Abstract

We present a new pulse regime in a stretched ultrafast fiber laser based on numerical simulations. The pulse breaking due to high-order soliton evolution in the passive fiber is recovered to a smooth pulse in the gain fiber with normal dispersion. The new pulse regime formed by the two nonlinear processes makes the ultrafast fiber laser generate ultra-broadband, ultrashort duration, high energy and large breathing ratio pulses. Our work gives insights into the nonlinear dynamics in fiber lasers and has potential for a better design of the stretched fiber lasers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gain dispersion for dissipative soliton generation in all-normal-dispersion fiber lasers

L. M. Zhao, C. Lu, H. Y. Tam, P. K. A. Wai, and D. Y. Tang
Appl. Opt. 48(27) 5131-5137 (2009)

Dynamics of soliton explosions in ultrafast fiber lasers at normal-dispersion

Yueqing Du and Xuewen Shu
Opt. Express 26(5) 5564-5575 (2018)

Pulse breaking recovery in fiber lasers

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu
Opt. Express 16(16) 12102-12107 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–875 (2013).
    [Crossref]
  2. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
    [Crossref] [PubMed]
  3. M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fiber laser by optomechanically bound state of solitons,” Nat. Photonics 102, 1–6 (2016).
  4. V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18(5), 358–360 (1993).
    [Crossref] [PubMed]
  5. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  6. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
    [Crossref]
  7. K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
    [Crossref]
  8. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref] [PubMed]
  9. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “tretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experimen,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
    [Crossref]
  10. F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27(17), 1531–1533 (2002).
    [Crossref] [PubMed]
  11. L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spüler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, “Practical low-noise stretched-pulse Yb3+-doped fiber laser,” Opt. Lett. 27(5), 291–293 (2002).
    [Crossref] [PubMed]
  12. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37(13), 2466–2468 (2012).
    [Crossref] [PubMed]
  13. J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and G. Sobon, “Sub-90 fs a stretched-pulse mode-locked fiber laser based on a graphene saturable absorber,” Opt. Express 23(21), 27503–27508 (2015).
    [Crossref] [PubMed]
  14. D. A. Dvoretskiy, V. A. Lazarev, V. S. Voropaev, Z. N. Rodnova, S. G. Sazonkin, S. O. Leonov, A. B. Pnev, V. E. Karasik, and A. A. Krylov, “High-energy, sub-100 fs, all-fiber stretched-pulse mode-locked Er-doped ring laser with a highly-nonlinear resonator,” Opt. Express 23(26), 33295–33300 (2015).
    [Crossref] [PubMed]
  15. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  16. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  17. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
    [Crossref] [PubMed]
  18. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression,” Appl. Phys. Lett. 90(5), 051102 (2007).
    [Crossref]
  19. L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
    [Crossref] [PubMed]
  20. S. Chouli, J. M. Soto-Crespo, and P. Grelu, “Optical spectra beyond the amplifier bandwidth limitation in dispersion-managed mode-locked fiber lasers,” Opt. Express 19(4), 2959–2964 (2011).
    [Crossref] [PubMed]
  21. L. F. Mollenauer, R. H. Stolen, and J. P. Gorden, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
    [Crossref]
  22. K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond Pulse Generation from Semiconductor Lasers Using the Soliton-Effect Compression Technique,” IEEE J. Sel. Top. Quantum Electron. 1(2), 592–600 (1995).
    [Crossref]
  23. R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8(3), 186–188 (1983).
    [Crossref] [PubMed]
  24. S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
    [Crossref] [PubMed]
  25. H. Luo, L. Zhan, L. Zhang, Z. Q. Wang, C. X. Gao, and X. Fang, “Generation of 22.7-fs 2.8-nJ Pulse From an Erbium-Doped All-Fiber Laser via Single Stage Soliton Compression,” J. Lightwave Technol. 35(17), 3780–3784 (2017).
    [Crossref]
  26. H. Luo, L. Zhan, Z. Q. Wang, L. Zhang, C. Feng, and X. H. Shen, “All-Fiber Generation of Sub-30 fs Pulses at 1.3-um via Cherenkov Radiation with Entire Dispersion Management,” J. Lightwave Technol. 35(11), 2325–2330 (2017).
    [Crossref]

2017 (3)

2016 (1)

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fiber laser by optomechanically bound state of solitons,” Nat. Photonics 102, 1–6 (2016).

2015 (2)

2013 (1)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–875 (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (1)

2008 (2)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
[Crossref] [PubMed]

2007 (1)

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression,” Appl. Phys. Lett. 90(5), 051102 (2007).
[Crossref]

2006 (1)

2002 (2)

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

1995 (2)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “tretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experimen,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond Pulse Generation from Semiconductor Lasers Using the Soliton-Effect Compression Technique,” IEEE J. Sel. Top. Quantum Electron. 1(2), 592–600 (1995).
[Crossref]

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

1993 (3)

1983 (1)

1980 (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gorden, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Ahmed, K. A.

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond Pulse Generation from Semiconductor Lasers Using the Soliton-Effect Compression Technique,” IEEE J. Sel. Top. Quantum Electron. 1(2), 592–600 (1995).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Cai, Y.

Chan, K. C.

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond Pulse Generation from Semiconductor Lasers Using the Soliton-Effect Compression Technique,” IEEE J. Sel. Top. Quantum Electron. 1(2), 592–600 (1995).
[Crossref]

Chen, L.

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression,” Appl. Phys. Lett. 90(5), 051102 (2007).
[Crossref]

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

Chouli, S.

Christodoulides, D. N.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

Cruz, C. H. B.

Dvoretskiy, D. A.

Fang, X.

Feng, C.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–875 (2013).
[Crossref]

Fragnito, H. L.

Fry, A. R.

Gao, C. X.

Gorden, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gorden, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Grelu, P.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–875 (2013).
[Crossref]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “tretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experimen,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Haxsen, F.

He, W.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fiber laser by optomechanically bound state of solitons,” Nat. Photonics 102, 1–6 (2016).

Ilday, F. O.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “tretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experimen,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Jiang, X.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fiber laser by optomechanically bound state of solitons,” Nat. Photonics 102, 1–6 (2016).

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Karasik, V. E.

Keller, U.

Kracht, D.

Krajewska, A.

Krylov, A. A.

Lazarev, V. A.

Lefort, L.

Leonov, S. O.

Liu, H. F.

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond Pulse Generation from Semiconductor Lasers Using the Soliton-Effect Compression Technique,” IEEE J. Sel. Top. Quantum Electron. 1(2), 592–600 (1995).
[Crossref]

Lu, C.

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression,” Appl. Phys. Lett. 90(5), 051102 (2007).
[Crossref]

Luo, H.

Ma, D.

Mansur, N. L. P.

Matsas, V. J.

Mollenauer, L. F.

R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8(3), 186–188 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gorden, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Morgner, U.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “tretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experimen,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Neumann, J.

Newson, T. P.

Pang, M.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fiber laser by optomechanically bound state of solitons,” Nat. Photonics 102, 1–6 (2016).

Paschotta, R.

Pasternak, I.

Payne, D. N.

Planas, S. A.

Pnev, A. B.

Price, J. H. V.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

Richardson, D. J.

Rodnova, Z. N.

Russell, P. St. J.

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fiber laser by optomechanically bound state of solitons,” Nat. Photonics 102, 1–6 (2016).

Sazonkin, S. G.

Shen, X. H.

Sobon, G.

Sosnowski, T.

Soto-Crespo, J. M.

Sotor, J.

Spüler, G. J.

Stolen, R. H.

R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8(3), 186–188 (1983).
[Crossref] [PubMed]

L. F. Mollenauer, R. H. Stolen, and J. P. Gorden, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Strupinski, W.

Tam, H. Y.

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “tretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experimen,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Tang, D. Y.

Tomlinson, W. J.

Voropaev, V. S.

Wandt, D.

Wang, Z. Q.

Weston, J.

Wienke, A.

Wise, F. W.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27(17), 1531–1533 (2002).
[Crossref] [PubMed]

Wright, L. G.

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

Wu, J.

Zhan, L.

Zhang, L.

Zhang, Z.

Zhao, L. M.

Zhou, C.

Zong, W.

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Appl. Phys. Lett. (2)

K. Tamura, L. E. Nelson, H. A. Haus, and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64(2), 149–151 (1994).
[Crossref]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, “Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression,” Appl. Phys. Lett. 90(5), 051102 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “tretched-Pulse Additive Pulse Mode-Locking in Fiber Ring Lasers: Theory and Experimen,” IEEE J. Quantum Electron. 31(3), 591–598 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond Pulse Generation from Semiconductor Lasers Using the Soliton-Effect Compression Technique,” IEEE J. Sel. Top. Quantum Electron. 1(2), 592–600 (1995).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1–2), 58–73 (2008).
[Crossref]

Nat. Photonics (3)

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7(11), 868–875 (2013).
[Crossref]

M. Pang, W. He, X. Jiang, and P. St. J. Russell, “All-optical bit storage in a fiber laser by optomechanically bound state of solitons,” Nat. Photonics 102, 1–6 (2016).

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (9)

R. H. Stolen, L. F. Mollenauer, and W. J. Tomlinson, “Observation of pulse restoration at the soliton period in optical fibers,” Opt. Lett. 8(3), 186–188 (1983).
[Crossref] [PubMed]

S. A. Planas, N. L. P. Mansur, C. H. B. Cruz, and H. L. Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett. 18(9), 699–701 (1993).
[Crossref] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
[Crossref] [PubMed]

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010).
[Crossref] [PubMed]

F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27(17), 1531–1533 (2002).
[Crossref] [PubMed]

L. Lefort, J. H. V. Price, D. J. Richardson, G. J. Spüler, R. Paschotta, U. Keller, A. R. Fry, and J. Weston, “Practical low-noise stretched-pulse Yb3+-doped fiber laser,” Opt. Lett. 27(5), 291–293 (2002).
[Crossref] [PubMed]

A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett. 37(13), 2466–2468 (2012).
[Crossref] [PubMed]

V. J. Matsas, D. J. Richardson, T. P. Newson, and D. N. Payne, “Characterization of a self-starting, passively mode-locked fiber ring laser that exploits nonlinear polarization evolution,” Opt. Lett. 18(5), 358–360 (1993).
[Crossref] [PubMed]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. F. Mollenauer, R. H. Stolen, and J. P. Gorden, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45(13), 1095–1098 (1980).
[Crossref]

Science (1)

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       This is the pulse evolution in the cavity corresponding to Fig. 3 in our manuscript.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the fiber laser in our simulation. LD:laser diode, WDM:wavelength division multiplexer, OC: output coupler, SA: saturable absorber, EDF: Er-doped fiber, SMF: single mode fiber.
Fig. 2
Fig. 2 Intra-cavity pulse characteristics with 120pJ pump strength, near-zero net-dispersion: (a) pulse evolution in temporal domain, (b) pulse evolution in spectral domain, (c) average temporal and frequency width evolution, (d) intensity profiles at two positions.
Fig. 3
Fig. 3 Pulse characteristics with 1300pJ pump strength, 70% modulation depth and near-zero net-dispersion: (a) pulse evolution in temporal domain, (b) pulse evolution in spectral domain, (c) pulse energy evolution, (d) evolution of frequency width of the soliton, (e) pulse intensity profiles at different locations, (f) pulse spectra at different locations.
Fig. 4
Fig. 4 (a) Minimum width and corresponding position of the stretched-pulse under different pump strengths with zero net-dispersion, (b) soliton order of the pulse at the end of EDF under different pump strengths.
Fig. 5
Fig. 5 Pulse characteristics in the case of Fig. 3 at different positions inside the laser: (a) pulse at 0.01m, (b) pulse at 0.4m, (c) pulse at 0.8m, (d) pulse at 1.2m.
Fig. 6
Fig. 6 Round-to-round evolution of the stretched pulse with 1400pJ pump strength, 70% modulation depth and near-zero net-dispersion.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u z = 1 2 i β 2 2 u T 2 + 1 6 i β 3 3 u T 3 +iγ | u | 2 u+ 1 2 g( 1+ 1 Ω 2 2 T 2 )u
g= g 0 exp( | u | 2 dt/Es)
T= 1α/(1+P/ P 0 )
σ t = T 2 | u | 2 dT | u | 2 dT [ T | u | 2 dT | u | 2 dT ] 2
σ f = f 2 | F u | 2 df | F u | 2 df [ f | F u | 2 df | F u | 2 df ] 2

Metrics