Abstract

The determination of the properties (i.e. line center, width, and amplitude) of a spectral line is simulated using a Monte Carlo method. For dual-comb spectroscopy, ideal repetition rates emerge for both the signal and LO combs that do not correspond to the repetition rates that possess the highest signal-to-noise ratio. The determination is even more accurate when the repetition rates have an arbitrary near-harmonic ratio. The simulation results are generalized to allow for the comparison of any two spectroscopic systems (i.e. not just comb-based systems) by performing the simulations as a function of the spectral point spacing and signal-to-noise ratio of the acquired data.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-comb spectroscopy

Ian Coddington, Nathan Newbury, and William Swann
Optica 3(4) 414-426 (2016)

Coherent dual-comb interferometry with quasi-integer-ratio repetition rates

Nicolas Bourbeau Hébert, Sylvain Boudreau, Jérôme Genest, and Jean-Daniel Deschênes
Opt. Express 22(23) 29152-29160 (2014)

Dual-comb spectroscopy with a phase-modulated probe comb for sub-MHz spectral sampling

Nicolas Bourbeau Hébert, Vincent Michaud-Belleau, Sébastien Magnan-Saucier, Jean-Daniel Deschênes, and Jérôme Genest
Opt. Lett. 41(10) 2282-2285 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
    [Crossref]
  2. S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27, B51–B62 (2010).
    [Crossref]
  3. I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414 (2016).
    [Crossref]
  4. T. Ideguchi, “Dual-Comb Spectroscopy,” Opt. Photon. News 28, 32–39 (2017).
    [Crossref]
  5. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
    [Crossref] [PubMed]
  6. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
    [Crossref]
  7. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 1–13 (2010).
    [Crossref]
  8. G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
    [Crossref]
  9. A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, and K. Minoshima, “Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique,” Opt. Express 25, 31730–31738 (2017).
    [Crossref] [PubMed]
  10. M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
    [Crossref]
  11. J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Light. Technol. 29, 3091–3098 (2011).
    [Crossref]
  12. A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron.19 (2013).
    [Crossref]
  13. N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
    [Crossref] [PubMed]
  14. L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20, 17928 (2012).
    [Crossref] [PubMed]
  15. D.-S. Ly-Gagnon, S. Tsukamoto, and K. Katoh, “Coherent Detection of Phase-Shift Keying Signals Using Digital Carrier-Phase Estimation,” J. Light. Technol. 24, 12–21 (2006).
    [Crossref]
  16. I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
    [Crossref]
  17. E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
    [Crossref]
  18. Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).
  19. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
    [Crossref] [PubMed]
  20. B. Lomsadze and S. T. Cundiff, “Frequency comb-based four-wave-mixing spectroscopy,” Opt. Lett. 42, 2346–2349 (2017).
    [Crossref] [PubMed]
  21. B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science. 357, 1389–1391 (2017).
    [Crossref] [PubMed]
  22. B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Reports 7, 14018 (2017).
    [Crossref]
  23. A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).
    [Crossref]
  24. K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
    [Crossref] [PubMed]
  25. J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87, 023802 (2013).
    [Crossref]
  26. M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
    [Crossref] [PubMed]
  27. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332, 555–559 (2011).
    [Crossref] [PubMed]
  28. T. O’Haver, A Pragmatic Introduction to Signal Processing: with applications in scientific measurement (CreateSpace Independent Publishing Platform, 2016), 2nd ed.
  29. J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33, 959–961 (2008).
    [Crossref] [PubMed]
  30. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition-rate multiplication,” Opt. Lett. 34, 872–874 (2009).
    [Crossref] [PubMed]
  31. L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
    [Crossref]

2017 (7)

T. Ideguchi, “Dual-Comb Spectroscopy,” Opt. Photon. News 28, 32–39 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science. 357, 1389–1391 (2017).
[Crossref] [PubMed]

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Reports 7, 14018 (2017).
[Crossref]

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).
[Crossref]

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
[Crossref] [PubMed]

B. Lomsadze and S. T. Cundiff, “Frequency comb-based four-wave-mixing spectroscopy,” Opt. Lett. 42, 2346–2349 (2017).
[Crossref] [PubMed]

A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, and K. Minoshima, “Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique,” Opt. Express 25, 31730–31738 (2017).
[Crossref] [PubMed]

2016 (3)

L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
[Crossref]

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414 (2016).
[Crossref]

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref] [PubMed]

2015 (1)

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

2014 (2)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

2013 (2)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87, 023802 (2013).
[Crossref]

2012 (2)

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

L. Antonucci, X. Solinas, A. Bonvalet, and M. Joffre, “Asynchronous optical sampling with arbitrary detuning between laser repetition rates,” Opt. Express 20, 17928 (2012).
[Crossref] [PubMed]

2011 (3)

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Light. Technol. 29, 3091–3098 (2011).
[Crossref]

2010 (4)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 1–13 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

S. A. Diddams, “The evolving optical frequency comb [Invited],” J. Opt. Soc. Am. B 27, B51–B62 (2010).
[Crossref]

2009 (1)

2008 (1)

2006 (1)

D.-S. Ly-Gagnon, S. Tsukamoto, and K. Katoh, “Coherent Detection of Phase-Shift Keying Signals Using Digital Carrier-Phase Estimation,” J. Light. Technol. 24, 12–21 (2006).
[Crossref]

2003 (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

1968 (1)

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[Crossref]

Antonucci, L.

Araki, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Asahara, A.

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).
[Crossref]

Bagnell, M.

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Light. Technol. 29, 3091–3098 (2011).
[Crossref]

Baumann, E.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

Bendahmane, A.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Bohn, B. J.

Bonvalet, A.

Boudreau, S.

Braje, D. A.

Chen, J.

Coddington, I.

I. Coddington, N. Newbury, and W. Swann, “Dual-comb spectroscopy,” Optica 3, 414 (2016).
[Crossref]

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 1–13 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

Cundiff, S. T.

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science. 357, 1389–1391 (2017).
[Crossref] [PubMed]

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Reports 7, 14018 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency comb-based four-wave-mixing spectroscopy,” Opt. Lett. 42, 2346–2349 (2017).
[Crossref] [PubMed]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Davila-Rodriguez, J.

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Light. Technol. 29, 3091–3098 (2011).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron.19 (2013).
[Crossref]

Delfyett, P. J.

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Light. Technol. 29, 3091–3098 (2011).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron.19 (2013).
[Crossref]

Deschênes, J.-D.

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87, 023802 (2013).
[Crossref]

Diddams, S. A.

Duguay, M. A.

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[Crossref]

Fendel, P.

Fortier, T. M.

Genest, J.

N. B. Hébert, S. Boudreau, J. Genest, and J.-D. Deschênes, “Coherent dual-comb interferometry with quasi-integer-ratio repetition rates,” Opt. Express 22, 29152–29160 (2014).
[Crossref] [PubMed]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87, 023802 (2013).
[Crossref]

Giorgetta, F. R.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Hänsch, T. W.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
[Crossref] [PubMed]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33, 959–961 (2008).
[Crossref] [PubMed]

Hansen, J. W.

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[Crossref]

Hariki, T.

Hébert, N. B.

Hindle, F.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Hollberg, L.

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

J. Chen, J. W. Sickler, P. Fendel, E. P. Ippen, F. X. Kärtner, T. Wilken, R. Holzwarth, and T. W. Hänsch, “Generation of low-timing-jitter femtosecond pulse trains with 2 GHz repetition rate via external repetition rate multiplication,” Opt. Lett. 33, 959–961 (2008).
[Crossref] [PubMed]

Hovhannisyan, T.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

Hsieh, Y.-D.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Ideguchi, T.

T. Ideguchi, “Dual-Comb Spectroscopy,” Opt. Photon. News 28, 32–39 (2017).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

Inaba, H.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Ippen, E. P.

Iyonaga, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Joffre, M.

Kärtner, F. X.

Katoh, K.

D.-S. Ly-Gagnon, S. Tsukamoto, and K. Katoh, “Coherent Detection of Phase-Shift Keying Signals Using Digital Carrier-Phase Estimation,” J. Light. Technol. 24, 12–21 (2006).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Kirchner, M. S.

Klee, A.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron.19 (2013).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Li, Y.

L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
[Crossref]

Lomsadze, B.

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science. 357, 1389–1391 (2017).
[Crossref] [PubMed]

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Reports 7, 14018 (2017).
[Crossref]

B. Lomsadze and S. T. Cundiff, “Frequency comb-based four-wave-mixing spectroscopy,” Opt. Lett. 42, 2346–2349 (2017).
[Crossref] [PubMed]

Ly-Gagnon, D.-S.

D.-S. Ly-Gagnon, S. Tsukamoto, and K. Katoh, “Coherent Detection of Phase-Shift Keying Signals Using Digital Carrier-Phase Estimation,” J. Light. Technol. 24, 12–21 (2006).
[Crossref]

Mélen, G.

Millot, G.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

Minoshima, K.

A. Nishiyama, S. Yoshida, T. Hariki, Y. Nakajima, and K. Minoshima, “Sensitivity improvement of dual-comb spectroscopy using mode-filtering technique,” Opt. Express 25, 31730–31738 (2017).
[Crossref] [PubMed]

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).
[Crossref]

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Mohler, K. J.

Nakajima, Y.

Newburry, N. R.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

Newbury, N.

Newbury, N. R.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 1–13 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18, 7929–7945 (2010).
[Crossref] [PubMed]

Nishiyama, A.

O’Haver, T.

T. O’Haver, A Pragmatic Introduction to Signal Processing: with applications in scientific measurement (CreateSpace Independent Publishing Platform, 2016), 2nd ed.

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Picqué, N.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
[Crossref] [PubMed]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Pitois, S.

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

Sakaguchi, Y.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Sickler, J. W.

Solinas, X.

Suh, M.-G.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref] [PubMed]

Swann, W.

Swann, W. C.

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 1–13 (2010).
[Crossref]

Tsukamoto, S.

D.-S. Ly-Gagnon, S. Tsukamoto, and K. Katoh, “Coherent Detection of Phase-Shift Keying Signals Using Digital Carrier-Phase Estimation,” J. Light. Technol. 24, 12–21 (2006).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

Vahala, K. J.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref] [PubMed]

Wei, H.

L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
[Crossref]

Weiner, A. M.

Wilken, T.

Williams, C.

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Light. Technol. 29, 3091–3098 (2011).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron.19 (2013).
[Crossref]

Yan, M.

K. J. Mohler, B. J. Bohn, M. Yan, G. Mélen, T. W. Hänsch, and N. Picqué, “Dual-comb coherent Raman spectroscopy with lasers of 1-GHz pulse repetition frequency,” Opt. Lett. 42, 318–321 (2017).
[Crossref] [PubMed]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

Yang, H.

L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
[Crossref]

Yang, K. Y.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref] [PubMed]

Yang, L.

L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
[Crossref]

Yang, Q.-F.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref] [PubMed]

Yasui, T.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Ye, J.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Yi, X.

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref] [PubMed]

Yokoyama, S.

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Yoshida, S.

Zhang, H.

L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
[Crossref]

Zolot, A. M.

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

APL Photonics (1)

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photonics 2, 041301 (2017).
[Crossref]

Appl. Phys. Lett. (1)

M. A. Duguay and J. W. Hansen, “Optical sampling of subnanosecond light pulses,” Appl. Phys. Lett. 13, 178–180 (1968).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

I. Coddington, F. R. Giorgetta, E. Baumann, W. C. Swann, and N. R. Newbury, “Characterizing fast arbitrary cw waveforms with 1500 thz/s instantaneous chirps,” IEEE J. Sel. Top. Quantum Electron. 18, 228–238 (2012).
[Crossref]

J. Light. Technol. (2)

D.-S. Ly-Gagnon, S. Tsukamoto, and K. Katoh, “Coherent Detection of Phase-Shift Keying Signals Using Digital Carrier-Phase Estimation,” J. Light. Technol. 24, 12–21 (2006).
[Crossref]

J. Davila-Rodriguez, M. Bagnell, C. Williams, and P. J. Delfyett, “Multiheterodyne Detection for Spectral Compression and Downconversion of Arbitrary Periodic Optical Signals,” J. Light. Technol. 29, 3091–3098 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55–57 (2010).
[Crossref]

G. Millot, S. Pitois, M. Yan, T. Hovhannisyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Nat. Photonics 10, 27–30 (2015).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent raman spectro-imaging with laser frequency combs,” Nature.  502, 355 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Opt. Photon. News (1)

T. Ideguchi, “Dual-Comb Spectroscopy,” Opt. Photon. News 28, 32–39 (2017).
[Crossref]

Optica (1)

Phys. Rev. A (3)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82, 1–13 (2010).
[Crossref]

E. Baumann, F. R. Giorgetta, W. C. Swann, A. M. Zolot, I. Coddington, and N. R. Newburry, “Spectroscopy of the Methane ν3 Band with an Accurate Mid-Infrared Coherent Dual- Comb Spectrometer,” Phys. Rev. A 84, 062513 (2011).
[Crossref]

J.-D. Deschênes and J. Genest, “Heterodyne beats between a continuous-wave laser and a frequency comb beyond the shot-noise limit of a single comb mode,” Phys. Rev. A 87, 023802 (2013).
[Crossref]

Rev. Mod. Phys. (1)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75, 325–342 (2003).
[Crossref]

Rev. Sci. Instruments (1)

L. Yang, H. Yang, H. Zhang, H. Wei, and Y. Li, “Repetition rate multiplication of frequency comb using all-pass fiber resonator,” Rev. Sci. Instruments 87, 093101 (2016).
[Crossref]

Sci. Rep. (1)

Y.-D. Hsieh, Y. Iyonaga, Y. Sakaguchi, S. Yokoyama, H. Inaba, K. Minoshima, F. Hindle, T. Araki, and T. Yasui, “Spectrally interleaved, comb-mode-resolved spectroscopy using swept dual terahertz combs,” Sci. Rep. 4, 1–7 (2014).

Sci. Reports (1)

B. Lomsadze and S. T. Cundiff, “Multi-heterodyne two dimensional coherent spectroscopy using frequency combs,” Sci. Reports 7, 14018 (2017).
[Crossref]

Science (2)

M.-G. Suh, Q.-F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, “Microresonator soliton dual-comb spectroscopy,” Science 354, 600–603 (2016).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-Based Optical Frequency Combs,” Science 332, 555–559 (2011).
[Crossref] [PubMed]

Science. (1)

B. Lomsadze and S. T. Cundiff, “Frequency combs enable rapid and high-resolution multidimensional coherent spectroscopy,” Science. 357, 1389–1391 (2017).
[Crossref] [PubMed]

Other (2)

T. O’Haver, A Pragmatic Introduction to Signal Processing: with applications in scientific measurement (CreateSpace Independent Publishing Platform, 2016), 2nd ed.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron.19 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Optical spectra of a signal comb (showing an absorption dip) and LO comb with equal average powers and a repetition rate ratio ρr ≈ 2 : 1. Every other signal comb line is dotted to illustrate where the rf comb lines in (b) originate. (b) The rf comb seen on a detector in an electrical bandwidth of fLO/2. A pair of gray lines illustrates the optical-to-rf mapping for a solid (dotted) rf comb line which in this specific example occur at even (odd) multiples of δf (k and k′ are integers). Note that each “interferogram” in the time-domain will contain two unique bursts (corresponding to the solid and dotted rf combs) because the LO pulse train sweeps through a given signal pulse twice during each τminδf−1.
Fig. 2
Fig. 2 SNR and corresponding standard deviations of the errors in the fitted center frequency (σc), HWHM (σγ), and strength (σs) as functions of the repetition rates of the signal and LO combs (which have units of γ, the HWHM of the resonance). Conventional (ρr ≈ 1) DCS is the middle diagonal line on each plot while the first line above (below) the diagonal corresponds to ρ r 2 ( ρ r 1 2 ) and so forth. The space between neighboring lines shrinks exponentially due to the logarithmic axes.
Fig. 3
Fig. 3 Standard deviation of the errors in the fitted center frequency (σc), HWHM (σγ), and strength (σs) as functions of the SNR and spectral point spacing, δν. The dashed white lines are gradients to help illustrate the relationship in Eq. (9).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ ν max = f Sig f LO 2 δ f ,
δ f = { | f LO nint ( ρ r ) f Sig | , ρ r > 1 | f LO f Sig nint ( ρ r 1 ) | , ρ r < 1
S ( ν ) = exp [ 2 π i n ( ν ) L ν / c ] exp [ α ( ν ) L / 2 ] ,
α ( ν ) = s L γ 2 γ 2 + ( ν ν c ) 2 .
S N ( ν ) | S ( ν ) + N ( ν ) | ,
SNR ρ r = ρ r SNR 1
SNR 1 τ M 2 P Sig [ μ 1 ( NEP ) 2 + 4 c 1 η 1 h ν 0 P Sig + 2 b c 2 ( RIN ) P Sig 2 ] 1 / 2 ,
SNR f Sig f LO ,
σ δ ν SNR

Metrics