Abstract

Ag-Ti composite nanorod structures with various Ag compositions were fabricated by the oblique angle co-deposition technique, and their optical transmission spectra are tuned by composition ratios of Ag and Ti, polarization directions, and deposition angles. Such tunable optical properties have potential applications in optoelectronics. Specially, for the Ag80 composite nanorod structures, there exists a wavelength, where it is isotropic. We also show that the transmission spectra of the Ag80 composite nanorod structure for the deposition angle of 87.5° are greater than 90%, while the transmission spectra for the 75° deposition angle are lower than 20%. Utilizing such a property, high or low transmission lenses can be designed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical fiber sensor based on oblique angle deposition

Sasani Jayawardhana, Gorgi Kostovski, Alex P. Mazzolini, and Paul R. Stoddart
Appl. Opt. 50(2) 155-162 (2011)

Unusual optical properties of the Au/Ag alloy at the matching mole fraction

Yoshiaki Nishijima and Shunsuke Akiyama
Opt. Mater. Express 2(9) 1226-1235 (2012)

Alloyed Au-Ag nanorods with desired plasmonic properties and stability in harsh environments

Yuan Ni, Caixia Kan, Longbing He, Xingzhong Zhu, Mingming Jiang, and Daning Shi
Photon. Res. 7(5) 558-565 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
    [Crossref] [PubMed]
  2. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  3. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  4. Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
    [Crossref]
  5. S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
    [Crossref]
  6. E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
    [Crossref] [PubMed]
  7. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  8. L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
    [Crossref]
  9. L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9(6), 1302–1317 (1997).
    [Crossref]
  10. Y. He, J. Fan, and Y. Zhao, “The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures,” Int. J. Hydrogen Energy 35(9), 4162–4170 (2010).
    [Crossref]
  11. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
    [Crossref]
  12. M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
    [Crossref]
  13. Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
    [Crossref]
  14. L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
    [Crossref]
  15. C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
    [Crossref] [PubMed]
  16. P. R. Evans, W. R. Hendren, R. Atkinson, and R. J. Pollard, “Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina,” Nanotechnology 19(46), 465708 (2008).
    [Crossref] [PubMed]
  17. S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater. 23(23), 4098–4101 (2011).
    [Crossref]
  18. C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photonics 3(4), 507–513 (2016).
    [Crossref]
  19. W. Ingram, S. Larson, D. Carlson, and Y. Zhao, “Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition,” Nanotechnology 28(1), 015301 (2017).
    [Crossref] [PubMed]
  20. F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
    [Crossref]
  21. J. L. Murray and K. J. Bhansali, “The Ag-Ti (Silver-Titanium) system,” Bulletin Alloy Phase Diagrams 4(2), 178–183 (1983).
    [Crossref]
  22. H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites,” J. Sol-Gel Sci. Technol. 19(1–3), 39–51 (2000).
  23. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
    [Crossref]
  24. A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
    [Crossref]
  25. A. Gedanken, “Doping nanoparticles into polymers and ceramics using ultrasound radiation,” Ultrason. Sonochem. 14(4), 418–430 (2007).
    [Crossref] [PubMed]
  26. I. Zhitomirsky, “Electrophoretic deposition of organic-inorganic nanocomposites,” J. Mater. Sci. 41(24), 8186–8195 (2006).
    [Crossref]
  27. Y. Wang, M. Sasaki, T. Goto, and T. Hirai, “Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition,” J. Mater. Sci. 25(11), 4607–4613 (1990).
    [Crossref]
  28. A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
    [Crossref]
  29. G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
    [Crossref]
  30. Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, “Embedding Ag nanoparticles into MgF2 nanorod arrays,” Adv. Funct. Mater. 18(11), 1676–1684 (2008).
    [Crossref]
  31. Y. He, J. Fan, and Y. Zhao, “Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique,” Cryst. Growth Des. 10(11), 4954–4958 (2010).
    [Crossref]
  32. Y. He, Y. Zhao, and J. Wu, “The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition,” Appl. Phys. Lett. 92(6), 063107 (2008).
    [Crossref]
  33. Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano Lett. 2(4), 351–354 (2002).
    [Crossref]
  34. Y. He, C. Brown, C. A. Lundgren, and Y. Zhao, “The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties,” Nanotechnology 23(36), 365703 (2012).
    [Crossref] [PubMed]
  35. V. N. Eremenko, Y. I. Buyanov, and N. M. Panchenko, “Constitution diagram of the system titanium-silver,” Sov. Powder Metall. Met. C 8(7), 562–566 (1969).
    [Crossref]
  36. M. Li, C. Li, F. Wang, and W. Zhang, “Experimental study and thermodynamic assessment of the Ag-Ti system,” Calphad 29(4), 269–275 (2005).
    [Crossref]
  37. A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
    [Crossref] [PubMed]
  38. Z. C. Cordero and C. A. Schuh, “Phase strength effects on chemical mixing in extensively deformed alloys,” Acta Mater. 82, 123–136 (2015).
    [Crossref]
  39. B. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” J. Vac. Sci. Technol. B 21(6), 2569–2575 (2003).
    [Crossref]
  40. D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
    [Crossref]
  41. Y. Zhao, Y. He, and C. Brown, “Composition dependent nanocolumn tilting angle during the oblique angle co-deposition,” Appl. Phys. Lett. 100(3), 033106 (2012).
    [Crossref]
  42. H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
    [Crossref]
  43. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

2017 (1)

W. Ingram, S. Larson, D. Carlson, and Y. Zhao, “Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition,” Nanotechnology 28(1), 015301 (2017).
[Crossref] [PubMed]

2016 (1)

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

2015 (2)

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Z. C. Cordero and C. A. Schuh, “Phase strength effects on chemical mixing in extensively deformed alloys,” Acta Mater. 82, 123–136 (2015).
[Crossref]

2014 (1)

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

2013 (1)

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

2012 (5)

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Y. He, C. Brown, C. A. Lundgren, and Y. Zhao, “The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties,” Nanotechnology 23(36), 365703 (2012).
[Crossref] [PubMed]

D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
[Crossref]

Y. Zhao, Y. He, and C. Brown, “Composition dependent nanocolumn tilting angle during the oblique angle co-deposition,” Appl. Phys. Lett. 100(3), 033106 (2012).
[Crossref]

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
[Crossref]

2011 (4)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater. 23(23), 4098–4101 (2011).
[Crossref]

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

2010 (4)

Y. He, J. Fan, and Y. Zhao, “The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures,” Int. J. Hydrogen Energy 35(9), 4162–4170 (2010).
[Crossref]

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Y. He, J. Fan, and Y. Zhao, “Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique,” Cryst. Growth Des. 10(11), 4954–4958 (2010).
[Crossref]

F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
[Crossref]

2008 (3)

Y. He, Y. Zhao, and J. Wu, “The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition,” Appl. Phys. Lett. 92(6), 063107 (2008).
[Crossref]

Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, “Embedding Ag nanoparticles into MgF2 nanorod arrays,” Adv. Funct. Mater. 18(11), 1676–1684 (2008).
[Crossref]

P. R. Evans, W. R. Hendren, R. Atkinson, and R. J. Pollard, “Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina,” Nanotechnology 19(46), 465708 (2008).
[Crossref] [PubMed]

2007 (5)

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

A. Gedanken, “Doping nanoparticles into polymers and ceramics using ultrasound radiation,” Ultrason. Sonochem. 14(4), 418–430 (2007).
[Crossref] [PubMed]

2006 (2)

I. Zhitomirsky, “Electrophoretic deposition of organic-inorganic nanocomposites,” J. Mater. Sci. 41(24), 8186–8195 (2006).
[Crossref]

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

2005 (1)

M. Li, C. Li, F. Wang, and W. Zhang, “Experimental study and thermodynamic assessment of the Ag-Ti system,” Calphad 29(4), 269–275 (2005).
[Crossref]

2004 (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

2003 (2)

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

B. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” J. Vac. Sci. Technol. B 21(6), 2569–2575 (2003).
[Crossref]

2002 (1)

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano Lett. 2(4), 351–354 (2002).
[Crossref]

2000 (2)

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites,” J. Sol-Gel Sci. Technol. 19(1–3), 39–51 (2000).

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
[Crossref]

1997 (1)

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9(6), 1302–1317 (1997).
[Crossref]

1991 (1)

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[Crossref] [PubMed]

1990 (1)

Y. Wang, M. Sasaki, T. Goto, and T. Hirai, “Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition,” J. Mater. Sci. 25(11), 4607–4613 (1990).
[Crossref]

1983 (1)

J. L. Murray and K. J. Bhansali, “The Ag-Ti (Silver-Titanium) system,” Bulletin Alloy Phase Diagrams 4(2), 178–183 (1983).
[Crossref]

1969 (1)

V. N. Eremenko, Y. I. Buyanov, and N. M. Panchenko, “Constitution diagram of the system titanium-silver,” Sov. Powder Metall. Met. C 8(7), 562–566 (1969).
[Crossref]

Abd-Lefdil, M.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
[Crossref]

Adams, T.

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

Andolina, C. M.

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

Arbouet, A.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Armelao, L.

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Ashcroft, N. W.

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[Crossref] [PubMed]

Atkinson, R.

P. R. Evans, W. R. Hendren, R. Atkinson, and R. J. Pollard, “Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina,” Nanotechnology 19(46), 465708 (2008).
[Crossref] [PubMed]

Au, M.

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

Barkhordarian, G.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Barreca, D.

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Beecroft, L. L.

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9(6), 1302–1317 (1997).
[Crossref]

Bhansali, K. J.

J. L. Murray and K. J. Bhansali, “The Ag-Ti (Silver-Titanium) system,” Bulletin Alloy Phase Diagrams 4(2), 178–183 (1983).
[Crossref]

Bischoff, E.

D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
[Crossref]

Boesenberg, U.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Bormann, R.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Bottaro, G.

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Brett, M. J.

B. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” J. Vac. Sci. Technol. B 21(6), 2569–2575 (2003).
[Crossref]

Brown, C.

Y. He, C. Brown, C. A. Lundgren, and Y. Zhao, “The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties,” Nanotechnology 23(36), 365703 (2012).
[Crossref] [PubMed]

Y. Zhao, Y. He, and C. Brown, “Composition dependent nanocolumn tilting angle during the oblique angle co-deposition,” Appl. Phys. Lett. 100(3), 033106 (2012).
[Crossref]

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Buyanov, Y. I.

V. N. Eremenko, Y. I. Buyanov, and N. M. Panchenko, “Constitution diagram of the system titanium-silver,” Sov. Powder Metall. Met. C 8(7), 562–566 (1969).
[Crossref]

Cao, W.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
[Crossref]

Carlson, D.

W. Ingram, S. Larson, D. Carlson, and Y. Zhao, “Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition,” Nanotechnology 28(1), 015301 (2017).
[Crossref] [PubMed]

Chen, C. H.

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Chen, G.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater. 23(23), 4098–4101 (2011).
[Crossref]

Chen, T. G.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Cheng, T.

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Cordero, Z. C.

Z. C. Cordero and C. A. Schuh, “Phase strength effects on chemical mixing in extensively deformed alloys,” Acta Mater. 82, 123–136 (2015).
[Crossref]

Cuche, A.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Dakka, A.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
[Crossref]

Denton, A. R.

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[Crossref] [PubMed]

Dewar, A. C.

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

Dick, B.

B. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” J. Vac. Sci. Technol. B 21(6), 2569–2575 (2003).
[Crossref]

Ding, C. X.

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Doppiu, S.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Dornheim, M.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Dujardin, E.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Eremenko, V. N.

V. N. Eremenko, Y. I. Buyanov, and N. M. Panchenko, “Constitution diagram of the system titanium-silver,” Sov. Powder Metall. Met. C 8(7), 562–566 (1969).
[Crossref]

Evans, P. R.

P. R. Evans, W. R. Hendren, R. Atkinson, and R. J. Pollard, “Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina,” Nanotechnology 19(46), 465708 (2008).
[Crossref] [PubMed]

Fan, J.

Y. He, J. Fan, and Y. Zhao, “Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique,” Cryst. Growth Des. 10(11), 4954–4958 (2010).
[Crossref]

Y. He, J. Fan, and Y. Zhao, “The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures,” Int. J. Hydrogen Energy 35(9), 4162–4170 (2010).
[Crossref]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Flötotto, D.

D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
[Crossref]

Garcia-Diaz, B.

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

Gasparotto, A.

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Gedanken, A.

A. Gedanken, “Doping nanoparticles into polymers and ceramics using ultrasound radiation,” Ultrason. Sonochem. 14(4), 418–430 (2007).
[Crossref] [PubMed]

Ghassemi, H.

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

Girard, C.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Goedicke, S.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites,” J. Sol-Gel Sci. Technol. 19(1–3), 39–51 (2000).

Gong, C.

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

Goto, T.

Y. Wang, M. Sasaki, T. Goto, and T. Hirai, “Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition,” J. Mater. Sci. 25(11), 4607–4613 (1990).
[Crossref]

Gross, S.

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Gutfleisch, O.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Han, H. W.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Hartmann, M. J.

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

He, Y.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Y. Zhao, Y. He, and C. Brown, “Composition dependent nanocolumn tilting angle during the oblique angle co-deposition,” Appl. Phys. Lett. 100(3), 033106 (2012).
[Crossref]

Y. He, C. Brown, C. A. Lundgren, and Y. Zhao, “The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties,” Nanotechnology 23(36), 365703 (2012).
[Crossref] [PubMed]

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

Y. He, J. Fan, and Y. Zhao, “The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures,” Int. J. Hydrogen Energy 35(9), 4162–4170 (2010).
[Crossref]

Y. He, J. Fan, and Y. Zhao, “Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique,” Cryst. Growth Des. 10(11), 4954–4958 (2010).
[Crossref]

Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, “Embedding Ag nanoparticles into MgF2 nanorod arrays,” Adv. Funct. Mater. 18(11), 1676–1684 (2008).
[Crossref]

Y. He, Y. Zhao, and J. Wu, “The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition,” Appl. Phys. Lett. 92(6), 063107 (2008).
[Crossref]

Hendren, W. R.

P. R. Evans, W. R. Hendren, R. Atkinson, and R. J. Pollard, “Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina,” Nanotechnology 19(46), 465708 (2008).
[Crossref] [PubMed]

Henzie, J.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Hirai, T.

Y. Wang, M. Sasaki, T. Goto, and T. Hirai, “Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition,” J. Mater. Sci. 25(11), 4607–4613 (1990).
[Crossref]

Hoffmann, C.

Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, “Embedding Ag nanoparticles into MgF2 nanorod arrays,” Adv. Funct. Mater. 18(11), 1676–1684 (2008).
[Crossref]

Hsu, C. W.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Huang, S. Y.

F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
[Crossref]

Huot, J.

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Ingram, W.

W. Ingram, S. Larson, D. Carlson, and Y. Zhao, “Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition,” Nanotechnology 28(1), 015301 (2017).
[Crossref] [PubMed]

Jeurgens, L. P. H.

D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
[Crossref]

Jin, L. H.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Jonschker, G.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites,” J. Sol-Gel Sci. Technol. 19(1–3), 39–51 (2000).

Klassen, T.

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Knystautas, E. J.

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

Koch, C. H.

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

Krull, U. J.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Kuo, H. C.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Lafait, J.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
[Crossref]

Larsen, G. K.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
[Crossref]

Larson, S.

W. Ingram, S. Larson, D. Carlson, and Y. Zhao, “Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition,” Nanotechnology 28(1), 015301 (2017).
[Crossref] [PubMed]

Lee, M. H.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Leite, M. S.

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

Léon, A.

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

Li, C.

M. Li, C. Li, F. Wang, and W. Zhang, “Experimental study and thermodynamic assessment of the Ag-Ti system,” Calphad 29(4), 269–275 (2005).
[Crossref]

Li, M.

M. Li, C. Li, F. Wang, and W. Zhang, “Experimental study and thermodynamic assessment of the Ag-Ti system,” Calphad 29(4), 269–275 (2005).
[Crossref]

Liu, S.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater. 23(23), 4098–4101 (2011).
[Crossref]

Lo Russo, S.

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

Lu, T. M.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano Lett. 2(4), 351–354 (2002).
[Crossref]

Lundgren, C. A.

Y. He, C. Brown, C. A. Lundgren, and Y. Zhao, “The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties,” Nanotechnology 23(36), 365703 (2012).
[Crossref] [PubMed]

Lundgrene, C.

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Maaza, M.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
[Crossref]

Maragno, C.

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Marbella, L. E.

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Mennig, M.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites,” J. Sol-Gel Sci. Technol. 19(1–3), 39–51 (2000).

Millstone, J. E.

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

Mittemeijer, E. J.

D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
[Crossref]

Murray, J. L.

J. L. Murray and K. J. Bhansali, “The Ag-Ti (Silver-Titanium) system,” Bulletin Alloy Phase Diagrams 4(2), 178–183 (1983).
[Crossref]

Ober, C. K.

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9(6), 1302–1317 (1997).
[Crossref]

Odom, T. W.

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Panchenko, N. M.

V. N. Eremenko, Y. I. Buyanov, and N. M. Panchenko, “Constitution diagram of the system titanium-silver,” Sov. Powder Metall. Met. C 8(7), 562–566 (1969).
[Crossref]

Petryayeva, E.

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Pollard, R. J.

P. R. Evans, W. R. Hendren, R. Atkinson, and R. J. Pollard, “Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina,” Nanotechnology 19(46), 465708 (2008).
[Crossref] [PubMed]

Prasad, P. N.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater. 23(23), 4098–4101 (2011).
[Crossref]

Ramasamy, R.

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Sang, J. P.

F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
[Crossref]

Sasaki, M.

Y. Wang, M. Sasaki, T. Goto, and T. Hirai, “Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition,” J. Mater. Sci. 25(11), 4607–4613 (1990).
[Crossref]

Schmidt, H.

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites,” J. Sol-Gel Sci. Technol. 19(1–3), 39–51 (2000).

Schuh, C. A.

Z. C. Cordero and C. A. Schuh, “Phase strength effects on chemical mixing in extensively deformed alloys,” Acta Mater. 82, 123–136 (2015).
[Crossref]

Schulz, R.

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

Sella, C.

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
[Crossref]

Sharma, J.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Shieh, J. M.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Smith, A. M.

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

Smy, T.

B. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” J. Vac. Sci. Technol. B 21(6), 2569–2575 (2003).
[Crossref]

Swihart, M. T.

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater. 23(23), 4098–4101 (2011).
[Crossref]

Teulle, A.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Tondello, E.

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Toole, R.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
[Crossref]

Tsai, M. A.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Tsai, Y. L.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Tseng, P. C.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Tu, Y. F.

F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
[Crossref]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Viarbitskaya, S.

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

Wang, F.

M. Li, C. Li, F. Wang, and W. Zhang, “Experimental study and thermodynamic assessment of the Ag-Ti system,” Calphad 29(4), 269–275 (2005).
[Crossref]

Wang, F. H.

F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
[Crossref]

Wang, G. C.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano Lett. 2(4), 351–354 (2002).
[Crossref]

Wang, H.

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Wang, H. W.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Wang, J.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Wang, L.

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Wang, Y.

Y. Wang, M. Sasaki, T. Goto, and T. Hirai, “Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition,” J. Mater. Sci. 25(11), 4607–4613 (1990).
[Crossref]

Wang, Z. M.

D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
[Crossref]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wu, J.

Y. He, Y. Zhao, and J. Wu, “The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition,” Appl. Phys. Lett. 92(6), 063107 (2008).
[Crossref]

Xu, H. W.

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Yang, B.

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Yang, K.

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Yassar, R. S.

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

Ye, D. X.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano Lett. 2(4), 351–354 (2002).
[Crossref]

Yu, P.

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

Zhang, D. W.

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Zhang, L. C.

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

Zhang, W.

M. Li, C. Li, F. Wang, and W. Zhang, “Experimental study and thermodynamic assessment of the Ag-Ti system,” Calphad 29(4), 269–275 (2005).
[Crossref]

Zhang, Z.

Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, “Embedding Ag nanoparticles into MgF2 nanorod arrays,” Adv. Funct. Mater. 18(11), 1676–1684 (2008).
[Crossref]

Zhao, Y.

W. Ingram, S. Larson, D. Carlson, and Y. Zhao, “Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition,” Nanotechnology 28(1), 015301 (2017).
[Crossref] [PubMed]

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

Y. He, C. Brown, C. A. Lundgren, and Y. Zhao, “The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties,” Nanotechnology 23(36), 365703 (2012).
[Crossref] [PubMed]

Y. Zhao, Y. He, and C. Brown, “Composition dependent nanocolumn tilting angle during the oblique angle co-deposition,” Appl. Phys. Lett. 100(3), 033106 (2012).
[Crossref]

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
[Crossref]

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

Y. He, J. Fan, and Y. Zhao, “The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures,” Int. J. Hydrogen Energy 35(9), 4162–4170 (2010).
[Crossref]

Y. He, J. Fan, and Y. Zhao, “Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique,” Cryst. Growth Des. 10(11), 4954–4958 (2010).
[Crossref]

Y. He, Y. Zhao, and J. Wu, “The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition,” Appl. Phys. Lett. 92(6), 063107 (2008).
[Crossref]

Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, “Embedding Ag nanoparticles into MgF2 nanorod arrays,” Adv. Funct. Mater. 18(11), 1676–1684 (2008).
[Crossref]

Zhao, Y. P.

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano Lett. 2(4), 351–354 (2002).
[Crossref]

Zhitomirsky, I.

I. Zhitomirsky, “Electrophoretic deposition of organic-inorganic nanocomposites,” J. Mater. Sci. 41(24), 8186–8195 (2006).
[Crossref]

Zhu, H.

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
[Crossref]

Zou, X. W.

F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
[Crossref]

ACS Photonics (2)

S. Viarbitskaya, A. Cuche, A. Teulle, J. Sharma, C. Girard, A. Arbouet, and E. Dujardin, “Plasmonic hot printing in gold nanoprisms,” ACS Photonics 2(6), 744–751 (2015).
[Crossref]

C. Gong and M. S. Leite, “Noble metal alloys for plasmonics,” ACS Photonics 3(4), 507–513 (2016).
[Crossref]

Acta Mater. (1)

Z. C. Cordero and C. A. Schuh, “Phase strength effects on chemical mixing in extensively deformed alloys,” Acta Mater. 82, 123–136 (2015).
[Crossref]

Adv. Funct. Mater. (1)

Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, “Embedding Ag nanoparticles into MgF2 nanorod arrays,” Adv. Funct. Mater. 18(11), 1676–1684 (2008).
[Crossref]

Adv. Mater. (1)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Adv. Opt. Mater. (1)

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Anal. Chim. Acta (1)

E. Petryayeva and U. J. Krull, “Localized surface plasmon resonance: Nanostructures, bioassays and biosensing-A review,” Anal. Chim. Acta 706(1), 8–24 (2011).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Y. He, Y. Zhao, and J. Wu, “The effect of Ti doping on the growth of Mg nanostructures by oblique angle codeposition,” Appl. Phys. Lett. 92(6), 063107 (2008).
[Crossref]

Y. Zhao, Y. He, and C. Brown, “Composition dependent nanocolumn tilting angle during the oblique angle co-deposition,” Appl. Phys. Lett. 100(3), 033106 (2012).
[Crossref]

Bulletin Alloy Phase Diagrams (1)

J. L. Murray and K. J. Bhansali, “The Ag-Ti (Silver-Titanium) system,” Bulletin Alloy Phase Diagrams 4(2), 178–183 (1983).
[Crossref]

Calphad (1)

M. Li, C. Li, F. Wang, and W. Zhang, “Experimental study and thermodynamic assessment of the Ag-Ti system,” Calphad 29(4), 269–275 (2005).
[Crossref]

Chem. Mater. (2)

S. Liu, G. Chen, P. N. Prasad, and M. T. Swihart, “Synthesis of monodisperse Au, Ag, and Au-Ag alloy nanoparticles with tunable size and surface plasmon resonance frequency,” Chem. Mater. 23(23), 4098–4101 (2011).
[Crossref]

L. L. Beecroft and C. K. Ober, “Nanocomposite materials for optical applications,” Chem. Mater. 9(6), 1302–1317 (1997).
[Crossref]

Chem. Rev. (1)

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Coord. Chem. Rev. (1)

L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, and E. Tondello, “Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look,” Coord. Chem. Rev. 250(11), 1294–1314 (2006).
[Crossref]

Cryst. Growth Des. (1)

Y. He, J. Fan, and Y. Zhao, “Engineering a well-aligned composition-graded CuSi nanorod array by an oblique angle codeposition technique,” Cryst. Growth Des. 10(11), 4954–4958 (2010).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

A. Dakka, J. Lafait, M. Abd-Lefdil, C. Sella, and M. Maaza, “Optical study of Ag-TiO2 nanocermet thin films prepared, by R.F. co-sputtering,” Eur. Phys. J. Appl. Phys. 9(2), 105–114 (2000).
[Crossref]

Int. J. Hydrogen Energy (1)

Y. He, J. Fan, and Y. Zhao, “The role of differently distributed vanadium nanocatalyst in the hydrogen storage of magnesium nanostructures,” Int. J. Hydrogen Energy 35(9), 4162–4170 (2010).
[Crossref]

J. Alloys Compd. (1)

A. Léon, E. J. Knystautas, J. Huot, S. Lo Russo, C. H. Koch, and R. Schulz, “Hydrogen sorption properties of vanadium- and palladium-implanted magnesium films,” J. Alloys Compd. 356–357(03), 530–535 (2003).
[Crossref]

J. Am. Chem. Soc. (1)

C. M. Andolina, A. C. Dewar, A. M. Smith, L. E. Marbella, M. J. Hartmann, and J. E. Millstone, “Photoluminescent gold-copper nanoparticle alloys with composition-tunable near-infrared emission,” J. Am. Chem. Soc. 135(14), 5266–5269 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

D. Flötotto, Z. M. Wang, L. P. H. Jeurgens, E. Bischoff, and E. J. Mittemeijer, “Effect of adatom surface diffusivity on microstructure and intrinsic stress evolutions during Ag film growth,” J. Appl. Phys. 112(4), 043503 (2012).
[Crossref]

J. Mater. Chem. (1)

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy, H. Wang, C. Lundgrene, and Y. Zhao, “Designing Si-based nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes,” J. Mater. Chem. 22(17), 8294–8303 (2012).
[Crossref]

J. Mater. Sci. (3)

I. Zhitomirsky, “Electrophoretic deposition of organic-inorganic nanocomposites,” J. Mater. Sci. 41(24), 8186–8195 (2006).
[Crossref]

Y. Wang, M. Sasaki, T. Goto, and T. Hirai, “Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition,” J. Mater. Sci. 25(11), 4607–4613 (1990).
[Crossref]

F. H. Wang, Y. F. Tu, J. P. Sang, S. Y. Huang, and X. W. Zou, “Aspect ratio-dependent optical properties of Ni-P/AAO nano-array composite structure,” J. Mater. Sci. 45(14), 3735–3740 (2010).
[Crossref]

J. Power Sources (2)

L. Wang, C. X. Ding, L. C. Zhang, H. W. Xu, D. W. Zhang, T. Cheng, and C. H. Chen, “A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries,” J. Power Sources 195(15), 5052–5056 (2010).
[Crossref]

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar, B. Garcia-Diaz, and T. Adams, “Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries,” J. Power Sources 196(22), 9640–9647 (2011).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

H. Schmidt, G. Jonschker, S. Goedicke, and M. Mennig, “The sol-gel process as a basic technology for nanoparticle-dispersed inorganic-organic composites,” J. Sol-Gel Sci. Technol. 19(1–3), 39–51 (2000).

J. Vac. Sci. Technol. B (2)

H. Zhu, W. Cao, G. K. Larsen, R. Toole, and Y. Zhao, “Tilting angle of nanocolumnar films fabricated by oblique angle deposition,” J. Vac. Sci. Technol. B 30(3), 030606 (2012).
[Crossref]

B. Dick, M. J. Brett, and T. Smy, “Investigation of substrate rotation at glancing incidence on thin-film morphology,” J. Vac. Sci. Technol. B 21(6), 2569–2575 (2003).
[Crossref]

Nano Lett. (1)

Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, “Novel nano-column and nano-flower arrays by glancing angle deposition,” Nano Lett. 2(4), 351–354 (2002).
[Crossref]

Nanotechnology (3)

Y. He, C. Brown, C. A. Lundgren, and Y. Zhao, “The growth of CuSi composite nanorod arrays by oblique angle co-deposition, and their structural, electrical and optical properties,” Nanotechnology 23(36), 365703 (2012).
[Crossref] [PubMed]

P. R. Evans, W. R. Hendren, R. Atkinson, and R. J. Pollard, “Optical transmission measurements of silver, silver-gold alloy and silver-gold segmented nanorods in thin film alumina,” Nanotechnology 19(46), 465708 (2008).
[Crossref] [PubMed]

W. Ingram, S. Larson, D. Carlson, and Y. Zhao, “Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition,” Nanotechnology 28(1), 015301 (2017).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Henzie, M. H. Lee, and T. W. Odom, “Multiscale patterning of plasmonic metamaterials,” Nat. Nanotechnol. 2(9), 549–554 (2007).
[Crossref] [PubMed]

Phys. Rev. A (1)

A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43(6), 3161–3164 (1991).
[Crossref] [PubMed]

Scr. Mater. (2)

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann, “Hydrogen storage in magnesium-based hydrides and hydride composites,” Scr. Mater. 56(10), 841–846 (2007).
[Crossref]

Sov. Powder Metall. Met. C (1)

V. N. Eremenko, Y. I. Buyanov, and N. M. Panchenko, “Constitution diagram of the system titanium-silver,” Sov. Powder Metall. Met. C 8(7), 562–566 (1969).
[Crossref]

Ultrason. Sonochem. (1)

A. Gedanken, “Doping nanoparticles into polymers and ceramics using ultrasound radiation,” Ultrason. Sonochem. 14(4), 418–430 (2007).
[Crossref] [PubMed]

Other (2)

Y. L. Tsai, T. G. Chen, M. A. Tsai, C. W. Hsu, P. C. Tseng, H. W. Wang, H. W. Han, L. H. Jin, P. Yu, J. M. Shieh, and H. C. Kuo, “Patterned glass substrates for enhanced solar energy harvesting in thin film solar cells,” in Photovoltaic Specialists Conference (IEEE, 2011), pp. 945–947.
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1991).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic diagram of deposition of nanorods by double-source oblique-angle co-deposition technique.
Fig. 2
Fig. 2 XRD patterns of all thin film samples with different Ag compositions.
Fig. 3
Fig. 3 Top view (in the left column) and cross-sectional view (in the right column) SEM images of nanorod arrays with different deposition tilted angles and different Ag contents of (a) Ag20, α = 80°; (b) Ag20, α = 85°; (c) Ag80, α = 80°; (d) Ag80, α = 85°.
Fig. 4
Fig. 4 Relationships between nanorod width w, thickness δ, height h, and tilting angle β and Ag concentration for the case of the same deposition angle α = 85°.
Fig. 5
Fig. 5 Relationships between nanorod width w, thickness δ, height h, and tilting angle β of the Ag20 nanorod arrays and deposition tilted angle.
Fig. 6
Fig. 6 (a) P- polarization (φ = 0°) and (b) s-polarization (φ = 90°) transmission spectra of the Ag-Ti composite nanorod samples with different composition ratios under α = 85°.
Fig. 7
Fig. 7 P-polarization and s-polarization transmission spectra T 400 p and T 400 s at λ = 400 nm, T 600 p and T 600 s at λ = 600 nm, and T 800 p and T 800 s at λ = 800 nm as functions of CAg.
Fig. 8
Fig. 8 Simulated as well as experimental transmission spectra of the Ag20, Ag80, and Ag100 samples with the deposition tilted angle α = 85° for p-polarization (φ = 0°). The lengths of nanorods for the Ag20, Ag80, and Ag100 samples are set to 158 nm, 154 nm, and 52 nm, respectively. The widths of nanorods for the Ag20, Ag80, and Ag100 samples are set to 10 nm, 11 nm, and 40 nm, respectively. The core distances of nanorods for the Ag20, Ag80, and Ag100 samples are set to 70 nm, 66 nm, and 110 nm, respectively. The tilting angles for the Ag20, Ag80, and Ag100 samples are set to 42°, 66.3°, and 68°, respectively.
Fig. 9
Fig. 9 Transmission spectra of the (a) Ag80 and (b) Ag20 composite nanorod samples under α = 85° for different polarization directions of φ = 0°, φ = 30°, φ = 45°, φ = 60°, and φ = 90°.
Fig. 10
Fig. 10 Transmission spectra of the seven different samples with the deposition tilted angle of α = 85° as functions of polarization angle of incident light at (a) λ = 400 nm, (b) λ = 600 nm, and (c) λ = 800 nm.
Fig. 11
Fig. 11 Transmission spectra of the Ag80 composite nanorod samples obtained from different deposition angles of α = 87.5°, 85°, 82.5°, 80°, 77.5°, and 75° for different polarization directions of (a) φ = 0°, (b) φ = 45°, and (c) φ = 90°.
Fig. 12
Fig. 12 Transmission spectra of the Ag20 composite nanorod samples obtained from different deposition angles of α = 87.5°, 85°, 82.5°, 80°, 77.5°, and 75° for different polarization directions of (a) φ = 0°, (b) φ = 45°, and (c) φ = 90°.
Fig. 13
Fig. 13 Transmission spectra of the Ag80 samples for the six different deposition tilted angles as functions of polarization angle of incident light at (a) λ = 400 nm, (b) λ = 600 nm, and (c) λ = 800 nm.
Fig. 14
Fig. 14 Transmission spectra of the Ag20 samples for the six different deposition tilted angles as functions of polarization angle of incident light at (a) λ = 400 nm, (b) λ = 600 nm, and (c) λ = 800 nm.

Tables (1)

Tables Icon

Table 1 Detailed deposition parameters to control the compositions for all Ag-Ti samples.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε = η ε Ag + ( 1 η ) ε Ti

Metrics