Abstract

A new type of tunable broadband fiber-optic acousto-optic sensor was experimentally demonstrated by utilizing a bubble-on-fiber (BoF) interferometer. A single micro-bubble was generated by injecting a heating laser at λ = 980 nm on the metalized facet of an optical fiber. The BoF formed a spherical micro-cavity in water whose acoustic deformation was precisely detected by using a narrowband DFB laser at 1550 nm. The heating light and the interrogating light were fed into a single fiber probe by wavelength division multiplexing (WDM) realizing a small footprint all-fiber configuration. The diameter of the BoF was stabilized with a variation less than 0.5 nm by fast servo-control of the heating laser power. The stabilized BoF served as a Fabry-Pérot cavity that can be deformed by acoustic perturbation, and a minimum detectable pressure level of as low as ~1 mPa/Hz1/2 was achieved in a frequency range of over 60 kHz in water at room temperature. Our proposed BoF technology can provide a tunable, flexible and all-fiber solution to detect minute acoustically driven perturbations combining high-precision interferometry. Due to the very small form-factor, the technique can find applications of liquid-immersible in situ measurements in bio-molecular/cell detection and biochemical phenomena study.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Compressible fiber optic micro-Fabry-Pérot cavity with ultra-high pressure sensitivity

Ying Wang, D. N. Wang, Chao Wang, and Tianyi Hu
Opt. Express 21(12) 14084-14089 (2013)

Dual polarization fiber grating laser hydrophone

Bai-Ou Guan, Yan-Nan Tan, and Hwa-Yaw Tam
Opt. Express 17(22) 19544-19550 (2009)

Thin film metal coated fiber optic hydrophone probe

Rupa Gopinath Minasamudram, Piyush Arora, Gaurav Gandhi, Afshin S. Daryoush, Mahmoud A. El-Sherif, and Peter A. Lewin
Appl. Opt. 48(31) G77-G82 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
    [Crossref]
  2. B. Yu, D. W. Kim, J. Deng, H. Xiao, and A. Wang, “Fiber Fabry-Perot sensors for detection of partial discharges in power transformers,” Appl. Opt. 42(16), 3241–3250 (2003).
    [Crossref] [PubMed]
  3. O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Miniature photonic-crystal hydrophone optimized for ocean acoustics,” J. Acoust. Soc. Am. 129(4), 1837–1850 (2011).
    [Crossref] [PubMed]
  4. L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
    [Crossref] [PubMed]
  5. F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,” Opt. Lett. 39(10), 2838–2840 (2014).
    [Crossref] [PubMed]
  6. J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
    [Crossref]
  7. F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
    [Crossref] [PubMed]
  8. C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
    [Crossref] [PubMed]
  9. K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
    [Crossref] [PubMed]
  10. R. Taylor and C. Hnatovsky, “Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe,” Opt. Express 12(5), 916–928 (2004).
    [Crossref] [PubMed]
  11. X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
    [Crossref] [PubMed]
  12. C. Zhang, Y. Gong, W. Zou, Y. Wu, Y. Rao, G. Peng, and X. Fan, “Microbubble-Based fiber optofluidic interferometer for sensing,” J. Lightwave Technol. 35(13), 2514–2519 (2017).
    [Crossref]
  13. C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
    [Crossref]
  14. G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
    [Crossref]
  15. X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
    [Crossref] [PubMed]
  16. R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
    [Crossref]
  17. P. S. Epstein and M. S. Plesset, “On the stablity of gas bubble in liquid-gas solutions,” J. Chem. Phys. 18(11), 1505–1509 (1950).
    [Crossref]
  18. X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
    [Crossref]
  19. T. G. Leighton, The Acoustic Bubble (Academic, 1994).
  20. M. Ranusawud, P. Limsuwan, T. Somthong, and K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37, 782–786 (2013).
    [Crossref]
  21. R. L. Phillips, “Proposed fiber-optic acoustical probe,” Opt. Lett. 5(7), 318–320 (1980).
    [Crossref] [PubMed]
  22. A. Dandridge, A. B. Tveten, R. O. Miles, and T. G. Giallorenzi, “Laser noise in fiber-optic interferometer systems,” Appl. Phys. Lett. 37(6), 526–528 (1980).
    [Crossref]
  23. D. Liu, Y. Liang, L. Jin, H. Sun, L. Cheng, and B. O. Guan, “Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications,” Opt. Lett. 41(19), 4530–4533 (2016).
    [Crossref] [PubMed]
  24. X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
    [Crossref] [PubMed]
  25. J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  26. S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

C. Zhang, Y. Gong, W. Zou, Y. Wu, Y. Rao, G. Peng, and X. Fan, “Microbubble-Based fiber optofluidic interferometer for sensing,” J. Lightwave Technol. 35(13), 2514–2519 (2017).
[Crossref]

2016 (2)

D. Liu, Y. Liang, L. Jin, H. Sun, L. Cheng, and B. O. Guan, “Highly sensitive fiber laser ultrasound hydrophones for sensing and imaging applications,” Opt. Lett. 41(19), 4530–4533 (2016).
[Crossref] [PubMed]

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

2015 (1)

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

2014 (2)

F. Xu, J. Shi, K. Gong, H. Li, R. Hui, and B. Yu, “Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm,” Opt. Lett. 39(10), 2838–2840 (2014).
[Crossref] [PubMed]

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

2013 (3)

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

M. Ranusawud, P. Limsuwan, T. Somthong, and K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37, 782–786 (2013).
[Crossref]

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

2012 (1)

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

2011 (2)

O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Miniature photonic-crystal hydrophone optimized for ocean acoustics,” J. Acoust. Soc. Am. 129(4), 1837–1850 (2011).
[Crossref] [PubMed]

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

2010 (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

2006 (2)

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

2004 (3)

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

R. Taylor and C. Hnatovsky, “Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe,” Opt. Express 12(5), 916–928 (2004).
[Crossref] [PubMed]

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

2003 (1)

1980 (2)

R. L. Phillips, “Proposed fiber-optic acoustical probe,” Opt. Lett. 5(7), 318–320 (1980).
[Crossref] [PubMed]

A. Dandridge, A. B. Tveten, R. O. Miles, and T. G. Giallorenzi, “Laser noise in fiber-optic interferometer systems,” Appl. Phys. Lett. 37(6), 526–528 (1980).
[Crossref]

1950 (1)

P. S. Epstein and M. S. Plesset, “On the stablity of gas bubble in liquid-gas solutions,” J. Chem. Phys. 18(11), 1505–1509 (1950).
[Crossref]

Ang, X.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Arora, M.

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Baffou, G.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Cai, X.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Chan, C.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Chen, D.-R.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, L.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Chen, Z.

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Cheng, L.

Couture, O.

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Dandridge, A.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

A. Dandridge, A. B. Tveten, R. O. Miles, and T. G. Giallorenzi, “Laser noise in fiber-optic interferometer systems,” Appl. Phys. Lett. 37(6), 526–528 (1980).
[Crossref]

Deng, J.

Desailly, Y.

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Digonnet, M. J. F.

O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Miniature photonic-crystal hydrophone optimized for ocean acoustics,” J. Acoust. Soc. Am. 129(4), 1837–1850 (2011).
[Crossref] [PubMed]

Dijkink, R.

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Epstein, P. S.

P. S. Epstein and M. S. Plesset, “On the stablity of gas bubble in liquid-gas solutions,” J. Chem. Phys. 18(11), 1505–1509 (1950).
[Crossref]

Errico, C.

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Evans, J.

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Fan, S.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Fan, X.

Gan, X.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, R. O. Miles, and T. G. Giallorenzi, “Laser noise in fiber-optic interferometer systems,” Appl. Phys. Lett. 37(6), 526–528 (1980).
[Crossref]

Gong, K.

Gong, Q.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Gong, Y.

Guan, B. O.

He, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Hnatovsky, C.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

R. Taylor and C. Hnatovsky, “Trapping and mixing of particles in water using a microbubble attached to an NSOM fiber probe,” Opt. Express 12(5), 916–928 (2004).
[Crossref] [PubMed]

Ho, H. L.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Hu, M.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Huang, S. H.

Hui, R.

Jain, E.

Janve, V.

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Jian, A.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Jiang, X.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
[Crossref] [PubMed]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Jin, L.

Jin, W.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Kang, F.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Kilic, O.

O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Miniature photonic-crystal hydrophone optimized for ocean acoustics,” J. Acoust. Soc. Am. 129(4), 1837–1850 (2011).
[Crossref] [PubMed]

Kim, D. W.

Kino, G. S.

O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Miniature photonic-crystal hydrophone optimized for ocean acoustics,” J. Acoust. Soc. Am. 129(4), 1837–1850 (2011).
[Crossref] [PubMed]

Kirkendall, C. K.

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Lei, L.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Lenkei, Z.

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Leong, K. C.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Li, C.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Li, F.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Li, H.

Li, L.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, Z.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Liang, Y.

Limsuwan, P.

M. Ranusawud, P. Limsuwan, T. Somthong, and K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37, 782–786 (2013).
[Crossref]

Liu, D.

Liu, Q.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Lohse, D.

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Loncar, M.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Lv, R.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Ma, J.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Mao, X.

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

Miles, R. O.

A. Dandridge, A. B. Tveten, R. O. Miles, and T. G. Giallorenzi, “Laser noise in fiber-optic interferometer systems,” Appl. Phys. Lett. 37(6), 526–528 (1980).
[Crossref]

Monneret, S.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Ohl, C. D.

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Peng, G.

Pezet, S.

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Phillips, R. L.

Pierre, J.

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Plesset, M. S.

P. S. Epstein and M. S. Plesset, “On the stablity of gas bubble in liquid-gas solutions,” J. Chem. Phys. 18(11), 1505–1509 (1950).
[Crossref]

Polleux, J.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Ranusawud, M.

M. Ranusawud, P. Limsuwan, T. Somthong, and K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37, 782–786 (2013).
[Crossref]

Rao, Y.

Rigneault, H.

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

Shao, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Sheth, S.

Shi, J.

Solgaard, O.

O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Miniature photonic-crystal hydrophone optimized for ocean acoustics,” J. Acoust. Soc. Am. 129(4), 1837–1850 (2011).
[Crossref] [PubMed]

Somthong, T.

M. Ranusawud, P. Limsuwan, T. Somthong, and K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37, 782–786 (2013).
[Crossref]

Sun, C.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Sun, H.

Tam, H. Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Tanter, M.

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Taylor, R.

Taylor, R. S.

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

Terrones, M.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Tveten, A. B.

A. Dandridge, A. B. Tveten, R. O. Miles, and T. G. Giallorenzi, “Laser noise in fiber-optic interferometer systems,” Appl. Phys. Lett. 37(6), 526–528 (1980).
[Crossref]

Vacharanukul, K.

M. Ranusawud, P. Limsuwan, T. Somthong, and K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37, 782–786 (2013).
[Crossref]

Wang, A.

Wang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Wang, Y.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Wiersig, J.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Wong, W.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Wu, T.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Wu, Y.

Xiao, H.

Xiao, Y.-F.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xing, X.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Xu, F.

Xuan, H.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yang, L.

S. H. Huang, S. Sheth, E. Jain, X. Jiang, S. P. Zustiak, and L. Yang, “Whispering gallery mode resonator sensor for in situ measurements of hydrogel gelation,” Opt. Express 26(1), 51–62 (2018).
[Crossref] [PubMed]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, Y.

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

Yi, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Yu, B.

Yu, F.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Yu, Q.

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

Yuan, W.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Zhang, C.

Zhang, K.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, S.-X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Zhang, T.

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Zhang, X.

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Zhang, Y.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Zheng, J.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Zhou, B.

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Zhou, X.

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

Zhu, D.

X. Xing, J. Zheng, C. Sun, F. Li, D. Zhu, L. Lei, X. Cai, and T. Wu, “Graphene oxide-deposited microfiber: a new photothermal device for various microbubble generation,” Opt. Express 21(26), 31862–31871 (2013).
[Crossref] [PubMed]

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zou, W.

Zu, P.

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

Zustiak, S. P.

Adv. Mater. (1)

F. Yu, Q. Liu, X. Gan, M. Hu, T. Zhang, C. Li, F. Kang, M. Terrones, and R. Lv, “Ultrasensitive pressure detection of few-layer MoS2,” Adv. Mater. 29(4), 1603266 (2017).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. D. Ohl, M. Arora, R. Dijkink, V. Janve, and D. Lohse, “Surface cleaning from laser-induced cavitation bubbles,” Appl. Phys. Lett. 89(7), 074102 (2006).
[Crossref]

A. Dandridge, A. B. Tveten, R. O. Miles, and T. G. Giallorenzi, “Laser noise in fiber-optic interferometer systems,” Appl. Phys. Lett. 37(6), 526–528 (1980).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Chen, C. Chan, X. Ang, W. Yuan, P. Zu, W. Wong, Y. Zhang, and K. C. Leong, “Miniature in vivo chitosan diaphragm-based fiber-optic ultrasound sensor,” IEEE J. Sel. Top. Quantum Electron. 18(3), 1042–1049 (2012).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

J. Ma, H. Xuan, H. L. Ho, W. Jin, Y. Yang, and S. Fan, “Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm,” IEEE Photonics Technol. Lett. 25(10), 932–935 (2013).
[Crossref]

J. Acoust. Soc. Am. (1)

O. Kilic, M. J. F. Digonnet, G. S. Kino, and O. Solgaard, “Miniature photonic-crystal hydrophone optimized for ocean acoustics,” J. Acoust. Soc. Am. 129(4), 1837–1850 (2011).
[Crossref] [PubMed]

J. Appl. Phys. (1)

R. S. Taylor and C. Hnatovsky, “Growth and decay dynamics of a stable microbubble produced at the end of a near-field scanning optical microscopy fiber probe,” J. Appl. Phys. 95(12), 8444–8449 (2004).
[Crossref]

J. Chem. Phys. (1)

P. S. Epstein and M. S. Plesset, “On the stablity of gas bubble in liquid-gas solutions,” J. Chem. Phys. 18(11), 1505–1509 (1950).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Chem. C (1)

G. Baffou, J. Polleux, H. Rigneault, and S. Monneret, “Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination,” J. Phys. Chem. C 118(9), 4890–4898 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

C. K. Kirkendall and A. Dandridge, “Overview of high performance fibre-optic sensing,” J. Phys. D Appl. Phys. 37(18), R197–R216 (2004).
[Crossref]

Lab Chip (1)

K. Zhang, A. Jian, X. Zhang, Y. Wang, Z. Li, and H. Y. Tam, “Laser-induced thermal bubbles for microfluidic applications,” Lab Chip 11(7), 1389–1395 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y.-F. Xiao, L. Li, L. He, D.-R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nature (1)

C. Errico, J. Pierre, S. Pezet, Y. Desailly, Z. Lenkei, O. Couture, and M. Tanter, “Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging,” Nature 527(7579), 499–502 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

X. Mao, X. Zhou, and Q. Yu, “Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors,” Opt. Commun. 361, 17–20 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Precis. Eng. (1)

M. Ranusawud, P. Limsuwan, T. Somthong, and K. Vacharanukul, “Effects of the environment on refractive index of air in long gauge block interferometer,” Precis. Eng. 37, 782–786 (2013).
[Crossref]

Sci. Rep. (1)

X. Xing, J. Zheng, F. Li, C. Sun, X. Cai, D. Zhu, L. Lei, T. Wu, B. Zhou, J. Evans, and Z. Chen, “Dynamic behaviors of approximately ellipsoidal microbubbles photothermally generated by a graphene oxide-microheater,” Sci. Rep. 4, 6086 (2006).
[Crossref] [PubMed]

Science (1)

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358(6361), 344–347 (2017).
[Crossref] [PubMed]

Other (1)

T. G. Leighton, The Acoustic Bubble (Academic, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the bubble on fiber (BoF) for acoustic waves detection; (b) Temporal evolution of the bubble growth in BoF for heating light powers of 150 and 200 mW; (c) Decay process of the bubble when the heating laser is switched off.
Fig. 2
Fig. 2 Schematic of a servo-control system to stabilize the bubble diameter and the reflection interferometry using a narrowband DFB laser source for acoustic sensing.
Fig. 3
Fig. 3 (a) Reflection spectrums of a bubble over 1 minute w/o servo-control; (b) The output voltages of the bubble interrogated by a 1550 nm laser light w/ and w/o servo-control for 30 minutes.
Fig. 4
Fig. 4 (a) Output voltage from PD as a function of the acoustic pressure. Inset: time-domain signals from the hydrophone and BoF when subjected to a 46 kHz and 100 Pa acoustic wave. (b) Measured and fitted frequency responses in the frequency range from 2 to 98 kHz for a 39 μm-radius BoF. Inset: the frequency spectrum corresponds to a 72 kHz and 9 Pa acoustic wave.
Fig. 5
Fig. 5 (a) Frequency responses of bubbles with radii of 74 μm and 23 μm ; (b) Resonant frequency as a function of the bubble radius.
Fig. 6
Fig. 6 (a) Normalized acoustic sensitivity of BoFs for acoustic pressure from various angles. Inset: schematic showing the alignment angle between the bubble and the speaker; (b) The output DC voltages from the PD for the bubble stabilized by servo-control in the distilled water, 0.5 wt% and 1.0 wt% NaCl solutions for 30 minutes. The curves were vertically offset for clarity.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ r ( f ) = P a 4 π 2 r 0 ρ 1 ( f 0 2 f 2 ) 2 + ( δ t o t f 0 f ) 2
δ t o t = 2 ( 16 G t h g 9 ( γ 1 ) 2 f 0 3 3 γ 1 3 ( γ 1 ) ) 16 G t h g 9 ( γ 1 ) 2 f 0 4 + 2 π f 0 r 0 c + 2 η π r 0 2 ρ f 0

Metrics