Abstract

Spatial heterodyne Raman spectroscopy is a spectroscopic detection technique that is particularly suitable for Raman measurements. The spectral range of traditional spatial heterodyne Raman spectrometer (SHRS) is limited by its spectral resolution and the number of detector elements. We propose an SHRS with an echelle-mirror structure that employs multiple diffraction orders to achieve a broad spectral coverage and high spectral resolution simultaneously. This SHRS is used to obtain the Raman spectra of organic liquids, inorganic solid targets, and mixed targets. Observations of aqueous solutions, and minerals are presented. In addition, anti-Stokes Raman shifts are also presented. The proposed SHRS technique shows good performance for broadband, high-resolution Raman measurements.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Backscattering Raman spectroscopy using multi-grating spatial heterodyne Raman spectrometer

Jianli Liu, Bayanheshig, Xiangdong Qi, Shanwen Zhang, Ci Sun, Jiwei Zhu, Jicheng Cui, and Xiaotian Li
Appl. Opt. 57(33) 9735-9745 (2018)

Broadband transmission Raman measurements using a field-widened spatial heterodyne Raman spectrometer with mosaic grating structure

Jun Qiu, Xiangdong Qi, Xiaotian Li, Yuguo Tang, Jiriga Lantu, Xiaotao Mi, and Heshig Bayan
Opt. Express 26(20) 26106-26119 (2018)

Broadband, high-resolution Raman observations from a double-echelle spatial heterodyne Raman spectrometer

Jun Qiu, Xiangdong Qi, Xiaotian Li, Wenhui Xu, Yuguo Tang, Zhenyu Ma, and Bayanheshig
Appl. Opt. 57(30) 8936-8941 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Somekawa, T. Takeuchi, C. Yamanaka, and M. Fujita, “Raman Spectroscopy Measurements of CO2 Dissolved in Water and CO2 Bubbles for Laser Remote Sensing in Water,” Proc. SPIE 9240, 534–539 (2014).
  2. L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
    [Crossref] [PubMed]
  3. M. Wu, M. Ray, K. H. Fung, M. W. Ruckman, D. Harder, and A. J. Sedlacek, “Stand-Off Detection of Chemicals by UV Raman Spectroscopy,” Appl. Spectrosc. 54(6), 800–806 (2000).
    [Crossref]
  4. E. C. Cull, M. E. Gehm, B. D. Guenther, and D. J. Brady, “Standoff Raman Spectroscopy System for Remote Chemical Detection,” Proc. SPIE 5994, 233–239 (2005).
    [Crossref]
  5. T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
    [Crossref]
  6. C. A. M. France, D. B. Thomas, C. R. Doney, and O. Madden, “Ft-Raman Spectroscopy as a method for screening collagen diagenesis in bone,” J. Archaeol. Sci. 42, 346–355 (2014).
    [Crossref]
  7. S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
    [Crossref]
  8. H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
    [Crossref] [PubMed]
  9. A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
    [Crossref] [PubMed]
  10. J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
    [Crossref] [PubMed]
  11. B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).
  12. J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Thesis (Ph.D.) University of Wisconsin-Madison (1991), Chap. 3.
  13. N. R. Gomer, C. M. Gordon, P. Lucey, S. K. Sharma, J. C. Carter, and S. M. Angel, “Raman Spectroscopy Using a Spatial Heterodyne Spectrometer: Proof of Concept,” Appl. Spectrosc. 65(8), 849–857 (2011).
    [Crossref] [PubMed]
  14. M. Foster, J. Storey, P. Stockwell, and D. Widdup, “Stand-off Raman spectrometer for identification of liquids in a pressurized gas pipelines,” Opt. Express 23(3), 3027–3034 (2015).
    [Crossref] [PubMed]
  15. M. J. Foster, J. Storey, and M. A. Zentile, “Spatial-heterodyne spectrometer for transmission-Raman observations,” Opt. Express 25(2), 1598–1604 (2017).
    [Crossref] [PubMed]
  16. G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
    [Crossref]
  17. G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
    [Crossref]
  18. G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
    [Crossref] [PubMed]
  19. M. J. Egan, S. M. Angle, and S. K. Sharma, “standoff spatial heterodyne Raman spectrometer for mineralogical analysis,” Appl. Spectrosc. 48, 1613–1617 (2017).
  20. T. Nathaniel, “Spatial heterodyne Raman spectroscopy”. Thesis (Doctor.) University of Surrey (2011), Chap. 3.
  21. J. E. Lawler, Z. E. Labby, J. M. Harlander, and F. L. Roesler, “Broadband, high-resolution spatial heterodyne spectrometer,” Appl. Opt. 47(34), 6371–6384 (2008).
    [Crossref] [PubMed]
  22. C. R. Englert, J. M. Harlander, J. C. Owrutsky, and J. T. Bays, “Shim-Free Breadboard Instrument Design, Integration, and First Measurements,” NRL Memorandum Report NRL/MR/7640-05- 8926 (Naval Research Laboratory, 2005).
  23. M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, “Wavelet Toolbox User’s Guide,” (The Math Works, Inc, 2018), Chap. 1, Chap. 3.
  24. D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectroscopy 29, 14 (2014).
  25. J. Lin and Y. Q. Li, “Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter,” Opt. Lett. 39(1), 108–110 (2014).
    [Crossref] [PubMed]
  26. R. P. Hapanowicz and R. A. Condrate, “High-Temperature Raman Spectral Investigation of Sodium Sulfate,” Spectrosc. Lett. 29(1), 133–141 (1996).
    [Crossref]
  27. J. Shi, X. Miao, and Y. Liu, “Raman spectrum calculation and analysis of p-xylene,” in Proceedings of IEEE Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (IEEE, 2015), pp. 295–298.
  28. S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. Lentz, “A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(3), 468–476 (2009).
    [Crossref] [PubMed]

2018 (3)

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
[Crossref] [PubMed]

2017 (2)

M. J. Egan, S. M. Angle, and S. K. Sharma, “standoff spatial heterodyne Raman spectrometer for mineralogical analysis,” Appl. Spectrosc. 48, 1613–1617 (2017).

M. J. Foster, J. Storey, and M. A. Zentile, “Spatial-heterodyne spectrometer for transmission-Raman observations,” Opt. Express 25(2), 1598–1604 (2017).
[Crossref] [PubMed]

2016 (3)

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

2015 (2)

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

M. Foster, J. Storey, P. Stockwell, and D. Widdup, “Stand-off Raman spectrometer for identification of liquids in a pressurized gas pipelines,” Opt. Express 23(3), 3027–3034 (2015).
[Crossref] [PubMed]

2014 (5)

D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectroscopy 29, 14 (2014).

J. Lin and Y. Q. Li, “Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter,” Opt. Lett. 39(1), 108–110 (2014).
[Crossref] [PubMed]

C. A. M. France, D. B. Thomas, C. R. Doney, and O. Madden, “Ft-Raman Spectroscopy as a method for screening collagen diagenesis in bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

T. Somekawa, T. Takeuchi, C. Yamanaka, and M. Fujita, “Raman Spectroscopy Measurements of CO2 Dissolved in Water and CO2 Bubbles for Laser Remote Sensing in Water,” Proc. SPIE 9240, 534–539 (2014).

2011 (1)

2009 (1)

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. Lentz, “A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(3), 468–476 (2009).
[Crossref] [PubMed]

2008 (1)

2005 (3)

E. C. Cull, M. E. Gehm, B. D. Guenther, and D. J. Brady, “Standoff Raman Spectroscopy System for Remote Chemical Detection,” Proc. SPIE 5994, 233–239 (2005).
[Crossref]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

2000 (1)

1996 (1)

R. P. Hapanowicz and R. A. Condrate, “High-Temperature Raman Spectral Investigation of Sodium Sulfate,” Spectrosc. Lett. 29(1), 133–141 (1996).
[Crossref]

Angel, S. M.

Angle, S. M.

M. J. Egan, S. M. Angle, and S. K. Sharma, “standoff spatial heterodyne Raman spectrometer for mineralogical analysis,” Appl. Spectrosc. 48, 1613–1617 (2017).

Artoni, P.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Boraey, M. A.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Brady, D. J.

E. C. Cull, M. E. Gehm, B. D. Guenther, and D. J. Brady, “Standoff Raman Spectroscopy System for Remote Chemical Detection,” Proc. SPIE 5994, 233–239 (2005).
[Crossref]

Caponi, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Carter, J. C.

Cerullo, G.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Chio, C. H.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

Condrate, R. A.

R. P. Hapanowicz and R. A. Condrate, “High-Temperature Raman Spectral Investigation of Sodium Sulfate,” Spectrosc. Lett. 29(1), 133–141 (1996).
[Crossref]

Cull, E. C.

E. C. Cull, M. E. Gehm, B. D. Guenther, and D. J. Brady, “Standoff Raman Spectroscopy System for Remote Chemical Detection,” Proc. SPIE 5994, 233–239 (2005).
[Crossref]

D’Andrea, C.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Del Sorbo, S.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Doney, C. R.

C. A. M. France, D. B. Thomas, C. R. Doney, and O. Madden, “Ft-Raman Spectroscopy as a method for screening collagen diagenesis in bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Egan, M. J.

M. J. Egan, S. M. Angle, and S. K. Sharma, “standoff spatial heterodyne Raman spectrometer for mineralogical analysis,” Appl. Spectrosc. 48, 1613–1617 (2017).

Emiliani, C.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Evans-Lutterodt, K.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Fang, X.

G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
[Crossref] [PubMed]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

Fazio, B.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Fioretto, D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Floess, M.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Foster, M.

Foster, M. J.

France, C. A. M.

C. A. M. France, D. B. Thomas, C. R. Doney, and O. Madden, “Ft-Raman Spectroscopy as a method for screening collagen diagenesis in bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Fujita, M.

T. Somekawa, T. Takeuchi, C. Yamanaka, and M. Fujita, “Raman Spectroscopy Measurements of CO2 Dissolved in Water and CO2 Bubbles for Laser Remote Sensing in Water,” Proc. SPIE 9240, 534–539 (2014).

Fung, K. H.

Galli, M.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Gehm, M. E.

E. C. Cull, M. E. Gehm, B. D. Guenther, and D. J. Brady, “Standoff Raman Spectroscopy System for Remote Chemical Detection,” Proc. SPIE 5994, 233–239 (2005).
[Crossref]

Giessen, H.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Gomer, N. R.

Gordon, C. M.

Gucciardi, P. G.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Guenther, B. D.

E. C. Cull, M. E. Gehm, B. D. Guenther, and D. J. Brady, “Standoff Raman Spectroscopy System for Remote Chemical Detection,” Proc. SPIE 5994, 233–239 (2005).
[Crossref]

Han, F.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Hapanowicz, R. P.

R. P. Hapanowicz and R. A. Condrate, “High-Temperature Raman Spectral Investigation of Sodium Sulfate,” Spectrosc. Lett. 29(1), 133–141 (1996).
[Crossref]

Harder, D.

Harlander, J. M.

He, Y.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Hu, G.

G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
[Crossref] [PubMed]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

Hubble, H. W.

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Iatì, M. A.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Irrera, A.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Koch, C.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Kumar, V.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Labby, Z. E.

Lawler, J. E.

Lechuga-Ballesteros, D.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Lentz, R. C.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. Lentz, “A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(3), 468–476 (2009).
[Crossref] [PubMed]

Li, Y. Q.

Li, Z.

G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
[Crossref] [PubMed]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

Lienert, B.

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

Lin, J.

Liu, X.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Liu, Y.

J. Shi, X. Miao, and Y. Liu, “Raman spectrum calculation and analysis of p-xylene,” in Proceedings of IEEE Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (IEEE, 2015), pp. 295–298.

Lo Faro, M. J.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Lucey, P.

Lucey, P. G.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. Lentz, “A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(3), 468–476 (2009).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

Luo, H.

Madden, O.

C. A. M. France, D. B. Thomas, C. R. Doney, and O. Madden, “Ft-Raman Spectroscopy as a method for screening collagen diagenesis in bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Marangoni, M.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Mattana, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Mattarelli, M.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Miao, X.

J. Shi, X. Miao, and Y. Liu, “Raman spectrum calculation and analysis of p-xylene,” in Proceedings of IEEE Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (IEEE, 2015), pp. 295–298.

Misra, A. K.

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. Lentz, “A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(3), 468–476 (2009).
[Crossref] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Musumeci, P.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Pirotta, S.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Priolo, F.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Ray, M.

Ren, Y.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Roesler, F. L.

Ruckman, M. W.

Sagini, K.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Saija, R.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Sedlacek, A. J.

Serra, M. D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Sharma, S. K.

M. J. Egan, S. M. Angle, and S. K. Sharma, “standoff spatial heterodyne Raman spectrometer for mineralogical analysis,” Appl. Spectrosc. 48, 1613–1617 (2017).

N. R. Gomer, C. M. Gordon, P. Lucey, S. K. Sharma, J. C. Carter, and S. M. Angel, “Raman Spectroscopy Using a Spatial Heterodyne Spectrometer: Proof of Concept,” Appl. Spectrosc. 65(8), 849–857 (2011).
[Crossref] [PubMed]

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. Lentz, “A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(3), 468–476 (2009).
[Crossref] [PubMed]

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Shen, J.

G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
[Crossref] [PubMed]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

Shi, H.

G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
[Crossref] [PubMed]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

Shi, J.

J. Shi, X. Miao, and Y. Liu, “Raman spectrum calculation and analysis of p-xylene,” in Proceedings of IEEE Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (IEEE, 2015), pp. 295–298.

Somekawa, T.

T. Somekawa, T. Takeuchi, C. Yamanaka, and M. Fujita, “Raman Spectroscopy Measurements of CO2 Dissolved in Water and CO2 Bubbles for Laser Remote Sensing in Water,” Proc. SPIE 9240, 534–539 (2014).

Steinle, T.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Steinmann, A.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Stockwell, P.

Stopar, J. D.

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Storey, J.

Takeuchi, T.

T. Somekawa, T. Takeuchi, C. Yamanaka, and M. Fujita, “Raman Spectroscopy Measurements of CO2 Dissolved in Water and CO2 Bubbles for Laser Remote Sensing in Water,” Proc. SPIE 9240, 534–539 (2014).

Taylor, G. J.

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

Thomas, D. B.

C. A. M. France, D. B. Thomas, C. R. Doney, and O. Madden, “Ft-Raman Spectroscopy as a method for screening collagen diagenesis in bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

Tuschel, D.

D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectroscopy 29, 14 (2014).

Urbanelli, L.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Vasi, C. S. E.

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

Vehring, R.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Wang, H.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Wang, J.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Wege, C.

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Widdup, D.

Williams, L.

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

Wu, M.

Xiong, W.

G. Hu, W. Xiong, H. Luo, H. Shi, Z. Li, J. Shen, X. Fang, B. Xu, and J. Zhang, “Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer,” Appl. Spectrosc. 72(1), 151–158 (2018).
[Crossref] [PubMed]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

Xu, B.

Yamanaka, C.

T. Somekawa, T. Takeuchi, C. Yamanaka, and M. Fujita, “Raman Spectroscopy Measurements of CO2 Dissolved in Water and CO2 Bubbles for Laser Remote Sensing in Water,” Proc. SPIE 9240, 534–539 (2014).

Yang, W.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Zentile, M. A.

Zhang, J.

Zhang, L.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Zhao, Y.

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (4)

Int. J. Pharm. (1)

H. Wang, M. A. Boraey, L. Williams, D. Lechuga-Ballesteros, and R. Vehring, “Low-frequency Shift Dispersive Raman Spectroscopy for the Analysis of Respirable Dosage Forms,” Int. J. Pharm. 469(1), 197–205 (2014).
[Crossref] [PubMed]

J. Archaeol. Sci. (1)

C. A. M. France, D. B. Thomas, C. R. Doney, and O. Madden, “Ft-Raman Spectroscopy as a method for screening collagen diagenesis in bone,” J. Archaeol. Sci. 42, 346–355 (2014).
[Crossref]

J. Raman Spectrosc. (1)

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “'Raman Spectroscopic Detection for Liquid and Solid Targets Using a Spatial Heterodyne Spectrometer,” J. Raman Spectrosc. 47(3), 289–298 (2016).
[Crossref]

Light Sci. Appl. (3)

B. Fazio, P. Artoni, M. A. Iatì, C. D’Andrea, M. J. Lo Faro, S. Del Sorbo, S. Pirotta, P. G. Gucciardi, P. Musumeci, C. S. E. Vasi, R. Saija, M. Galli, F. Priolo, and A. Irrera, “Strongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array,” Light Sci. Appl. 5(4), 16062 (2016).

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light Sci. Appl. 7(2), 17139 (2018).
[Crossref]

T. Steinle, V. Kumar, M. Floess, A. Steinmann, M. Marangoni, C. Koch, C. Wege, G. Cerullo, and H. Giessen, “Synchronization-Free All-Solid-State Laser System for Stimulated Raman,” Light Sci. Appl. 5(10), 16149 (2016).
[Crossref]

Opt. Eng. (1)

G. Hu, W. Xiong, H. Shi, Z. Li, J. Shen, and X. Fang, “Raman Spectroscopic Detection Using a Two-Dimensional Spatial Heterodyne Spectrometer,” Opt. Eng. 54(11), 114101 (2015).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

E. C. Cull, M. E. Gehm, B. D. Guenther, and D. J. Brady, “Standoff Raman Spectroscopy System for Remote Chemical Detection,” Proc. SPIE 5994, 233–239 (2005).
[Crossref]

T. Somekawa, T. Takeuchi, C. Yamanaka, and M. Fujita, “Raman Spectroscopy Measurements of CO2 Dissolved in Water and CO2 Bubbles for Laser Remote Sensing in Water,” Proc. SPIE 9240, 534–539 (2014).

Sci. Rep. (1)

L. Zhang, Y. Ren, X. Liu, F. Han, K. Evans-Lutterodt, H. Wang, Y. He, J. Wang, Y. Zhao, and W. Yang, “Chain Breakage in the Supercooled Liquid - Liquid Transition and Re-entry of the λ-transition in Sulfur,” Sci. Rep. 8(1), 4558 (2018).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (3)

A. K. Misra, S. K. Sharma, C. H. Chio, P. G. Lucey, and B. Lienert, “Pulsed Remote Raman System for Daytime Measurements of Mineral Spectra,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2281–2287 (2005).
[Crossref] [PubMed]

J. D. Stopar, P. G. Lucey, S. K. Sharma, A. K. Misra, G. J. Taylor, and H. W. Hubble, “Raman Efficiencies of Natural Rocks and Minerals: Performance of a Remote Raman System for Planetary Exploration at a Distance of 10 Meters,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 61(10), 2315–2323 (2005).
[Crossref] [PubMed]

S. K. Sharma, A. K. Misra, P. G. Lucey, and R. C. Lentz, “A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 73(3), 468–476 (2009).
[Crossref] [PubMed]

Spectrosc. Lett. (1)

R. P. Hapanowicz and R. A. Condrate, “High-Temperature Raman Spectral Investigation of Sodium Sulfate,” Spectrosc. Lett. 29(1), 133–141 (1996).
[Crossref]

Spectroscopy (1)

D. Tuschel, “Practical Group Theory and Raman Spectroscopy, Part II: Application of Polarization,” Spectroscopy 29, 14 (2014).

Other (5)

C. R. Englert, J. M. Harlander, J. C. Owrutsky, and J. T. Bays, “Shim-Free Breadboard Instrument Design, Integration, and First Measurements,” NRL Memorandum Report NRL/MR/7640-05- 8926 (Naval Research Laboratory, 2005).

M. Misiti, Y. Misiti, G. Oppenheim, and J. M. Poggi, “Wavelet Toolbox User’s Guide,” (The Math Works, Inc, 2018), Chap. 1, Chap. 3.

J. Shi, X. Miao, and Y. Liu, “Raman spectrum calculation and analysis of p-xylene,” in Proceedings of IEEE Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (IEEE, 2015), pp. 295–298.

J. M. Harlander, “Spatial heterodyne spectroscopy: interferometric performance at any wavelength without scanning,” Thesis (Ph.D.) University of Wisconsin-Madison (1991), Chap. 3.

T. Nathaniel, “Spatial heterodyne Raman spectroscopy”. Thesis (Doctor.) University of Surrey (2011), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Spatial heterodyne Raman spectrometer system layout for Raman measurements.
Fig. 2
Fig. 2 Layout of EMSHRS breadboard instrumentation.
Fig. 3
Fig. 3 (a) Raw interferogram of the mercury lamp. (b) Spatial frequency profile obtained from the FFT. (c) Mercury lamp spectrum as measured after calibration; the absolute line positions are 576.961 nm and 579.067 nm.
Fig. 4
Fig. 4 (a) Raw interferogram of CCl4 at a laser power of 108 mW with an integration time of 15s. (b) Raw interferogram of sulfur at a laser power of 90 mW with an integration time of 5 s. (c) Recovered Raman spectra of CCl4 at a laser powers of 108 mW and 36 mW with the same integration time of 15 s. (d) Recovered Raman spectra of sublimed sulfur and powder sulfur in a glass or plastic bottle at a laser power of 90 mW with an integration time of 5 s.
Fig. 5
Fig. 5 (a) Recovered Raman spectra of NaSO4 at a laser power of 135 mW with an integration time of 2 s in a glass bottle. (b) Recovered Raman spectra of p-xylene in a plastic bottle at a laser power of 54 mW with an integration time of 8 s.
Fig. 6
Fig. 6 Recovered Raman spectra of potassium sulfate in the solid state and in aqueous solution at a laser power of 72 mW with the same integration time of 2 s.
Fig. 7
Fig. 7 (a) Recovered Raman spectra of organic liquids at a laser power of 90 mW with the same integration time of 5 s. (b) Recovered Raman spectra of inorganic solids at the laser power of 108 mW with the same integration time of 10 s. (c) Spatial frequency distribution of the mixture of organic liquids. (d) Spatial frequency distribution of the mixture of inorganic solids.
Fig. 8
Fig. 8 Recovered Raman spectra of three rocks: Calcite, at a laser power of 126 mW with an integration time of 4 s. Celestine, at a laser power of 54 mW with an integration time of 20 s. and rose Quartz at a laser power of 216 mW with an integration time of 5 s.
Fig. 9
Fig. 9 (a) Stokes and anti –Stokes Raman spectra of sulfur at a laser power of 90 mW with an integration time of 10 s. (b) Stokes and anti –Stokes Raman spectra of carbon tetrachloride at a laser power of 108 mW with an integration time of 5 s.

Tables (1)

Tables Icon

Table 1 Key Parameters of Components Used in the Experimental Breadboard

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ(sin θ L +sin( θ L γ))=mG
f x =σsinγ=2(σ σ L )tan θ L
I(x)= 0 B(σ){1+cos[2π(2(σ σ L )xtan θ L +σyα)]}dσ
R= σ δ σ =2Wσsin θ L
Δσ= N 2 δ σ
Δ σ M = MN 2 δ σ = MN 4Wsin θ L
m=2 σ L sin θ L /G
λ L,k = f 2 f 1 ( f 2 / λ 1 )( f 1 / λ 2 ) ,k=m,m1,m2...,k1
θ L =arcsin( k λ L,k G 2 ),k=m,m1,m2... , k1
σ L,k = kG 2sin θ L ,k=m,m1,m2... , k1
δ σ = (1/ λ 1 1/ λ 2 ) f 1 f 2
W= 1 2 δ σ sin θ L
SNR= I peak_signal RM S Noise

Metrics