Abstract

A compact diode-pumped Nd:YVO4 ring laser was developed for generation of relatively long (few tens nanoseconds) single-frequency pulses for high-spectral-resolution LIDAR applications. Exploiting the feedback from an external mirror and Cr:YAG passive Q-switching with pulsed pump, unidirectional single-frequency operation with high quality ∼50-ns, 80-µJ TEM00 pulses was achieved from 100 Hz to 10 kHz. Amplitude, duration and repetition rate stability of the pulses was better than 1%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cr:YAG passively Q-switched single-frequency Nd:YVO4 ring cavity laser

Xue Junwen, Pan Ying, Chen Wei, Fang Yujie, Xie Haijun, Xie Mingyuan, Sun Lu, and Su Binghua
J. Opt. Soc. Am. B 33(9) 1815-1819 (2016)

Passively Q-switched Nd:YAG ring lasers with high average output power in single-frequency operation

I. Freitag, A. Tünnermann, and H. Welling
Opt. Lett. 22(10) 706-708 (1997)

Passively Q-switched 1.34-µm Nd:YVO4 microchip laser with semiconductor saturable-absorber mirrors

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller
Opt. Lett. 22(13) 991-993 (1997)

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hair, C. A. Hostetler, A. L. Cook, D. B. Harper, R. A. Ferrare, T. L. Mack, W. Welch, L. Ramos Izquierdo, and F. E. Hovis, “Airborne high spectral resolution lidar for profiling aerosol optical properties,” Appl. Opt. 47, 6734–6752 (2008).
    [Crossref] [PubMed]
  2. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17, 1766–1771 (2009).
    [Crossref] [PubMed]
  3. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  4. A. Siegman, Lasers (University Science Books, 1986).
  5. X. Junwen, P. Ying, C. Wei, F. Yujie, X. Haijun, X. Mingyuan, S. Lu, and S. Binghua, “Cr:YAG passively Q-switched single-frequency Nd:YVO4 ring cavity laser,” J. Opt. Soc. Am. B 33, 1815–1819 (2016).
    [Crossref]
  6. Y. Isyanova and D. Welford, “Temporal criterion for single-frequency operation of passively Q-switched lasers,” Opt. Lett. 24, 1035–1037 (1999).
    [Crossref]
  7. F. R. Faxvog, “Modes of a unidirectional ring laser,” Opt. Lett. 5, 285–287 (1980).
    [Crossref] [PubMed]
  8. P. C. Shardlow and M. J. Damzen, “20W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
    [Crossref]
  9. T. R. Ferguson and S. M. Rinaldi, “Longitudinal modes of hybrid ring lasers,” Appl. Opt. 29, 754–762 (1990).
    [Crossref] [PubMed]
  10. L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123, 273 (2017).
    [Crossref]
  11. Y. Sato and T. Taira, “The studies of thermal conductivity in GdVO4, YVO4, and Y3Al5O12 measured by quasi-one-dimensional flash method,” Opt. Express 14, 10528–10536 (2006).
    [Crossref] [PubMed]
  12. J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics, M.C. Gupta, ed. (CRC Press, Boca Raton, Florida1997).
  13. P. A. Loiko, K. V. Yumashev, V. N. Matrosov, and N. V. Kuleshov, “Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals: erratum,” Appl. Opt. 54, 4820–4822 (2015).
    [Crossref] [PubMed]
  14. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bass, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26, 2084–2088 (2009).
    [Crossref]

2017 (1)

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123, 273 (2017).
[Crossref]

2016 (1)

2015 (1)

2009 (3)

2008 (1)

2006 (1)

1999 (1)

1990 (1)

1980 (1)

Bass, M.

Binghua, S.

Cini, L.

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123, 273 (2017).
[Crossref]

Cole, B.

Cook, A. L.

Cornacchia, F.

Damzen, M. J.

P. C. Shardlow and M. J. Damzen, “20W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
[Crossref]

Faxvog, F. R.

Ferguson, T. R.

Ferrare, R. A.

Goldberg, L.

Haijun, X.

Hair, J. W.

Harper, D. B.

Harrison, J.

J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics, M.C. Gupta, ed. (CRC Press, Boca Raton, Florida1997).

Hays, A.

Hostetler, C. A.

Hovis, F. E.

Isyanova, Y.

Jenssen, H. P.

Junwen, X.

Koechner, W.

W. Koechner, Solid State Laser Engineering (Springer, 2006).

Kuleshov, N. V.

Loiko, P. A.

Lu, S.

Mack, T. L.

Mackenzie, J. I.

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123, 273 (2017).
[Crossref]

Matrosov, V. N.

McIntosh, C.

Mingyuan, X.

Ramos Izquierdo, L.

Rinaldi, S. M.

Sato, Y.

Schilling, B. W.

Shardlow, P. C.

P. C. Shardlow and M. J. Damzen, “20W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
[Crossref]

Siegman, A.

A. Siegman, Lasers (University Science Books, 1986).

Taira, T.

Tonelli, M.

Trussell, C. W.

Turri, G.

Wei, C.

Welch, W.

Welford, D.

Ying, P.

Yujie, F.

Yumashev, K. V.

Zayhowski, J. J.

J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics, M.C. Gupta, ed. (CRC Press, Boca Raton, Florida1997).

Appl. Opt. (3)

Appl. Phys. B (2)

P. C. Shardlow and M. J. Damzen, “20W single longitudinal mode Nd:YVO4 retro-reflection ring laser operated as a self-intersecting master oscillator power amplifier,” Appl. Phys. B 97, 257–262 (2009).
[Crossref]

L. Cini and J. I. Mackenzie, “Analytical thermal model for end-pumped solid-state lasers,” Appl. Phys. B 123, 273 (2017).
[Crossref]

J. Opt. Soc. Am. B (2)

Opt. Express (2)

Opt. Lett. (2)

Other (3)

W. Koechner, Solid State Laser Engineering (Springer, 2006).

A. Siegman, Lasers (University Science Books, 1986).

J. J. Zayhowski and J. Harrison, “Miniature solid-state lasers,” in Handbook of Photonics, M.C. Gupta, ed. (CRC Press, Boca Raton, Florida1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Setup of the experiment. LD: fiber-coupled laser diode. DM: dichroic mirror, HR/HT at 1064/808 nm; E: etalon (bandwidth = 23 GHz, FSR = 103 GHz); M1: 100-mm radius of curvature concave mirror, HR; M2: 50-mm radius of curvature concave mirror, HR; OC: output coupler, 90% reflectivity; L: 50-mm focal length lens; FM: feedback mirror; FP: scanning Fabry-Perot; PD: fast GHz photodiode; W: power meter.
Fig. 2
Fig. 2 Fabry-Perot scan interferometer oscilloscope trace. In red it is shown the saw-tooth scan signal, in blue the interferometer output signal. The measured spectrum is shown in detail in the inset.
Fig. 3
Fig. 3 Oscilloscope traces of the laser pulses. (a) SLM pulse obtained with the feedback mirror aligned; in the inset it is shown the highly modulated pulse obtained when the feedback mirror was removed. (b) Measurement of the pulse timing jitter with respect to the pump pulse leading edge; in the inset it is shown the pulse train at 10 kHz repetition rate.
Fig. 4
Fig. 4 Beam quality at the maximum repetition rate of 10 kHz; in the inset it is shown the profile of the beam in far field.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ t s τ 1 l c 2 Δ ν g 2
Δ T = η h P a b s 4 π k 0 l x ln ( R r p ) 2
δ ( n l x ) = [ α + 1 n d n d T ] n l x δ T

Metrics