)

1981 (2)

J. Altmann, R. Baumgart, and C. Weitkamp, “Two-mirror multipass absorption cell,” Appl. Opt. 20(6), 995–999 (1981).
[Crossref] [PubMed]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

1980 (1)

1965 (1)

1964 (1)

Adams, F. W.

Adler-Golden, S. M.

Altmann, J.

Anderson, T.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Axner, O.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Baumgart, R.

Belahsene, S.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Bien, F.

Burba, G.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Byer, R. L.

Cao, Y.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Cheng, W. K.

Cousin, J.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Deng, H.

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

Dong, L.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

Durry, G.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Ebert, V.

Engel, G. S.

Farooq, A.

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

Fischer, M.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Fried, A.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[Crossref] [PubMed]

Genner, A.

Gersh, M. E.

Ghorbani, R.

Goldstein, N.

Griffin, E. J.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Hald, J.

J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
[Crossref]

Hastings, S.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

He, Q.

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

He, T.

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

Herriott, D.

Herriott, D. R.

Ho, H. L.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Jahjah, M.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Jiang, J.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Jin, W.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Joly, L.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Kebabian, P. L.

Kluczynski, P.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Koeth, J.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Kogelnik, H.

Komissarov, A.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Kompfner, R.

Labrie, D.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

Lendl, B.

Li, C. G.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

Li, C. R.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Li, J.

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

Li, J. S.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Liu, N.

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

Liu, Y.

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

Lou, M.

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

Lundqvist, S.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Luo, Y. T.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Lyngso, J. K.

J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
[Crossref]

Ma, G. M.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Matthew, M. W.

McDermitt, D.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

McManus, J. B.

Moser, H.

Moyer, E. J.

Nähle, L.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Nasir, E. F.

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

Nwaboh, J. A.

J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
[Crossref]

Oberbauer, S.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Oechel, W.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Ofner, J.

Parvitte, B.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Petersen, J. C.

J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
[Crossref]

Pogány, A.

Qi, L.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Reid, J.

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

Richter, D.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[Crossref] [PubMed]

Riensche, B.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Rouillard, Y.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Sanchez, N. P.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Schedlbauer, J.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Schmidt, F. M.

Schulte, H. J.

Schwarzer, C.

Song, F.

Song, H. T.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Starr, G.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Strasser, G.

Tarsitano, C. G.

Tittel, F. K.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref] [PubMed]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[Crossref] [PubMed]

Trutna, W. R.

Utsav, K. C.

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

Vicet, A.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Wagner, S.

Walega, J. G.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[Crossref] [PubMed]

Wang, Y.

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref] [PubMed]

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

Wang, Y. D.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Webster, C. R.

Weitkamp, C.

Werhahn, O.

A. Pogány, S. Wagner, O. Werhahn, and V. Ebert, “Development and metrological characterization of a tunable diode laser absorption spectroscopy (TDLAS) spectrometer for simultaneous absolute measurement of carbon dioxide and water vapor,” Appl. Spectrosc. 69(2), 257–268 (2015).
[Crossref] [PubMed]

J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
[Crossref]

Wert, B. P.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[Crossref] [PubMed]

Westberg, J.

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Wu, H.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Xu, L.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Yan, W.

Yang, Y. H.

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

Ye, W.

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref] [PubMed]

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

Ye, W. L.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Zahniser, M. S.

Zeninari, V.

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Zhang, L.

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

Zhao, S. J.

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Zheng, C.

F. Song, C. Zheng, W. Yan, W. Ye, Y. Wang, and F. K. Tittel, “Interband cascade laser based mid-infrared methane sensor system using a novel electrical-domain self-adaptive direct laser absorption spectroscopy (SA-DLAS),” Opt. Express 25(25), 31876–31888 (2017).
[Crossref] [PubMed]

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

Zheng, C. T.

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

Zona, D.

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Appl. Opt. (8)

Appl. Phys. B (7)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75(2-3), 281–288 (2002).
[Crossref] [PubMed]

J. Reid and D. Labrie, “Second-harmonic detection with tunable diode lasers — Comparison of experiment and theory,” Appl. Phys. B 26(3), 203–210 (1981).
[Crossref]

J. A. Nwaboh, J. Hald, J. K. Lyngso, J. C. Petersen, and O. Werhahn, “Measurements of CO2, in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm,” Appl. Phys. B 110(2), 187–194 (2013).
[Crossref]

D. McDermitt, G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, W. Oechel, S. Oberbauer, and S. Hastings, “A new low-power, open-path instrument for measuring methane flux by eddy covariance,” Appl. Phys. B 102(2), 391–405 (2011).
[Crossref]

Y. Cao, W. Jin, H. L. Ho, L. Qi, and Y. H. Yang, “Acetylene detection based on diode laser QEPAS: combined wavelength and residual amplitude modulation,” Appl. Phys. B 109(2), 359–366 (2012).
[Crossref]

K. C. Utsav, E. F. Nasir, and A. Farooq, “A mid-infrared absorption diagnostic for acetylene detection,” Appl. Phys. B 120(2), 223–232 (2015).
[Crossref]

P. Kluczynski, M. Jahjah, L. Nähle, O. Axner, S. Belahsene, M. Fischer, J. Koeth, Y. Rouillard, J. Westberg, A. Vicet, and S. Lundqvist, “Detection of acetylene impurities in ethylene and polyethylene manufacturing processes using tunable diode laser spectroscopy in the 3-μm range,” Appl. Phys. B 105(2), 427–434 (2011).
[Crossref]

Appl. Spectrosc. (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

J. S. Li, G. Durry, J. Cousin, L. Joly, B. Parvitte, and V. Zeninari, “Self-broadening coefficients and positions of acetylene around 1.533 μm studied by high-resolution diode laser absorption spectrometry,” J. Quant. Spectrosc. Radiat. Transf. 111(15), 2332–2340 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Sci. Rep. (1)

G. M. Ma, S. J. Zhao, J. Jiang, H. T. Song, C. R. Li, Y. T. Luo, and H. Wu, “Tracing Acetylene Dissolved in Transformer Oil by Tunable Diode Laser Absorption Spectrum,” Sci. Rep. 7(1), 14961 (2017).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

C. G. Li, L. Dong, C. T. Zheng, and F. K. Tittel, “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 μm room-temperature CW interband cascade laser,” Sens. Actuators B Chem. 232, 188–194 (2016).
[Crossref]

C. T. Zheng, W. L. Ye, N. P. Sanchez, C. G. Li, L. Dong, Y. D. Wang, E. J. Griffin, and F. K. Tittel, “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy,” Sens. Actuators B Chem. 244, 365–372 (2017).
[Crossref]

Sensors (Basel) (1)

Q. He, M. Lou, C. Zheng, W. Ye, Y. Wang, and F. K. Tittel, “Repetitively Mode-Locked Cavity-Enhanced Absorption Spectroscopy (RML-CEAS) for Near-Infrared Gas Sensing,” Sensors (Basel) 17(12), 2792 (2017).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

N. Liu, H. Deng, T. He, Y. Liu, L. Zhang, and J. Li, “Measurements of new absorption lines of acetylene at 1.53μm using a tunable diode laser absorption spectrometer,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 186, 1–7 (2017).
[Crossref] [PubMed]

Other (1)

http://www.spectraplot.com/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) A generic model of a dual spot-ring Herriott cell (DSR-HC) with two entrance-holes (EH1, EH2) on mirror A and two rays enter and emit the DSR-HC through the same entrance hole, respectively. (b) Spot distributions on mirror A for different values of the parameter v in the direction vector (1, v, w) of the incident ray. (c) Spot distributions for different values of the parameter w in the direction vector (1, v, w) of the incident ray.
Fig. 2
Fig. 2 (a) Photograph of the fabricated DSR-HC with a dimension size of 5.5 cm × 9.2 cm × 32.1 cm. (b) Simulated spot distribution on mirror A, where two entrance holes (EH1 & EH2) for the two incident rays were on mirror A. (c) Observed spot distribution on mirror A.
Fig. 3
Fig. 3 Measured C2H2 absorption signal (black curve) with the reported DSR-HC at a concentration level of 1000 ppmv, (a) using the inner spot ring, and (b) using the outer spot ring. The red curve shows the background fitting signal.
Fig. 4
Fig. 4 Double-range C2H2 sensor structure using the developed DSR-HC, including an electrical system, an optical system as well as a gas sampling system.
Fig. 5
Fig. 5 HITRAN based absorption spectra of C2H2 (10 ppmv) and H2O (2%) in a narrow spectral range from 6520.4 cm−1 to 6522 cm−1 at a pressure of 760 Torr and an absorption path length of 100 cm. C2H2 and H2O lines are shown in black and blue, respectively. The red number is the driving current required to obtain a corresponding wavenumber marked by round dot.
Fig. 6
Fig. 6 Modulation depth and the C2H2 2f-signal amplitude as a function of the modulation amplitude of the sinewave signal.
Fig. 7
Fig. 7 (a) Measured 2f signal amplitude versus calibration time t for different C2H2 concentration levels ranging from 10 to 100 ppmv. (b) Experimental data dots and fitting curve of C2H2 concentration versus the 2f signal amplitude.
Fig. 8
Fig. 8 (a) C2H2 concentration measurements of the sample with zero concentration for a time period of ~2 hours using the long light path. (b) Allan deviation plot of the C2H2 sensor with a sampling interval of 2 s based on the data shown in Fig. 8(a).
Fig. 9
Fig. 9 (a) Measured 2f amplitude versus calibration time t for different C2H2 concentration levels within 100-1000 ppmv. (b) Experimental data dots and fitting curve of C2H2 concentration versus the 2f signal amplitude.
Fig. 10
Fig. 10 (a) C2H2 concentration measurements of the sample with zero concentration over a time period of ~2 hours using the short light path. (b) Allan deviation plot of the C2H2 sensor with a sampling interval of 2 s based on the data shown in Fig. 10 (b).

Tables (1)

Tables Icon

Table 1 Simulated absorbance corresponding to 20 m and 6 m absorption path length when the temperature is set to 300K and the pressure is set to 760 Torr.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L= i=0 N [ ( x i+1 x i ) 2 + ( y i+1 y i ) 2 + ( z i+1 z i ) 2 ]
L= 1 SφPχ ln[ kexp(SφPχ L 1 )+(1k)exp(SφPχ L 2 ) ]
α=ln(( V 2 V OFFSET )/( V 1 V OFFSET ))
C=0.6382×2famp1.2319
C= 104.062×2famp 24.452

Metrics