Abstract

Liquid crystal variable retarders (LCVR) based polarimeters perform temporal polarization modulation by applying a sequence of driving voltages to introduce different optical retardances. However, even after a careful design and fabrication, manufacturing tolerances (i.e., slight optical axis misalignments, instrument residual polarization, optical activity in the LCVRs...) or the final system configuration (i.e., LCVRs in a convergent optical beam, thermal gradient across the clear aperture...) produce deviations from the ideal setup. As a consequence, all of these effects can reduce the polarimetric modulation efficiency of the device and, therefore, its signal-to-noise ratio. Hence, the voltage sequence applied according to the LCVR calibration curves may not be suitable to reach the optimal theoretical polarimetric efficiencies. In this work, a systematic fine tuning method for the LCVRs driving voltages is described an experimentally demonstrated.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders

Néstor Uribe-Patarroyo, Alberto Alvarez-Herrero, and Valentín Martínez Pillet
Appl. Opt. 51(21) 4954-4970 (2012)

Overdetermined broadband spectroscopic Mueller matrix polarimeter designed by genetic algorithms

Lars Martin Sandvik Aas, Pål Gunnar Ellingsen, Bent Even Fladmark, Paul Anton Letnes, and Morten Kildemo
Opt. Express 21(7) 8753-8762 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
    [Crossref]
  2. F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).
  3. J. C. del Toro Iniesta and M. Collados, “Optimum modulation and demodulation matrices for solar polarimetry,” Appl. Opt. 39(10), 1637–1642 (2000).
    [Crossref]
  4. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
    [Crossref] [PubMed]
  5. V. de Martino, E. García-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
    [Crossref]
  6. J. C. del Toro Iniesta and V. Martínez-Pillet, “Assessing the behavior of modern solar magnetographs and spectropolarimeters,” The Astrophysical Journal Supplement Series 201, 22 (2012).
    [Crossref]
  7. A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).
  8. A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
    [Crossref]
  9. N. Uribe-Patarroyo, A. Álvarez-Herrero, and V. Martínez-Pillet, “Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders,” Appl. Opt. 51(21), 4954–4970 (2012).
    [Crossref] [PubMed]

2015 (1)

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

2014 (1)

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

2012 (2)

J. C. del Toro Iniesta and V. Martínez-Pillet, “Assessing the behavior of modern solar magnetographs and spectropolarimeters,” The Astrophysical Journal Supplement Series 201, 22 (2012).
[Crossref]

N. Uribe-Patarroyo, A. Álvarez-Herrero, and V. Martínez-Pillet, “Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders,” Appl. Opt. 51(21), 4954–4970 (2012).
[Crossref] [PubMed]

2011 (2)

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

2004 (1)

V. de Martino, E. García-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[Crossref]

2002 (1)

2000 (1)

Álvarez-Herrero, A.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

N. Uribe-Patarroyo, A. Álvarez-Herrero, and V. Martínez-Pillet, “Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders,” Appl. Opt. 51(21), 4954–4970 (2012).
[Crossref] [PubMed]

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Appourchaux, T.

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

Barandiarán, J.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Bastide, L.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Boer, G.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Capobianco, G.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Collados, M.

Craven-Jones, J.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

de Martino, V.

V. de Martino, E. García-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[Crossref]

del Toro Iniesta, J. C.

J. C. del Toro Iniesta and V. Martínez-Pillet, “Assessing the behavior of modern solar magnetographs and spectropolarimeters,” The Astrophysical Journal Supplement Series 201, 22 (2012).
[Crossref]

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

J. C. del Toro Iniesta and M. Collados, “Optimum modulation and demodulation matrices for solar polarimetry,” Appl. Opt. 39(10), 1637–1642 (2000).
[Crossref]

Drévillon, B.

V. de Martino, E. García-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[Crossref]

Escuti, M.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Fineschi, S.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Gandorfer, A.

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

García-Caurel, E.

V. de Martino, E. García-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[Crossref]

García-Parejo, P.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Georges, M.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Gonzalo, A.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Harrington, D.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Heredero, R. L.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Laguna, H.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Laude, B.

V. de Martino, E. García-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[Crossref]

López, A.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

López, M.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Manolis, I.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Martínez-Pillet, V.

J. C. del Toro Iniesta and V. Martínez-Pillet, “Assessing the behavior of modern solar magnetographs and spectropolarimeters,” The Astrophysical Journal Supplement Series 201, 22 (2012).
[Crossref]

N. Uribe-Patarroyo, A. Álvarez-Herrero, and V. Martínez-Pillet, “Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders,” Appl. Opt. 51(21), 4954–4970 (2012).
[Crossref] [PubMed]

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Martino, A. De

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Mawet, D.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Navarro, R.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Reina, M.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Restrepo, R.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Riedi, J.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Royo, M.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Sanchez, A.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Snik, F.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

Solanki, S. K.

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

Tyo, J. S.

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002).
[Crossref] [PubMed]

Uribe-Patarroyo, N.

N. Uribe-Patarroyo, A. Álvarez-Herrero, and V. Martínez-Pillet, “Preflight calibration of the Imaging Magnetograph eXperiment polarization modulation package based on liquid-crystal variable retarders,” Appl. Opt. 51(21), 4954–4970 (2012).
[Crossref] [PubMed]

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Vargas, J.

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

Vera, I.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Villanueva, J.

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

Woch, J.

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

Appl. Opt. (3)

J. Phys. Conf. Ser. (1)

A. Gandorfer, S. K. Solanki, J. Woch, V. Martínez-Pillet, A. Álvarez-Herrero, and T. Appourchaux, “The Solar Orbiter Mission and its Polarimetric and Helioseismic Imager,” J. Phys. Conf. Ser. 271, 012086 (2011).
[Crossref]

Proc. SPIE (3)

A. Álvarez-Herrero, P. García-Parejo, H. Laguna, J. Villanueva, J. Barandiarán, L. Bastide, M. Reina, A. Sanchez, A. Gonzalo, R. Navarro, I. Vera, and M. Royo, “Polarization modulators based on Liquid Crystal Variable Retarders for the Solar Orbiter mission,” Proc. SPIE 9613, 96130I (2015).

A. Álvarez-Herrero, N. Uribe-Patarroyo, P. García-Parejo, J. Vargas, R. L. Heredero, R. Restrepo, V. Martínez-Pillet, J. C. del Toro Iniesta, A. López, S. Fineschi, G. Capobianco, M. Georges, M. López, G. Boer, and I. Manolis, “Imaging polarimeters based on Liquid Crystal Variable Retarders: an emergent technology for space instrumentation,” Proc. SPIE 8160, 81600Y (2011).
[Crossref]

F. Snik, J. Craven-Jones, M. Escuti, S. Fineschi, D. Harrington, A. De Martino, D. Mawet, J. Riedi, and J. S. Tyo, “An overview of polarimetric sensing techniques and technology with applications to different research fields,” Proc. SPIE 9099, 90990B (2014).

The Astrophysical Journal Supplement Series (1)

J. C. del Toro Iniesta and V. Martínez-Pillet, “Assessing the behavior of modern solar magnetographs and spectropolarimeters,” The Astrophysical Journal Supplement Series 201, 22 (2012).
[Crossref]

Thin Solid Films (1)

V. de Martino, E. García-Caurel, B. Laude, and B. Drévillon, “General methods for optimized design and calibration of Mueller polarimeters,” Thin Solid Films 455–456, 112–119 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of the Polarization State Analyzer of the PHI solar spectro-polarimeter.
Fig. 2
Fig. 2 Volts vs. retardance plot measured at T= 40.0 °C ± 0.5 °C for LCVR1. Past the point of the Fréedericksz transition, the higher the applied voltage, the lower the optical retardance.
Fig. 3
Fig. 3 Efficiency vector components plotted against one retardance chosen as variable. a) All the efficiency vector components are dependent on the first retardance applied to the LCVR2. b) Two efficiency components are constant under changes in the first retardance of the LCVR1. The vertical dashed line shows the actual retardances applied according to Table 1.
Fig. 4
Fig. 4 Step by step procedure of the fine-tuning method.
Fig. 5
Fig. 5 Polarimetric modulation efficiencies of the PHI PSA for a FoV = ±2 deg.

Tables (1)

Tables Icon

Table 1 Retardance chart selected. It is an optimum modulation scheme in ideal PSA.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

O = ( 1 cos σ 1 sin σ 1 sin ρ 1 sin σ 1 cos ρ 1 1 cos σ 2 sin σ 2 sin ρ 2 sin σ 2 cos ρ 2 1 cos σ 3 sin σ 3 sin ρ 3 sin σ 3 cos ρ 3 1 cos σ 4 sin σ 4 sin ρ 4 sin σ 4 cos ρ 4 ) ,
ε i = ( n j = 1 n D i j 2 ) 1 / 2 .
ε 1 1 , i = 2 4 ε i 2 1 .
( S / N ) 1 = ( s / n ) ε 1 N p N a ,
( S / N ) i = ε i ε 1 ( S / N ) 1 .
O o p t = ( 1 1 3 1 3 1 3 1 1 3 1 3 1 3 1 1 3 1 3 1 3 1 1 3 1 3 1 3 . )
O = ( 1 cos σ 1 sin σ 1 sin ρ 1 sin σ 1 cos ρ 1 1 cos σ 2 sin σ 2 sin ρ 1 sin σ 2 cos ρ 1 1 cos σ 3 sin σ 3 sin ρ 2 sin σ 3 cos ρ 2 1 cos σ 4 sin σ 4 sin ρ 2 sin σ 4 cos ρ 2 ) .
d e t ( O ) = [ cos ρ 2 sin ρ 1 cos ρ 1 sin ρ 2 ] × [ cos σ 1 sin σ 2 ( sin σ 3 sin σ 4 ) + cos σ 2 sin σ 1 ( sin σ 4 sin σ 3 ) + cos σ 3 sin σ 4 ( sin σ 2 sin σ 1 ) + cos σ 4 sin σ 3 ( sin σ 1 sin σ 2 ) ] .
d e t ( O ) = 0 { if  σ 1 = σ 2 if  σ 3 = σ 4 if  tan ρ 1 = tan ρ 2 if cos σ 2 sin σ 1 cos σ 1 sin σ 2 sin σ 2 sin σ 1 = cos σ 3 sin σ 4 cos σ 4 sin σ 3 sin σ 4 sin σ 3 .
R M S E = i , j [ ( O o p t ) i j ( O s t e p ) i j ] 2 4 × n ,
O i n i t i a l = ( 1.018 0.774 0.348 0.452 0.972 0.290 0.494 0.853 0.983 0.831 0.572 0.223 1.027 0.188 0.673 0.596 ) , R M S E = 0.1994 ,
O s t e p 1 = ( 1.024 0.595 0.533 0.627 0.955 0.581 0.386 0.694 0.991 0.518 0.739 0.338 1.031 0.461 0.678 0.420 ) , R M S E = 0.1137 .
O s t e p 2 = ( 1.022 0.585 0.569 0.538 0.960 0.551 0.427 0.644 0.989 0.553 0.679 0.317 1.029 0.523 0.627 0.357 ) , R M S E = 0.1043 .
O s t e p 3 = ( 1.025 0.587 0.572 0.538 0.962 0.552 0.432 0.644 0.986 0.547 0.649 0.387 1.027 0.538 0.585 0.4091 ) , R M S E = 0.0823 .
O f i n a l = ( 1.002 0.573 0.640 0.471 0.996 0.598 0.508 0.587 0.998 0.548 0.558 0.547 1.004 0.589 0.518 0.515 ) , R M S E = 0.0440 .

Metrics