Abstract

This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.2 × 1014 n/cm2/s. Fifty five-day tests of FBG sensors showed less than 5 dB reduction in FBG peak strength after over 1 × 1020 n/cm2 of accumulated fast neutron dose. The radiation-induced compaction of FBG sensors produced less than 5.5 nm FBG wavelength shift toward shorter wavelength. To test temporal responses of FBG sensors, a number of reactor anomaly events were artificially created to abruptly change reactor power, temperature, and neutron flux over short periods of time. The thermal sensitivity and temporal responses of FBGs were determined at different accumulated doses of neutron flux. Results presented in this paper reveal that temperature-stable Type-II FBGs fabricated in radiation-hardened fibers can survive harsh in-pile conditions. Despite large parameter drift induced by strong nuclear radiation, further engineering and innovation on both optical fibers and fiber devices could lead to useful fiber sensors for various in-pile measurements to improve safety and efficiency of existing and next generation nuclear reactors.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Feasibility of fiber-optic radiation sensor using Cerenkov effect for detecting thermal neutrons

Kyoung Won Jang, Takahiro Yagi, Cheol Ho Pyeon, Wook Jae Yoo, Sang Hun Shin, Tsuyoshi Misawa, and Bongsoo Lee
Opt. Express 21(12) 14573-14582 (2013)

Optical absorption characteristics of neutron irradiated heavy metal fluoride glasses

S. S. Mitra, P. K. Banerjee, J. M. T. Pereira, and S. G. Gedam
Appl. Opt. 26(20) 4443-4446 (1987)

On-line monitoring of sealing glass in electrical penetration assembly based on femto-laser inscribed fiber Bragg grating sensors

Zhichun Fan, Xingzhong Diao, Malin Liu, Yong Zhang, Zhiyong Huang, and He Yan
Opt. Express 27(2) 608-620 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors (1997), paper OTuB1.
  2. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  3. A. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
    [Crossref]
  4. A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
    [Crossref]
  5. A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
    [Crossref]
  6. A. Gusarov, “Long-term exposure of fiber Bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57(4), 2044–2048 (2010).
    [Crossref]
  7. A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
    [Crossref]
  8. A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decreton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Trans. Nucl. Sci. 49(6), 2874–2878 (2002).
    [Crossref]
  9. A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
    [Crossref]
  10. A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
    [Crossref]
  11. R. S. Fielder, D. Klemer, and K. L. Stinson‐Bagby, “High neutron fluence survivability testing of advanced fiber Bragg grating sensors,” AIP Conf. Proc. 699(1), 650–657 (2004).
    [Crossref]
  12. L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
    [Crossref]
  13. https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1445_07_14_English.pdf
  14. A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J. R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. 33(12), 2646–2651 (2015).
    [Crossref]
  15. D. C. Bookbinder, R. M. Fiacco, M. J. Li, M. T. Murtagh, and P. Tandon, “Microstructured optical fibers and methods,” U.S. Patent 7,450,806 (2008).
  16. M. J. Li, P. Tandon, D. C. Bookbinder, D. A. Nolan, S. R. Bickham, M. A. McDermott, R. B. Desorcie, J. J. Englebert, S. L. Logunov, V. Kozlov, and J. A. West, “Nano-engineered optical fibers and applications,” in Optical Fiber Communication Conference (2010), paper OWA2.
    [Crossref]
  17. A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2011).
  18. H. Henschel, J. Kuhnhenn, and U. Weinand, “September. High radiation hardness of a hollow core photonic bandgap fiber,” in 8th European Conference Radiation and Its Effects on Components and Systems (2005) paper LN4–1.
  19. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  20. C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
    [Crossref]
  21. S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
    [Crossref]
  22. A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

2018 (1)

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

2016 (1)

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

2015 (1)

2013 (1)

A. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

2012 (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

2010 (2)

A. Gusarov, “Long-term exposure of fiber Bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57(4), 2044–2048 (2010).
[Crossref]

A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

2005 (2)

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

2004 (2)

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

R. S. Fielder, D. Klemer, and K. L. Stinson‐Bagby, “High neutron fluence survivability testing of advanced fiber Bragg grating sensors,” AIP Conf. Proc. 699(1), 650–657 (2004).
[Crossref]

2002 (3)

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decreton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Trans. Nucl. Sci. 49(6), 2874–2878 (2002).
[Crossref]

2000 (1)

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

1999 (1)

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Berghmans, F.

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decreton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Trans. Nucl. Sci. 49(6), 2874–2878 (2002).
[Crossref]

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Bhardwaj, V. R.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Blondel, M.

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Bodart, S.

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

Bondel, M.

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

Boukenter, A.

Brichard, B.

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decreton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Trans. Nucl. Sci. 49(6), 2874–2878 (2002).
[Crossref]

Cannas, M.

Caucheteur, C.

A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

Chen, K.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

Cheymol, G.

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

Corkum, P. B.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Decreton, M.

A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decreton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Trans. Nucl. Sci. 49(6), 2874–2878 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

Decréton, M.

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Defosse, Y.

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Delchambre, A.

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

Deparis, O.

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Fernandez, A. F.

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decreton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Trans. Nucl. Sci. 49(6), 2874–2878 (2002).
[Crossref]

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Fielder, R. S.

R. S. Fielder, D. Klemer, and K. L. Stinson‐Bagby, “High neutron fluence survivability testing of advanced fiber Bragg grating sensors,” AIP Conf. Proc. 699(1), 650–657 (2004).
[Crossref]

Girard, S.

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J. R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. 33(12), 2646–2651 (2015).
[Crossref]

Grobnic, D.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

Gusarov, A.

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

A. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

A. Gusarov, “Long-term exposure of fiber Bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57(4), 2044–2048 (2010).
[Crossref]

A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

Gusarov, A. I.

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Henschel, H.

H. Henschel, J. Kuhnhenn, and U. Weinand, “September. High radiation hardness of a hollow core photonic bandgap fiber,” in 8th European Conference Radiation and Its Effects on Components and Systems (2005) paper LN4–1.

Hnatovsky, C.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Hoeffgen, S. K.

A. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

Kinet, D.

A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

Klemer, D.

R. S. Fielder, D. Klemer, and K. L. Stinson‐Bagby, “High neutron fluence survivability testing of advanced fiber Bragg grating sensors,” AIP Conf. Proc. 699(1), 650–657 (2004).
[Crossref]

Kuhnhenn, J.

H. Henschel, J. Kuhnhenn, and U. Weinand, “September. High radiation hardness of a hollow core photonic bandgap fiber,” in 8th European Conference Radiation and Its Effects on Components and Systems (2005) paper LN4–1.

Lammens, K.

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

Li, M. J.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

Macé, J. R.

Marcandella, C.

Marin, E.

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J. R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. 33(12), 2646–2651 (2015).
[Crossref]

Medvedkov, O.

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

Mégret, P.

A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

Mihailov, S.

Mihailov, S. J.

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Morana, A.

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

A. Morana, S. Girard, E. Marin, C. Marcandella, S. Rizzolo, J. Périsse, J. R. Macé, A. Taouri, A. Boukenter, M. Cannas, and Y. Ouerdane, “Radiation vulnerability of fiber Bragg gratings in harsh environments,” J. Lightwave Technol. 33(12), 2646–2651 (2015).
[Crossref]

Ouerdane, Y.

Périsse, J.

Rajeev, P. P.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Rayner, D. M.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Remy, L.

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

Rizzolo, S.

Simova, E.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Smelser, C.

Starodubov, D.

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

Stinson-Bagby, K. L.

R. S. Fielder, D. Klemer, and K. L. Stinson‐Bagby, “High neutron fluence survivability testing of advanced fiber Bragg grating sensors,” AIP Conf. Proc. 699(1), 650–657 (2004).
[Crossref]

Taouri, A.

Taylor, R. S.

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

Vasiliev, S.

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

Weinand, U.

H. Henschel, J. Kuhnhenn, and U. Weinand, “September. High radiation hardness of a hollow core photonic bandgap fiber,” in 8th European Conference Radiation and Its Effects on Components and Systems (2005) paper LN4–1.

Wuilpart, M.

A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

AIP Conf. Proc. (1)

R. S. Fielder, D. Klemer, and K. L. Stinson‐Bagby, “High neutron fluence survivability testing of advanced fiber Bragg grating sensors,” AIP Conf. Proc. 699(1), 650–657 (2004).
[Crossref]

Appl. Phys. Lett. (1)

C. Hnatovsky, R. S. Taylor, P. P. Rajeev, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, “Pulse duration dependence of femtosecond-laser-fabricated nanogratings in fused silica,” Appl. Phys. Lett. 87(1), 014104 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. J. Mihailov, C. Hnatovsky, D. Grobnic, K. Chen, and M. J. Li, “Fabrication of Bragg Gratings in Random Air-Line Clad Microstructured Optical Fiber,” IEEE Photonics Technol. Lett. 30(2), 209–212 (2018).
[Crossref]

A. I. Gusarov, F. Berghmans, O. Deparis, A. F. Fernandez, Y. Defosse, P. Mégret, M. Decréton, and M. Blondel, “High total dose radiation effects on temperature sensing fiber Bragg gratings,” IEEE Photonics Technol. Lett. 11(9), 1159–1161 (1999).
[Crossref]

IEEE Trans. Nucl. Sci. (6)

L. Remy, G. Cheymol, A. Gusarov, A. Morana, E. Marin, and S. Girard, “Compaction in optical fibres and fibre Bragg gratings under nuclear reactor high neutron and gamma fluence,” IEEE Trans. Nucl. Sci. 63(4), 2317–2322 (2016).
[Crossref]

A. Gusarov and S. K. Hoeffgen, “Radiation effects on fiber gratings,” IEEE Trans. Nucl. Sci. 60(3), 2037–2053 (2013).
[Crossref]

A. Gusarov, “Long-term exposure of fiber Bragg gratings in the BR1 low-flux nuclear reactor,” IEEE Trans. Nucl. Sci. 57(4), 2044–2048 (2010).
[Crossref]

A. F. Fernandez, B. Brichard, F. Berghmans, and M. Decreton, “Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters,” IEEE Trans. Nucl. Sci. 49(6), 2874–2878 (2002).
[Crossref]

A. I. Gusarov, F. Berghmans, A. F. Fernandez, O. Deparis, Y. Defosse, D. Starodubov, M. Decreton, P. Mégret, and M. Bondel, “Behavior of fibre Bragg gratings under high total dose gamma radiation,” IEEE Trans. Nucl. Sci. 47(3), 688–692 (2000).
[Crossref]

A. Gusarov, D. Kinet, C. Caucheteur, M. Wuilpart, and P. Mégret, “Gamma radiation induced short-wavelength shift of the Bragg peak in Type I fiber gratings,” IEEE Trans. Nucl. Sci. 57(6), 3775–3778 (2010).

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

A. F. Fernandez, A. Gusarov, B. Brichard, M. Decréton, F. Berghmans, P. Mégret, and A. Delchambre, “Long-term radiation effects on fibre Bragg grating temperature sensors in a low flux nuclear reactor,” Meas. Sci. Technol. 15(8), 1506–1511 (2004).
[Crossref]

Nuclear Instrum. Methods. Phys. Res. Section B (1)

A. Gusarov, A. F. Fernandez, S. Vasiliev, O. Medvedkov, M. Blondel, and F. Berghmans, “Effect of gamma–neutron nuclear reactor radiation on the properties of Bragg gratings written in photosensitive Ge-doped optical fiber,” Nuclear Instrum. Methods. Phys. Res. Section B 187(1), 79–86 (2002).
[Crossref]

Opt. Eng. (1)

A. F. Fernandez, A. I. Gusarov, S. Bodart, K. Lammens, F. Berghmans, M. Decréton, P. Mégret, M. Blondel, and A. Delchambre, “Temperature monitoring of nuclear reactor cores with multiplexed fiber Bragg grating sensors,” Opt. Eng. 41(6), 1246–1254 (2002).
[Crossref]

Opt. Express (1)

Sensors (Basel) (1)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Other (6)

P. Ferdinand, S. Magne, V. Dewynter-Marty, C. Martinez, S. Rougeault, and M. Bugaud, “Applications of Bragg grating sensors in Europe,” in Optical Fiber Sensors (1997), paper OTuB1.

https://www.corning.com/media/worldwide/coc/documents/Fiber/PI1445_07_14_English.pdf

D. C. Bookbinder, R. M. Fiacco, M. J. Li, M. T. Murtagh, and P. Tandon, “Microstructured optical fibers and methods,” U.S. Patent 7,450,806 (2008).

M. J. Li, P. Tandon, D. C. Bookbinder, D. A. Nolan, S. R. Bickham, M. A. McDermott, R. B. Desorcie, J. J. Englebert, S. L. Logunov, V. Kozlov, and J. A. West, “Nano-engineered optical fibers and applications,” in Optical Fiber Communication Conference (2010), paper OWA2.
[Crossref]

A. Cusano, A. Cutolo, and J. Albert, Fiber Bragg Grating Sensors: Recent Advancements, Industrial Applications and Market Exploitation (Bentham Science Publishers, 2011).

H. Henschel, J. Kuhnhenn, and U. Weinand, “September. High radiation hardness of a hollow core photonic bandgap fiber,” in 8th European Conference Radiation and Its Effects on Components and Systems (2005) paper LN4–1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Cross-sectional microscopic image of the pure silica-core, random-airline cladding fiber of 125 μm diameter. (b) SEM image of the core and random air-lined cladding of the fiber used. (c) FBG reflection profile at room temperature before exposure to neutron flux.
Fig. 2
Fig. 2 (a) Stainless-steel tubes with fiber sensor samples and thermocouples inside, inserted into the capsule to be lowered into the reactor core. (b) A 3D schematic of the sample holder capsule that shows the positions of the fiber samples and thermocouples. (c) The neutron fluxes are also plotted to show their spatial profiles relative to the center of the capsule with the three thermocouples locations marked. The Ti capsule is represented on the figure by a grey rectangle.
Fig. 3
Fig. 3 The FBG wavelength peak initially at Day 0 and at different times with different temperatures and cumulative neutron fluences for the FBG inscribed on the (a) RAL and (b) Vascade fibers. The in-core (c) temperature measured by TC3 and reactor power profile in the first 55 days of nuclear reactor operation, and (d) the RAL FBG response in the form of wavelength and intensity amplitude shifts. The FBG peak wavelength systematic shift due to neutron radiation induced index (RII) changes at constant temperature. The intensity peaks also slightly drop due to the effect of RIA.
Fig. 4
Fig. 4 FBG peak wavelength systematic shift due to neutron flux RII at constant temperature. The intensity peaks also slightly drop due to the effect of RIA.
Fig. 5
Fig. 5 Different events (a) and (b) were staged by varying the reactor power and temperature inside the reactor core to study the response of the FBG point sensor noted as the FBG wavelength shifts.
Fig. 6
Fig. 6 FBG wavelength shifts as plotted against temperature changes in four different temperature cycles carried out in (a) Day 32, (b) Day 33, and two events in (c), (d) Day 55. The results were linearly fitted to obtain the temperature sensitivity coefficient of the FBG sensor.

Tables (2)

Tables Icon

Table 1 Linear fit characteristics Wavelength drift with neutron flux at constant temperature

Tables Icon

Table 2 Linear fit characteristics Wavelength variation with temperature at constant reactor power

Metrics